of cu(ii) to cu(0) with nabh4 set-lrp of nipam in water ... · supporting information to set-lrp of...

21
Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH 4 . Mikhail Gavrilov 1 , Timothy J. Zerk 2 , Paul V. Bernhardt 2 , Virgil Percec 3 and Michael J. Monteiro 1, * 1. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia. 2 . School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia. 3 . Roy ans Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 190104-6323. * To whom correspondence should be addressed. [email protected] Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 10-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Supporting Information to

SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4.

Mikhail Gavrilov1, Timothy J. Zerk2, Paul V. Bernhardt2, Virgil Percec3 and Michael J.

Monteiro1,*

1. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia.

2. School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane QLD 4072, Australia.

3. Roy ans Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 190104-6323.

* To whom correspondence should be addressed. [email protected]

Electronic Supplementary Material (ESI) for Polymer Chemistry.This journal is © The Royal Society of Chemistry 2015

Page 2: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1.01.52.02.53.03.54.04.5 ppm

OHO

OH

Br

O

a

b d

c

e

c

d

e

a

b

Figure S1. 1H NMR of 11 at 298K (500 MHz), recorded in CDCl3.

2030405060708090100110120130140150160170 ppm

OHO

OH

Br

O

a

b d

fe

c g

c

g d

b e

a

f

Figure S2. 13C NMR of 11 at 298K (500 MHz), recorded in CDCl3.

Page 3: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100

Mw

/Mn

Conversion (%)

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

Mn

Conversion (%)

[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 1/0.8/0.8/0.2

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100

Mn

Conversion (%)

(A)

(C)

(B)

(a)

(b)

(c)(d)

SEC-RI

SEC-RI

Mark-Houwink

Figure S3. Aqueous SET-LRP of NIPAM catalyzed by the in situ generation of Cu(0) from NaBH4 by varying [NIPAM]o/[I]o from (a) 20/1 ■, (b) 30/1 , (c) 40/1 ▲, (d) 50/1 ●. (A) Mn

determined from SEC using RI and polystyrene standards (dashed lines represent theoretical Mn values). (B) Mn calculated using the Mark-Houwink equation from correlation between SEC and MALDI Mn's, and (C) Mw/Mn values after re-calculation using the Mark-Houwink equation . Reaction conditions: [I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 4: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o = 30/1/0.8/0.8

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100

Mn

Conversion (%)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100

Mn

Conversion (%)

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100

Mw

/Mn

Conversion (%)

(A)

(C)

(B)SEC-RI

SEC-RI

Mark-Houwink

(a) (b) (c)

(d)

Figure S4. Aqueous SET-LRP of NIPAM catalyzed by the in situ generation of Cu(0) from NaBH4 at [NIPAM]o/[I]o = 30 and varying [CuBr2]o/[NaBH4]o from (a) 0.8/0.2 , (b) 0.8/0.4 ■, (c) 0.8/0.6 ▲, (d) 0.8/0.8 ●. (A) Mn determined from SEC using RI and polystyrene standards (dashed lines represent theoretical Mn values), (B) Mn calculated using the Mark-Houwink equation and (C) Mw/Mn values from SEC using the Mark-Houwink equation. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o = 30/1/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

Page 5: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S5. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 20/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 6: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S6. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 7: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S7. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 40/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 8: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S8. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 50/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 9: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S9. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.4. [I]=0.0267 M in 3.48 mL of water.

Page 10: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S10. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.6. [I]=0.0267 M in 3.48 mL of water.

Page 11: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S11. MALDI-ToF and SEC (RI using polystyrene standards, red line) for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

Page 12: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1112.656

1225.781

0

200

400

600

800

1000

Inte

ns. [

a.u.

]

1075 1100 1125 1150 1175 1200 1225 1250 1275 1300m/z

Cal. [X+ Na]+= 1112.70Exp. [X+ Na]+=1112.656

O

HO

HO

O

NH

S

On

Conv = 27%Time = 20 min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 20/1/0.8/0.8/0.2

1565.094

1678.205

0

200

400

600

800

1000

Inte

ns. [

a.u.

]

1500 1550 1600 1650 1700 1750m/z

Cal. [X+ Na]+=1565.04Exp. [X+ Na]+=1565.094

O

HO

HO

O

NH

S

On

Conv = 46%Time = 40min

2244.647

2357.731

2271.686

0

2000

4000

6000

Inte

ns. [

a.u.

]

2200 2250 2300 2350 2400m/z

Cal. [X+ Na]+=2244.55Exp. [X+ Na]+=2244.647

O

HO

HO

O

NH

S

On

Conv = 72%Time = 60min

2583.9172697.008

0

1000

2000

3000

4000

5000

Inte

ns. [

a.u.

]

2525 2550 2575 2600 2625 2650 2675 2700 2725 2750 2775m/z

Cal. [X+ Na]+=2583.80Exp. [X+ Na]+=2583.917

O

HO

HO

O

NH

S

On

Conv = 95%Time = 100min

(A) (B)

(C) (D)

Figure S12. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 20/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 13: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1225.8431338.930

1256.961 1306.8440.00

0.25

0.50

0.75

1.00

1.25

1.50

5x10

Inte

ns. [

a.u.

]

1200 1250 1300 1350 1400m/z

Cal. [X+ Na]+= 1225.79Exp. [X+ Na]+=1225.843

O

HO

HO

O

NH

S

On

Conv = 22%Time = 20min

2018.479

2131.576

0

1000

2000

3000

4000

5000

6000

Inte

ns. [

a.u.

]

1950 2000 2050 2100 2150 2200m/z

Cal. [X+ Na]+= 2018.38Exp. [X+ Na]+= 2018.479

O

HO

HO

O

NH

S

On Conv = 45%

Time = 40min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.2

(A) (B)

(C) (D)2923.288

3036.388

2949.283

0

2000

4000

6000

8000

Inte

ns. [

a.u.

]

2850 2900 2950 3000 3050 3100m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+= 2923.05Exp. [X+ Na]+= 2923.288

Conv = 76%Time = 60min

3602.8353715.936

0

2000

4000

6000

8000

Inte

ns. [

a.u.

]

3500 3550 3600 3650 3700 3750 3800m/z

Cal. [X+ Na]+=3602.56Exp. [X+ Na]+=3602.835

O

HO

HO

O

NH

S

On Conv = 99%

Time = 100min

O

HO

HO

O

O ONH OH

n

Figure S13. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 14: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

4621.417 4734.562

0.0

0.2

0.4

0.6

0.8

1.04x10

Inte

ns. [

a.u.

]

4600 4700 4800m/z

Cal. [X+ Na]+=4620.31Exp. [X+ Na]+=4621.417

Unknown

O

HO

HO

O

NH

S

On

Conv = 94%Time = 100min

2131.5242244.617

0

500

1000

1500

2000

Inte

ns. [

a.u.

]

2100 2200 2300m/z

Cal. [X+ Na]+=2131.46Exp. [X+ Na]+=2131.524

O

HO

HO

O

NHO ONH

n

Cal. [X+Na+] = 2148.54Exp. [X+Na+] =2147.484

O

HO

HO

O

NH

S

On

Conv = 39%Time = 40min

2810.011 2923.091

0

250

500

750

1000

1250

1500

Inte

ns. [

a.u.

]

2800 2900 3000m/z

Cal. [X+ Na]+=2809.97Exp. [X+ Na]+=2810.011

O

HO

HO

O

NH

S

On

Conv = 57%Time = 60min

1338.9011451.984

0

500

1000

1500

2000

2500

Inte

ns. [

a.u.

]

1300 1400 1500m/z

Cal. [X+ Na]+=1338.87Exp. [X+ Na]+=1338.904

O

HO

HO

O

NHO ONH

n

Cal. [X+Na+] =1355.95Exp. [X+Na+] =1355.910

O

HO

HO

O

NH

S

On Conv = 21%

Time = 20min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 40/1/0.8/0.8/0.2 (A) (B)

(C) (D)

Figure S14. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 40/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 15: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1905.348

0

1000

2000

3000

4000

5000

Inte

ns. [

a.u.

]

1900 2000m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=1905.29Exp. [X+ Na]+=1905.348

Conv = 30%Time = 40min

1225.831 1338.910

0

1000

2000

3000

Inte

ns. [

a.u.

]

1200 1300 1400m/z

Cal. [X+ Na]+=1225.79Exp. [X+ Na]+=1225.831

O

HO

HO

O

NH

S

On

Conv = 20%Time = 20min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 50/1/0.8/0.8/0.2

(A) (B)

(C) (D)

2923.120

0

1000

2000

3000

4000

5000

Inte

ns. [

a.u.

]

2800 2900 3000m/z

Cal. [X+ Na]+=2923.05Exp. [X+ Na]+=2923.120

O

HO

HO

O

NHO ONH

n

Cal. [X+Na+] =2827.05Exp. [X+Na+] =2826.032

O

HO

HO

O

NH

S

On

Conv = 46%Time = 60min

4847.988 4961.154

4887.993

0

1000

2000

3000

4000

5000

6000

Inte

ns. [

a.u.

]

4800 4900 5000m/z

Cal. [X+ Na]+= 4846.48Exp. [X+ Na]+= 4847.988

Unknown

O

HO

HO

O

NH

S

On

Conv = 81%Time = 100min

Figure S15. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 50/1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

Page 16: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

1565.116

1679.223

1583.211 1646.301

0.0

0.5

1.0

1.5

2.0

4x10

Inte

ns. [

a.u.

]

1525 1550 1575 1600 1625 1650 1675 1700 1725 1750m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+= 1565.04Exp. [X+ Na]+=1565.116

Conv = 80%Time = 10min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.4

(A) (B)

(C) (D)

2810.2042923.297

0

1000

2000

3000

4000

Inte

ns. [

a.u.

]

2775 2800 2825 2850 2875 2900 2925 2950 2975m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=2809.97Exp. [X+ Na]+=2810.204

Conv = 87%Time = 20min

3489.6773602.786

0

1

2

3

4

5

4x10

Inte

ns. [

a.u.

]

3425 3450 3475 3500 3525 3550 3575 3600 3625 3650 3675m/z

Cal. [X+ Na]+=3488.47Exp. [X+ Na]+=3489.677

O

HO

HO

O

NH

S

On Conv = 99%

Time = 30min

3715.889

3829.001

0.00

0.25

0.50

0.75

1.00

1.25

4x10

Inte

ns. [

a.u.

]

3675 3700 3725 3750 3775 3800 3825 3850 3875m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=3715.64Exp. [X+ Na]+=3715.889

Conv = 100%Time = 50min

O

HO

HO

O

O ONH OH

n

Figure S16. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.4. [I]=0.0267 M in 3.48 mL of water.

Page 17: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

3489.826 3602.936

0

1000

2000

3000

Inte

ns. [

a.u.

]

3450 3500 3550 3600 3650 3700m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=3488.47Exp. [X+ Na]+=3489.826

Conv = 100%Time = 10min

1905.495 2018.594

0

2000

4000

6000

Inte

ns. [

a.u.

]

1850 1900 1950 2000 2050m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=1905.29Exp. [X+ Na]+=1905.495 Conv = 98%

Time = 5min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.6

(A) (B)

(C) (D)3376.711 3489.819

0.0

0.2

0.4

0.6

0.8

1.0

4x10

Inte

ns. [

a.u.

]

3350 3400 3450 3500 3550m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+= 3375.39Exp. [X+ Na]+= 3376.711

Conv = 100%Time = 15min

3489.882 3602.986

0

1000

2000

3000

4000

Inte

ns. [

a.u.

]

3400 3450 3500 3550 3600 3650 3700m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+= 3488.47Exp. [X+ Na]+= 3489.882

Conv = 100%Time = 25min

O

HO

HO

O

O ONH OH

n

Figure S17. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.6. [I]=0.0267 M in 3.48 mL of water.

Page 18: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

3376.397 3489.481

0.0

0.2

0.4

0.6

0.8

4x10

Inte

ns. [

a.u.

]

3300 3350 3400 3450 3500 3550m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+=3376.39Exp. [X+ Na]+=3376.397

Conv = 100%Time = 3min

[NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.8

(A) (B)

(C) (D)

3376.507 3489.589

0

500

1000

1500

2000

2500

Inte

ns. [

a.u.

]

3350 3400 3450 3500 3550m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+= 3376.39Exp. [X+ Na]+=3376.507

Conv = 100%Time = 6min

3602.616 3715.689

3677.638

0

500

1000

1500

2000

2500

Inte

ns. [

a.u.

]

3550 3600 3650 3700 3750 3800m/z

O

HO

HO

O

NH

S

On

Cal. [X+ Na]+ = 3602.56Exp. [X+ Na]+ = 3602.616

Conv = 100%Time = 9min

Unknown

3602.7433715.842

0

200

400

600

800

Inte

ns. [

a.u.

]

3550 3600 3650 3700 3750m/z

Cal. [X+ Na]+= 3602.56Exp. [X+ Na]+=3602.743

O

HO

HO

O

NH

S

On

Conv = 100%Time = 15 min

Cal. [X+ Na]+ = 3677.64Exp. [X+ Na]+ = 3677.638

O

HO

HO

O

O ONH OH

n

O

HO

HO

O

O ONH OH

n

Figure S18. MALDI-ToF for the aqueous SET-LRP of NIPAM over the conversion range. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

Page 19: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S19. Aqueous SET-LRP of NIPAM catalyzed by the in situ generation of Cu(0) from NaBH4 at [NIPAM]o/[I]o = 30 in the absence and presence of inhibitor MEHQ added to the polymerization mixture after sampling, and varying [CuBr2]o/[NaBH4]o from (a) 0.8/0.6 ● without MEHQ, (b) 0.8/0.6 ● with MEHQ, (c) 0.8/0.4 ■ without MEHQ, (d) 0.8/0.4 *. Reaction conditions: [NIPAM]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o = 30/1/0.8/0.8. [I]=0.0267 M in 3.48 mL of water.

0

20

40

60

80

100

0 20 40 60 80 100

Conv

ersi

on (%

)

Time (min)

[M]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.6

[M]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o= 30/1/0.8/0.8/0.4

MEHQ

MEHQ

without MEHQ

without MEHQ

Page 20: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S20. SEC chromatograms from aqueous SET-LRP of NIPAM catalyzed by the in situ generation of Cu(0) from NaBH4 by varying [NIPAM]o/[I]o from (A) 20/1 , (B) 30/1 , and (C) 40/1. Reaction conditions: [I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water. These SEC chromatograms are based on a polystyrene calibration curve and have not been adjusted using the Mark-Houwink parameters.

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

2.3 2.8 3.3

w(M

)

LogMW

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

2.3 2.8 3.3

w(M

)

LogMW

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

2.3 2.8 3.3 3.8

w(M

)

LogMW

(A)

(B)

(C)

Increasing conversion

Increasing conversion

Increasing conversion

Page 21: of Cu(II) to Cu(0) with NaBH4 SET-LRP of NIPAM in Water ... · Supporting Information to SET-LRP of NIPAM in Water via In Situ Reduction of Cu(II) to Cu(0) with NaBH4. Mikhail Gavrilov1,

Figure S21. UV-vis spectra (measured in the 500-900 nm range) at the end of the aqueous SET-LRP of NIPAM polymerization before and after opening and bubbling with air for 1 min. (A) [M]0/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.4, and (B) [M]0/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.8. Reaction conditions: [I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 1/0.8/0.8/0.2. [I]=0.0267 M in 3.48 mL of water.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

500 550 600 650 700 750 800 850 900

Abso

rban

ce

Wavelength (nm)

before added air

after added air

0

0.5

1

1.5

2

2.5

3

3.5

4

500 550 600 650 700 750 800 850 900

Abso

rban

ce

Wavelength (nm)

before added air

after added air

(A)

(B)

[M]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.4

[M]o/[I]o/[Me6TREN]o/[Cu(II)Br2]o/[NaBH4]o = 30/1/0.8/0.8/0.8