ode primer

Upload: guernika

Post on 07-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Ode Primer

    1/26

    Chapter 08.01Primer for Ordinary Differential Equations

    After reading this chapter, you should be able to:

    1. define an ordinary differential equation,2. differentiate between an ordinary and partial differential equation, and3.

    solve linear ordinary differential equations with fixed constants by using classicalsolution and Laplace transform techniques.

    Introduction

    An equation that consists of derivatives is called a differential equation. Differential

    equations have applications in all areas of science and engineering. Mathematical

    formulation of most of the physical and engineering problems leads to differential equations.So, it is important for engineers and scientists to know how to set up differential equations

    and solve them.

    Differential equations are of two types

    (A) ordinary differential equations (ODE)(B) partial differential equations (PDE)An ordinary differential equation is that in which all the derivatives are with respect to asingle independent variable. Examples of ordinary differential equations include

    022

    2

    =++ ydx

    dy

    dx

    yd, 4)0(,2)0( == y

    dx

    dy,

    ,sin532

    2

    3

    3

    xydx

    dy

    dx

    yd

    dx

    yd=+++ ,12)0(

    2

    2

    =dx

    yd2)0( =

    dx

    dy, 4)0( =y

    Ordinary differential equations are classified in terms of order and degree. Order of an

    ordinary differential equation is the same as the highest derivative and the degree of anordinary differential equation is the power of highest derivative.

    Thus the differential equation,

    xexydx

    dyx

    dx

    ydx

    dx

    ydx =+++

    2

    22

    3

    33

    08.01.1

  • 8/3/2019 Ode Primer

    2/26

    08.01.2 Chapter 08.01

    is of order 3 and degree 1, whereas the differential equation

    xdx

    dyx

    dx

    dysin1 2

    2

    =+

    +

    is of order 1 and degree 2.An engineers approach to differential equations is different from a mathematician. While,

    the latter is interested in the mathematical solution, an engineer should be able to interpret the

    result physically. So, an engineers approach can be divided into three phases:a) formulation of a differential equation from a given physical situation,b) solving the differential equation and evaluating the constants, using given conditions,

    andc) interpreting the results physically for implementation.

    Formulation of differential equations

    As discussed above, the formulation of a differential equation is based on a given physical

    situation. This can be illustrated by a spring-mass-damper system.

    Above is the schematic diagram of a spring-mass-damper system. A block is suspendedfreely using a spring. As most physical systems involve some kind of damping - viscous

    damping, dry damping, magnetic damping, etc., a damper or dashpot is attached to account

    for viscous damping.

    Kb

    Figure 1 Spring-mass damper system.

    M

    Let the mass of the block be , the spring constant be K, and the dampercoefficient be b . If we measure displacement from the static equilibrium position we need

    not consider gravitational force as it is balanced by tension in the spring at equilibrium.

    Below is the free body diagram of the block at static and dynamic equilibrium. So,the equation of motion is given by

    (1)DS FFMa +=

    where

    is the restoring force due to spring.SF

  • 8/3/2019 Ode Primer

    3/26

    Primer for Ordinary Differential Equation 08.01.3

    is the damping force due to the damper.DF

    is the acceleration.a

    The restoring force in the spring is given by

    (2)KxFS =

    as the restoring force is proportional to displacement and it is negative as it opposes the

    motion. The damping force in the damper is given by(3)bvFD =

    as the damping force is directly proportional to velocity and also opposes motion.

    Therefore, the equation of motion can be written as

    (4)bvKxMa =

    Since

    SF

    Ma

    DynamicStatic

    Mg

    T DF

    Figure 2 Free body diagram of spring-mass-damper system.

    2

    2

    dt

    xda = and

    dt

    dxv =

    from Equation (4), we get

    dt

    dx

    bKxdt

    xd

    M=

    2

    2

    02

    2

    =++ Kxdt

    dxb

    dt

    xdM (5)

    This is an ordinary differential equation of second order and of degree one.

  • 8/3/2019 Ode Primer

    4/26

    08.01.4 Chapter 08.01

    Solution to linear ordinary differential equations

    In this section we discuss two techniques used to solve ordinary differential equations

    (A) Classical technique(B) Laplace transform technique

    Classical Technique

    The general form of a linear ordinary differential equation with constant coefficients is givenby

    )(......... 122

    2

    31

    1

    xFykdx

    dyk

    dx

    ydk

    dx

    ydk

    dx

    ydn

    n

    nn

    n

    =+++++

    (6)

    The general solution contains two parts

    (7)PH yyy +=

    where

    is the homogeneous part of the solution andHy

    is the particular part of the solution.Py

    The homogeneous part of the solution is that part of the solution that gives zero when

    substituted in the left hand side of the equation. So, is solution of the equation

    Hy

    Hy

    0......... 122

    2

    31

    1

    =+++++

    ykdx

    dyk

    dx

    ydk

    dx

    ydk

    dx

    ydn

    n

    nn

    n

    (8)

    The above equation can be symbolically written as

    (9)0................. 121 =++++ ykDykyDkyD nn

    n

    (10)0).................( 121 =++++ ykDkDkD nn

    n

    where,

    n

    nn

    dx

    d

    D = (11)

    .

    .

    .

    1

    11

    =

    n

    nn

    dx

    dD

    operating on is the same as

    ,),( 1rD )( 2rD )( nrD

    operating one after the other in any order, where)(....,),........(),( 21 nrDrDrD

    are factors of

    0 (12)............... 121 =++++ kDkDkD nn

    n

    To illustrate

    0)23(2 =+ yDD

    is same as

  • 8/3/2019 Ode Primer

    5/26

    Primer for Ordinary Differential Equation 08.01.5

    0)1)(2( = yDD

    0)2)(1( = yDD

    Therefore,

    (13)0)....................( 121 =++++ ykDkDkD nn

    n

    is same as

    0).........().........)(( 11 = yrDrDrD nn (14)

    operating one after the other in any order.

    Case 1: Roots are real and distinct

    The entire left hand side becomes zero if ( ) 01 = yrD . Therefore, the solution tois a solution to a homogeneous equation.( ) 01 = yrD ( ) 01 = yrD is called Leibnitzs

    linear differential equation of first order and its solution is

    (15)( ) 01 = yrD

    yr

    dx

    dy1= (16)

    dxry

    dy1= (17)

    Integrating both sides we get

    (18)cxry += 1ln

    (19)xrcey 1=

    Since any of the factors can be placed before , there are different solutions

    corresponding to different factors given by

    n y n

    n

    xrxrxr

    n

    xr

    n eCeCeCeCnn 121

    121 ,.....,,.........,

    where

    are the roots of Equation (12) and121, ,..,,......... rrrr nn

    are constants.121, ,,......, CCCC nn

    We get the general solution for a homogeneous equation by superimposing the individual

    Leibnitzs solutions. Therefore

    (20)xr

    n

    xr

    n

    xrxr

    Hnn eCeCeCeCy ++++=

    121

    121 .............

    Case 2: Roots are real and identical

    If two roots of a homogeneous equation are equal, say 21 rr = , then

    0))(...(..........).........)(( 111 = yrDrDrDrD nn (21)

    Lets work at

    (22)0))(( 11 = yrDrD

    If

    (23)zyrD = )( 1

    then

    0)( 1 = zrD

  • 8/3/2019 Ode Primer

    6/26

    08.01.6 Chapter 08.01

    (24)xreCz 12=

    Now substituting the solution from Equation (24) in Equation (23)xreCyrD 121)( =

    xreCyr

    dx

    dy1

    21 =

    2111 Cyer

    dx

    dye

    xrxr =

    2

    )( 1C

    dx

    yedxr

    =

    (25)dxCyedxr

    2)(1 =

    Integrating both sides of Equation (25), we get

    121 CxCyexr +=

    (26)xr

    eCxCy 1)( 12 +=

    Therefore the final homogeneous solution is given by

    (27)( ) xrnxrxrHneCeCexCCy ++++= ...

    31321

    Similarly, if m roots are equal the solution is given by

    ( ) xrnxrmxrmmH nmm eCeCexCxCxCCy +++++++= ++ .......... 1112321 (28)

    Case 3: Roots are complex

    If one pair of roots is complex, say ir +=1 and ir =2 ,

    where

    1=i then

    (29)( ) ( )xr

    n

    xrxixi

    H

    neCeCeCeCy ++++= + ......3321

    Since

    , and (30a)xixe xi sincos +=

    (30b)xixe xi sincos =

    then

    ( ) ( ) xrnxrxx

    HneCeCxixeCxixeCy +++++= .........sincossincos 3321

    ( ) ( ) xrnxrxx neCeCxeCCixeCC +++++= .........sincos 332121

    (31)( ) xrnxrx neCeCxBxAe ++++= ........sincos 33

    where

    and21

    CCA +=

    (32))( 21 CCiB =

    Now, let us look at how the particular part of the solution is found. Consider the general

    form of the ordinary differential equation

    ( ) XykDkDkD nnnnn =++++ 1211 .......... (33)The particular part of the solution is that part of solution that givesPy X when substituted

    for in the above equation, that is,

  • 8/3/2019 Ode Primer

    7/26

    Primer for Ordinary Differential Equation 08.01.7

    ( ) XykDkDkD Pnnnnn =++++ 1211 ...... (34)

    Sample Case 1

    When , the particular part of the solution is of the form . We can findaxeX = axAe A by

    substituting in the left hand side of the differential equation and equating

    coefficients.

    axAey =

    Example 1

    Solve

    xeydx

    dy =+ 23 , 5)0( =y

    Solution

    The homogeneous solution for the above equation is given by

    ( ) 023 =+ yD

    The characteristic equation for the above equation is given by023 =+r

    The solution to the equation is

    666667.0=r

    xH Cey666667.0=

    The particular part of the solution is of the form xAe

    ( ) xxx eAedx

    Aed

    =+ 23

    xxx eAeAe =+ 23xx eAe =

    1=AHence the particular part of the solution is

    x

    P ey=

    The complete solution is given by

    PH yyy +=

    xx eCe = 666667.0

    The constant can be obtained by using the initial conditionC 5)0( =y

    ( ) 50 00666667.0 == eCey 51=C 6=C

    The complete solution isxx eey = 666667.06

    Example 2Solve

    xeydx

    dy 5.132 =+ , 5)0( =y

  • 8/3/2019 Ode Primer

    8/26

    08.01.8 Chapter 08.01

    Solution

    The homogeneous solution for the above equation is given by

    ( ) 032 =+ yDThe characteristic equation for the above equation is given by

    032 =+rThe solution to the equation is

    5.1=r

    xH Cey5.1=

    Based on the forcing function of the ordinary differential equations, the particular part of the

    solution is of the form , but since that is part of the form of the homogeneous part of

    the solution, we need to choose the next independent solution, that is,

    xAe 5.1

    xP Axey5.1=

    To find A , we substitute this solution in the ordinary differential equation as

    ( ) xxx eAxedx

    Axed 5.15.15.1

    32

    =+

    xxxx eAxeAxeAe 5.15.15.15.1 332 =+

    xx eAe 5.15.12 =

    5.0=AHence the particular part of the solution is

    x

    P xey5.15.0 =

    The complete solution is given by

    PH yyy +=

    xx xeCe 5.15.1 5.0 +=The constant is obtained by using the initial conditionC 5)0( =y .

    ( ) 5)0(5.00)0(5.1)0(5.1

    =+=

    eCey 50 =+C

    5=CThe complete solution is

    xx xeey 5.15.1 5.05 +=

    Sample Case 2

    When

    or ,)sin(axX= )cos(ax

    )

    the particular part of the solution is of the form

    .cos()sin( axBaxA +

    We can get andA B by substituting )cos()sin( axBaxAy += in the left hand side of the

    differential equation and equating coefficients.

    Example 3

    Solve

  • 8/3/2019 Ode Primer

    9/26

    Primer for Ordinary Differential Equation 08.01.9

    xydx

    dy

    dx

    ydsin125.332

    2

    2

    =++ , 3)0(,5)0( === xdx

    dyy

    Solution

    The homogeneous equation is given by

    0)125.332(

    2

    =++ yDDThe characteristic equation is

    0125.332 2 =++ rrThe roots of the characteristic equation are

    22

    125.32433 2

    =r

    4

    2593

    =

    4

    163

    =

    4

    43

    i=

    i= 75.0Therefore the homogeneous part of the solution is given by

    )sincos( 2175.0

    xKxKey xH +=

    The particular part of the solution is of the form

    xBxAyP cossin +=

    ( ) ( ) xxBxAxBxAdx

    dxBxA

    dx

    dsin)cossin(125.3cossin3cossin2

    2

    2

    =+++++

    ( ) xxBxAxBxAxBxAdxd

    sin)cossin(125.3)sincos(3sincos2 =+++

    xxBxAxBxAxBxA sin)cossin(125.3)sincos(3)cossin(2 =+++

    xxABxBA sincos)3125.1(sin)3125.1( =++

    Equating coefficients of andxsin cos on both sides, we get

    13125.1 = BA03125.1 =+ AB

    Solving the above two simultaneous linear equations we get

    109589.0=A292237.0=B

    Hence

    xxyP cos292237.0sin109589.0 =The complete solution is given by

    )cos292237.0sin109589.0()sincos( 2175.0

    xxxKxKey x ++=

    To find and we use the initial conditions1K 2K

    3)0(,5)0( === xdx

    dyy

    From we get5)0( =y

  • 8/3/2019 Ode Primer

    10/26

    08.01.10 Chapter 08.01

    ))0cos(292237.0)0sin(109589.0())0sin()0cos((5 21)0(75.0 ++= KKe

    292237.05 1 = K

    292237.51 =K

    xx

    xKxKexKxKe

    dx

    dy xx

    sin292237.0cos109589.0

    )cossin()sincos(75.0 2175.0

    21

    75.0

    ++

    +++=

    From

    ,3)0( ==xdx

    dy

    we get

    )0sin(292237.0)0cos(109589.0

    ))0cos()0sin(())0sin()0cos((75.03 21)0(75.0

    21

    )0(75.0

    ++

    +++= KKeKKe

    109589.075.03 21 ++= KK

    109589.0)292237.5(75.03 2 ++= K

    859588.62 =K

    The complete solution is

    xxxxey x cos292237.0sin109589.0)sin859588.6cos292237.5(75.0 ++=

    Example 4

    Solve

    )cos(125.3622

    2

    xydx

    dy

    dx

    yd=++ , 3)0(,5)0( === x

    dx

    dyy

    Solution

    The homogeneous part of the equations is given by0)125.362( 2 =++ yDD

    The characteristic equation is given by

    0125.362 2 =++ rr

    )2(2

    )125.3)(2(4662

    =r

    4

    25366 =

    4

    116 =

    829156.05.1 =329156.2,670844.0 =

    Therefore, the homogeneous solution is given byHy

    xxH eKeKy329156.2

    2

    670845.0

    1

    +=

    The particular part of the solution is of the form

    xBxAyP cossin +=

  • 8/3/2019 Ode Primer

    11/26

    Primer for Ordinary Differential Equation 08.01.11

    Substituting the particular part of the solution in the differential equation,

    xxBxA

    xBxAdx

    dxBxA

    dx

    d

    cos)cossin(125.3

    )cossin(6)cossin(22

    2

    =++

    +++

    xxBxA

    xBxAxBxAdx

    d

    cos)cossin(125.3

    )sincos(6)sincos(2

    =++

    +

    xxBxA

    xBxAxBxA

    cos)cossin(125.3

    )sincos(6)cossin(2

    =++

    +

    xxABxBA coscos)6125.1(sin)6125.1( =++

    Equating coefficients of xcos and we getxsin

    06125.1

    16125.1

    =

    =+

    BA

    AB

    The solution to the above two simultaneous linear equations are

    0301887.0161006.0

    ==

    BA

    Hence the particular part of the solution is

    xxyP cos0301887.0sin161006.0 +=

    Therefore the complete solution is

    PH yyy +=

    xxeKeKy xx cos0301887.0sin161006.0)(329156.2

    2

    670845.0

    1 +++=

    Constants and can be determined using initial conditions. From ,1K 2K 5)0( =y

    50301887.0)0( 21 =++= KKy

    969811.40301887.0521 ==+ KK

    Now

    x

    eKeKdx

    dy xx

    sin0301887.0cos161006.0

    329156.2670845.0 )329156.2(2)670845.0(

    1

    +

    =

    From 3)0( ==xdx

    dy

    3161006.0329156.2670845.0 21 =+ KK

    161006.03329156.2670845.0 21 +=+ KK

    838994.2329156.2670845.0 21 =+ KK

    We have two linear equations with two unknowns969811.421 =+ KK

    838994.2329156.2670845.0 21 =+ KK

    Solving the above two simultaneous linear equations, we get

    692253.81 =K

    722442.32 =K

    The complete solution is

  • 8/3/2019 Ode Primer

    12/26

    08.01.12 Chapter 08.01

    .cos0301887.0sin161006.0

    )722442.3692253.8( 329156.2670845.0

    xx

    eey xx

    ++

    =

    Sample Case 3When

    or ,bxeX ax sin= bxeax costhe particular part of the solution is of the form

    )cossin( bxBbxAeax + ,

    we can get andA Bby substituting

    )cossin( bxBbxAey ax +=

    in the left hand side of differential equation and equating coefficients.

    Example 5

    Solve

    xeydxdy

    dxyd x sin125.352 2

    2

    =++ , 3)0(,5)0( === xdxdyy

    Solution

    The homogeneous equation is given by

    0)125.352( 2 =++ yDD

    The characteristic equation is given by

    0125.352 2 =++ rr

    )2(2

    )125.3)(2(455 2 =r

    425255 =

    4

    05 =

    25.1,25.1 =

    Since roots are repeated, the homogeneous solution is given byHy

    xH exKKy)25.1(

    21 )(+=

    The particular part of the solution is of the form

    )cossin( xBxAey xP +=

    Substituting the particular part of the solution in the ordinary differential equation

  • 8/3/2019 Ode Primer

    13/26

    Primer for Ordinary Differential Equation 08.01.13

    xexBxAe

    xBxAedx

    dxBxAe

    dx

    d

    xx

    xx

    sin)}cossin({125.3

    )}cossin({5)}cossin({22

    2

    =++

    +++

    xexBxAexBxAexBxAe

    xBxAexBxAedx

    d

    xxxx

    xx

    sin)cossin(125.3)}sincos()cossin({5

    )}sincos()cossin({2

    =+++++

    ++

    xexBxAexBxAexBxAe

    xBxAexBxAexBxAexBxAe

    xxxx

    xxxx

    sin)cossin(125.3)}sincos()cossin({5

    )}cossin()sincos()sincos()cossin({2

    =+++++

    ++

    xexBxAexBxAe xxx sin)sincos()cossin(875.1 =++

    xxBxAxBxA sin)sincos()cossin(875.1 =++

    xxBAxBA sincos)875.1(sin)875.1( =++

    Equating coefficients of xcos and on both sides we getxsin

    0875.1 = BA 1875.1 =+ BA

    Solving the above two simultaneous linear equations we get

    and415224.0=A221453.0=B

    Hence,

    )

    )

    cos221453.0sin415224.0( xxey xP +=

    Therefore complete solution is given by

    PH yyy +=

    cos221453.0sin415224.0()( 25.121 xxeexKKyxx ++=

    Constants and can be determined using initial conditions,1K 2K

    From we get,5)0( =y

    5221453.01 =K

    221453.51 =K

    Now

    )cos221453.0sin415224.0()sin221453.0cos415224.0(

    25.125.1 25.1225.1

    2

    25.1

    1

    xxexxe

    eKxeKeKdx

    dy

    xx

    xxx

    ++

    +=

    From ,3)0( =dx

    dywe get

    3)0cos(221453.0)0sin(415224.0())0sin(221453.0)0cos(415224.0(

    )0(25.125.1

    00

    )0(25.1

    2

    )0(25.1

    2

    )0(25.1

    1

    =++

    +

    ee

    eKeKeK

    3415224.0221453.025.1 21 =++ KK 193771.325.1 21 =+ KK

    193771.3)221453.5(25.1 2 =+ K

    720582.92 =K

    Substituting

    and221453.51 =K

    720582.92 =K

  • 8/3/2019 Ode Primer

    14/26

    08.01.14 Chapter 08.01

    in the solution, we get

    )cos221453.0sin415224.0()720582.9221453.5( 25.1 xxeexy xx ++=

    The forms of the particular part of the solution for different right hand sides of ordinary

    differential equations are given below

    X ( )xyP 2

    210 xaxaa ++ 2

    210 xbxbb ++ axe axAe

    )sin(bx )cos()sin( bxBbxA +

    )sin(bxeax ( ))cos()sin( bxBbxAeax +

    )cos(bx )cos()sin( bxBbxA +

    )cos(bxe

    ax

    ( ))cos()sin( bxBbxAeax +

    Laplace Transforms

    If is defined at all positive values of)(xfy = x , the Laplace transform denoted by is

    given by

    )(sY

    (35)dxxfexfLsY sx )()}({)(0

    ==

    where is a parameter, which can be a real or complex number. We can get back by

    taking the inverse Laplace transform of .

    s )(xf

    )(sY

    (36))()}({1 xfsYL =

    Laplace transforms are very useful in solving differential equations. They give the solutiondirectly without the necessity of evaluating arbitrary constants separately.

    The following are Laplace transforms of some elementary functions

    sL

    1)1( =

    1

    !)(

    +=

    n

    n

    s

    nxL , where ....3,2,1,0=n

    as

    eL ax

    =

    1)(

    22)(sin

    as

    aaxL

    +=

    22)(cos

    as

    saxL

    +=

    22)(sinh

    as

    aaxL

    =

  • 8/3/2019 Ode Primer

    15/26

    Primer for Ordinary Differential Equation 08.01.15

    22)(cosh

    as

    saxL

    = (37)

    The following are the inverse Laplace transforms of some common functions

    111 =

    s

    L

    axeas

    L =

    11

    ( )!11 11

    =

    n

    x

    sL

    n

    n, where ......3,2,1=n

    ( ) ( )!11 11

    =

    n

    xe

    asL

    nax

    n

    axaas

    L sin11

    22

    1 =

    +

    axas

    sL cos22

    1=

    +

    axaas

    L sinh11

    22

    1 =

    atas

    sL cosh

    22

    1 =

    ( )bxe

    bbasL ax sin

    1122

    1 =

    +

    ( )bxe

    bas

    asL ax cos

    22

    1 =

    +

    ( )axx

    aas

    sL sin

    2

    1222

    1 =

    +

    (38)

    Properties of Laplace transforms

    Linear property

    If are constants and and are functions ofcba ,, ),(),( xgxf )(xh x then

    ))(())(())(()]()()([ xhcLxgbLxfaLxchxbgxafL ++=++ (39)

    Shifting property

    If

    (40))()}({ sYxfL =

    then

    (41))()}({ asYxfeL at =

    Using shifting property we get

  • 8/3/2019 Ode Primer

    16/26

    08.01.16 Chapter 08.01

    ( )( ) 1

    !+

    =

    n

    nax

    as

    nxeL , 0n

    ( )( ) 22

    sinbas

    bbxeL ax

    +=

    ( ) ( ) 22cos

    basasbxeL ax+

    =

    ( )( ) 22

    sinhbas

    bbxeL ax

    =

    ( )( ) 22

    coshbas

    asbxeL ax

    = (42)

    Scaling property

    If

    (43))()}({ sYxfL =

    then

    =a

    sY

    aaxfL

    1)}({ (44)

    Laplace transforms of derivatives

    If the first n derivatives of are continuous then)(xf

    (45)

    =0

    )()}({ dxxfexfL nsxn

    Using integration by parts we get

    +

    +++

    =

    0

    001132

    21

    )()()1(

    )()()1(......)()(

    )()()()(

    dxxfes

    xfesxfes

    xfesxfedxxfe

    sxnn

    sxnnnsx

    nsxnsx

    nsx

    +=0

    13221 )()0(.............)0()0()0( dxxfesfsfssff sxnnnnn

    (46))0(........)0()0()0()( 13221 fsfssffsYs nnnnn =

    Laplace transform technique to solve ordinary differential equations

    The following are steps to solve ordinary differential equations using the Laplace transformmethod

    (A) Take the Laplace transform of both sides of ordinary differential equations.(B) Express )(sY as a function ofs .(C) Take the inverse Laplace transform on both sides to get the solution.

    Let us solve Examples 1 through 4 using the Laplace transform method.

  • 8/3/2019 Ode Primer

    17/26

    Primer for Ordinary Differential Equation 08.01.17

    Example 6

    Solve

    xeydx

    dy =+ 23 , 5)0( =y

    Solution

    Taking the Laplace transform of both sides, we get

    ( )xeLydx

    dyL

    =

    + 23

    1

    1)(2)]0()([3

    +=+

    ssYyssY

    Using the initial condition, 5)0( =y we get

    1

    1)(2]5)([3

    +=+

    ssYssY

    151

    1)()23( ++

    =+s

    sYs

    1

    1615)()23(

    +

    +=+

    s

    ssYs

    )23)(1(

    1615)(

    ++

    +=

    ss

    ssY

    Writing the expression for in terms of partial fractions)(sY

    231)23)(1(

    1615

    ++

    +=

    ++

    +

    s

    B

    s

    A

    ss

    s

    )23)(1(

    23

    )23)(1(

    1615

    ++

    +++

    =++

    +

    ss

    BBsAAs

    ss

    s

    BBsAAss +++=+ 231615

    Equating coefficients of and gives1s 0s

    153 =+ BA 162 =+ BAThe solution to the above two simultaneous linear equations is

    1=A 18=B

    23

    18

    1

    1)(

    ++

    +

    =

    sssY

    666667.06

    11

    ++

    +=

    ss

    Taking the inverse Laplace transform on both sides

    ++

    +

    =

    666667.0

    6

    1

    1)}({ 111

    sL

    sLsYL

    Since

  • 8/3/2019 Ode Primer

    18/26

    08.01.18 Chapter 08.01

    ateas

    L =

    +

    11

    The solution is given byxx eexy 666667.06)( +=

    Example 7Solve

    xeydx

    dy 5.132 =+ , 5)0( =y

    Solution

    Taking the Laplace transform of both sides, we get

    ( )xeLydx

    dyL 5.132

    =

    +

    5.1

    1)(3)]0()([2

    +

    =+

    s

    sYyssY

    Using the initial condition , we get5)0( =y

    5.1

    1)(3]5)([2

    +=+

    ssYssY

    105.1

    1)()32( +

    +=+

    ssYs

    5.1

    1610)()32(

    +

    +=+

    s

    ssYs

    )32)(5.1(

    1610)(

    ++

    +=

    ss

    ssY

    )5.1)(5.1(21610++

    +=ss

    s

    2)5.1(2

    1610

    +

    +=

    s

    s

    2)5.1(

    85

    +

    +=

    s

    s

    Writing the expression for in terms of partial fractions)(sY

    22 )5.1(5.1)5.1(

    85

    ++

    +=

    +

    +

    s

    B

    s

    A

    s

    s

    22 )5.1(5.1

    )5.1(85

    +++=

    ++

    sBAAs

    ss

    BAAss ++=+ 5.185

    Equating coefficients of and gives1s 0s 5=A

    85.1 =+ BAThe solution to the above two simultaneous linear equations is

  • 8/3/2019 Ode Primer

    19/26

    Primer for Ordinary Differential Equation 08.01.19

    5=A5.0=B

    2)5.1(

    5.0

    5.1

    5)(

    ++

    +=

    sssY

    Taking the inverse Laplace transform on both sides

    ++

    +=

    2

    111

    )5.1(

    5.0

    5.1

    5)}({

    sL

    sLsYL

    Since

    axeas

    L =

    +

    11and axxe

    asL =

    + 21

    )(

    1

    The solution is given byxx xeexy 5.15.1 5.05)( +=

    Example 8

    Solve

    xydx

    dy

    dx

    ydsin125.332

    2

    2

    =++ , 3)0(,5)0( === xdx

    dyy

    Solution

    Taking the Laplace transform of both sides

    ( )xLydx

    dy

    dx

    ydL sin125.332

    2

    2

    =

    ++

    and knowing

    2

    2

    dxydL ( ) ( ) ( )002 == x

    dxdysysYs

    dx

    dyL ( ) ( )0yssY =

    1

    1)(sin

    2 +=

    sxL

    we get

    [ ]1

    1)(125.3)0()(3)0()0()(2

    2

    2

    +=++

    =

    ssYyssYx

    dx

    dysysYs

    [ ] [ ] 11)(125.35)(335)(2

    22

    +=++ ssYssYssYs

    ( )[ ]1

    12110)(125.332

    2 +=++

    sssYss

    ( )[ ] 21101

    1)(125.332

    2++

    +=++ s

    ssYss

  • 8/3/2019 Ode Primer

    20/26

    08.01.20 Chapter 08.01

    [ ])1(

    21101022)(125.332

    2

    232

    +

    +++=++

    s

    ssssYss

    ( )( )125.332122102110

    )(22

    23

    +++

    +++=

    sss

    ssssY

    Writing the expression for in terms of partial fractions)(sY

    ( ) ( ) ( )( )125.3321

    22102110

    1125.332 22

    23

    22 +++

    +++=

    +

    ++

    ++

    +

    sss

    sss

    s

    DCs

    ss

    BAs

    ( )( )

    ( )( )125.332122102110

    1125.332

    125.332125.332

    22

    23

    22

    22323

    +++

    +++=

    +++

    +++++++++

    sss

    sss

    sss

    DDsDsCsCsCsBBsAsAs

    ( ) ( ) ( ) ( )( )( )

    ( )( )125.332122102110

    125.3321

    125.33125.3232

    22

    23

    22

    23

    +++

    +++=

    +++

    +++++++++

    sss

    sss

    sss

    DBsDCAsDCBsCA

    Equating terms of , and gives3s 12 , ss 0s

    102 =+ CA2123 =++ DCB

    103125.3 =++ DCA22125.3 =+ DB

    The solution to the above four simultaneous linear equations is584474.10=A657534.21=B292237.0=C

    109589.0=DHence

    1

    109589.0292237.0

    125.332

    657534.21584474.10)(

    22 +

    ++

    ++

    +=

    s

    s

    ss

    ssY

    ( ) }1)75.0{(2}1)5625.05.1{(2125.332 222 ++=+++=++ sssss

    1

    109589.0292237.0

    }1)75.0{(2

    719179.13)75.0(584474.10)(

    22 +

    ++

    ++

    ++=

    s

    s

    s

    ssY

    )1(

    109589.0

    )1(

    292237.0

    }1)75.0{(

    859589.6

    }1)75.0{(

    )75.0(292237.5

    2222 ++

    +

    +++

    ++

    +=

    ss

    s

    ss

    s

    Taking the inverse Laplace transform of both sides

    ++

    +

    +++

    ++

    +=

    1

    109589.0

    1

    292237.0

    1)75.0{(

    859589.6

    }1)75.0{(

    )75.0(292237.5)}({

    2

    1

    2

    1

    2

    1

    2

    11

    sL

    s

    sL

    sL

    s

    sLsYL

  • 8/3/2019 Ode Primer

    21/26

    Primer for Ordinary Differential Equation 08.01.21

    ++

    +

    +++

    ++

    +=

    1

    1109589.0

    1292237.0

    1)75.0{(

    1859589.6

    }1)75.0{(

    75.0292237.5)}({

    2

    1

    2

    1

    2

    1

    2

    11

    sL

    s

    sL

    sL

    s

    sLsYL

    Since

    ( )bxe

    bas

    asL ax cos

    22

    1 =

    ++

    +

    ( )bxe

    bas

    bL ax sin

    22

    1 =

    ++

    axas

    L sin1

    22

    1 =

    +

    axas

    sL cos

    22

    1 =

    +

    The complete solution is

    xx

    xexexyxx

    sin109589.0cos292237.0

    sin8595859.6cos292237.5)( 75.075.0

    +

    +=

    ( ) xxxxe x sin109589.0cos292237.0sin859589.6cos292237.5 75.0 ++=

    Example 9

    Solve

    xydx

    dy

    dx

    ydcos125.362

    2

    2

    =++ , 3)0(,5)0( === xdx

    dyy

    SolutionTaking the Laplace transform of both sides

    ( )xLydx

    dy

    dx

    ydL cos125.362

    2

    2

    =

    ++

    and knowing

    2

    2

    dx

    ydL ( ) ( ) ( )002 == x

    dx

    dysysYs

    dx

    dyL ( ) ( )0yssY =

    1)(cos

    2 +=

    s

    sxL

    we get

    [ ]1

    )(125.3)0()(6)0()0()(22

    2

    +=++

    =

    s

    ssYyssYx

    dx

    dysysYs

    [ ] [ ]1

    )(125.35)(635)(22

    2

    +=++

    s

    ssYssYssYs

  • 8/3/2019 Ode Primer

    22/26

    08.01.22 Chapter 08.01

    [ ] 36101

    )(125.3)62(2

    +++

    =++ ss

    ssYss

    [ ]1

    36111036)(125.362

    2

    232

    +

    +++=++

    s

    ssssYss

    ( )( )125.362136113610

    )( 22

    23

    +++

    +++= sss

    ssssY

    Writing the expression for in terms of partial fractions)(sY

    ( ) ( ) ( )( )125.3621

    36113610

    1125.36222

    23

    22 +++

    +++=

    +

    ++

    ++

    +

    sss

    sss

    s

    DCs

    ss

    BAs

    ( )( )

    ( )( )125.362136113610

    1125.362

    125.362125.362

    22

    23

    22

    22323

    +++

    +++=

    +++

    +++++++++

    sss

    sss

    sss

    DDsDsCsCsCsBBsAsAs

    ( ) ( ) ( ) ( )( )( )

    ( )( )125.362136113610

    125.3621125.36125.3262

    22

    23

    22

    23

    +++

    +++=

    ++++++++++++

    sss

    sss

    sssDBsDCAsDCBsCA

    Equating terms of , and gives3s12 , ss 0s

    102 =+ CA3626 =++ DCB

    116125.3 =++ DCA36125.3 =+ DB

    The solution to the above four simultaneous linear equations is939622.9=A496855.35=B

    0301886.0=C

    161006.0=DThen

    1

    161006.00301886.0

    125.362

    496855.35939622.9)(

    22 +

    ++

    ++

    +=

    s

    s

    ss

    ssY

    ( ) }829156.0)5.1{(2}6875.0)25.23{(2125.362 2222 +=++=++ sssss

    1

    161006.00301886.0

    }829156.0)5.1{(2

    587422.20)5.1(939622.9)(

    222 +

    ++

    +

    ++=

    s

    s

    s

    ssY

    1

    161006.0

    1

    0301886.0

    }829156.0)5.1{(

    293711.10

    }829156.0)5.1{(

    )5.1(969811.4

    22

    2222

    ++

    ++

    ++

    ++=

    ss

    s

    ss

    s

    Taking the inverse Laplace transform on both sides

  • 8/3/2019 Ode Primer

    23/26

    Primer for Ordinary Differential Equation 08.01.23

    ++

    ++

    ++

    +

    +=

    1

    161006.0

    1

    0301886.0

    829156.0)5.1{(

    293711.10

    }829156.0)5.1{(

    )5.1(969811.4)}({

    2

    1

    2

    1

    22

    1

    22

    11

    sL

    s

    sL

    sL

    s

    sLsYL

    ++

    ++=

    22

    1

    22

    1

    829156.0)5.1(1293711.10

    829156.0)5.1()5.1(969811.4

    sL

    ssL

    ++

    ++

    )1(

    1161006.0

    )1(0301886.0

    2

    1

    2

    1

    sL

    s

    sL

    Since

    ( )bxe

    bas

    asL ax cosh

    22

    1 =

    +

    +

    ( )bxe

    bbasL ax sinh

    1122

    1 =

    +

    axaas

    L sin11

    22

    1 =

    +

    axas

    sL cos

    22

    1 =

    +

    The complete solution is

    xexexy xx

    sin161006.0cos0301886.0

    )829156.0sinh(829156.0

    293711.10)829156.0cosh(969811.4)( 5.15.1

    ++

    +=

    eeee

    e

    xxxxx

    sin161006.0cos030188.0

    2414685.122969811.4

    829156.0829156.0829156.0829156.05.1

    ++

    +

    +

    =

    ( )x

    xeee xxx

    sin161006.0

    cos0301886.0722437.3692248.8 829156.0829156.05.1

    +

    +=

    Example 10

    Solve

    xey

    dx

    dy

    dx

    yd x sin125.3522

    2=++ , 3)0(,5)0( === x

    dx

    dyy

    Solution

    Taking the Laplace transform of both sides

    ( )xeLydx

    dy

    dx

    ydL x sin125.352

    2

    2=

    ++

    knowing

  • 8/3/2019 Ode Primer

    24/26

    08.01.24 Chapter 08.01

    2

    2

    dx

    ydL ( ) ( ) ( )002 == x

    dx

    dysysYs

    dx

    dyL ( ) ( )0yssY =

    1)1(1)sin(

    2 ++=

    sxeL x

    we get

    [ ]

    [ ] [ ]1)1(

    1)(125.35)(535)(2

    1)1(

    1)(125.3)0()(5)0()0()(2

    2

    2

    2

    2

    ++=++

    ++=++

    =

    ssYssYssYs

    ssYyssYx

    dx

    dysysYs

    ( )[ ]1)1(

    13110)(125.352

    2 ++=++

    sssYss

    [ ] 31101)1(

    1)(125.3)52(2 ++++

    =++ ss

    sYss

    [ ]22

    51821063)(125.352

    2

    232

    ++

    +++=++

    ss

    ssssYss

    ( )( )125.3522263825110

    )(22

    23

    ++++

    +++=

    ssss

    ssssY

    Writing the expression for in terms of partial fractions)(sY

    ( )( )125.35222

    63825110

    22125.35222

    23

    22

    ++++

    +++=

    ++

    ++

    ++

    +

    ssss

    sss

    ss

    DCs

    ss

    BAs

    ( )( )

    ( )( )125.3522263825110

    22125.352

    2222125.352125.352

    22

    23

    22

    223223

    ++++

    +++=

    ++++

    +++++++++++

    ssss

    sss

    ssss

    BBsBsAsAsAsDDsDsCsCsCs

    ( ) ( ) ( ) ( )( )( )

    ( )( )125.3522263825110

    125.35222

    2125.3225125.32252

    22

    23

    22

    23

    ++++

    +++=

    ++++

    +++++++++++

    ssss

    sss

    ssss

    BDsBADCsBADCsAC

    Equating terms of , and gives four simultaneous linear equations3s12 , ss 0s

    102 =+ AC51225 =+++ BADC

    82225125.3 =+++ BADC 632125.3 =+ BDThe solution to the above four simultaneous linear equations is

  • 8/3/2019 Ode Primer

    25/26

    Primer for Ordinary Differential Equation 08.01.25

    442906.10=A

    494809.32=B

    221453.0=C

    636678.0=DThen

    22636678.0221453.0

    125.352494809.32442906.10)(

    22 +++

    +++=

    sss

    ssssY

    ( ) 222 )25.1(2)}5625.15.2{(2125.352 +=++=++ sssss

    1)1(

    415225.0)1(221453.0

    )25.1(2

    441176.19)25.1(442906.10)(

    22 ++

    ++

    +

    ++=

    s

    s

    s

    ssY

    1)1(

    415225.0

    1)1(

    )1(221453.0

    )25.1(

    720588.9

    )25.1(

    )25.1(221453.5

    2222 ++

    ++

    +

    ++

    +

    +=

    ss

    s

    ss

    s

    Taking the inverse Laplace transform on both sides

    ++

    ++

    +

    ++

    +=

    1)1(

    415225.0

    1)1(

    )1(221453.0

    )25.1(

    720588.9

    )25.1(

    221453.5)}({

    2

    1

    2

    1

    2

    111

    sL

    s

    sL

    s

    L

    s

    LsYL

    ++

    ++

    +

    ++

    +=

    1)1(

    1415225.0

    1)1(

    )1(221453.0

    )25.1(

    1720588.9

    )25.1(

    1221453.5

    2

    1

    2

    1

    2

    11

    sL

    s

    sL

    sL

    sL

    Since

    ( ) bxebasas

    Lax

    cos221

    =

    ++

    +

    ( )bxe

    bas

    bL ax sin

    22

    1 =

    ++

    axeas

    L =

    +

    11

    )!1()(

    1 11

    =

    +

    n

    xe

    asL

    nax

    n

    The complete solution is

    xexexeexy

    x

    xxx

    sin415225.0cos221453.0720588.9221453.5)(

    25.125.1

    +=

    ( ) )sin415225.0cos221453.0(720588.9221453.5 25.1 xxexe xx ++=

  • 8/3/2019 Ode Primer

    26/26

    08.01.26 Chapter 08.01

    ORDINARY DIFFERENTIAL EQUATIONS

    Topic A Primer on ordinary differential equationsSummary Textbook notes of a primer on solution of ordinary differential equations

    Major All majors of engineering

    Authors Autar Kaw, Praveen ChalasaniDate April 24, 2009

    Web Site http://numericalmethods.eng.usf.edu

    http://../http://../