of tanks main works and steps for the decommissioning · archivo pdfmain works and steps for the...

21
Summary of Decommissioning and Contaminated Water Management July 31, 2014 Main works and steps for the decommissioning Three principles for contaminated water countermeasures 1. Eliminate contamination sources Contaminated water countermeasures are implemented with the following three principles: 2. Isolate water from contamination 3. Prevent leakage of contaminated water Multi-nuclide removal equipment Pump up ground water for bypassing Pump up ground water near buildings Land-side frozen walls Waterproof pavement Soil improvement by sodium silicate Sea-side impermeable walls Increase tanks (welded-joint tanks) Multi-nuclide removal equipment (ALPSThis equipment removes radionuclides from the contaminated water in tanks, and reduces risks. It aims to reduce the levels of 62 nuclides in contaminated water to the legal release limit or lower (tritium cannot be removed). Furthermore, additional multi-nuclide removal equipment is installed by TEPCO as well as a subsidy project of the Japanese Government. Land-side impermeable walls with frozen soil The walls surround the buildings with frozen soil and reduce groundwater inflow into the same. On-site tests have been conducted since last August. Construction work started in June and the freezing operation will start within FY2014. Sea-side impermeable walls The walls aim to prevent the flow of contaminated groundwater into the sea. Installation of steel sheet piles is almost (98%) complete. In the earliest case, the closure is scheduled for completion at the end of September 2014. Fuel removal from SFP Fuel removal from Unit 4 SFP has been underway since Nov. 18, 2013. The work at Unit 4 will be accomplished around the end of 2014. (Fuel-removal operation) 1188/1533 Transferred fuel 77% of removal completed (As of June 30 ) Fuel Removal from SFP Fuel Debris (Corium) Removal Dismantling Facilities Storage and handling Fuel removal Installing FHM* Rubble removal & dose reduction Unit 4 FHM*: Fuel Handling Machine Unit 3 Unit 1&2 Storage and handling Fuel debris removal Stop leakage Dose reduction & leakage identification Unit 1-3 Dismantling Design & Manufacturing of devices/ equipment Scenario development & technology consideration Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment (Installation status of the facility to absorb radioactive materials) (Length: approx. 1,500m) (Installation status) Freezing plant Impermeable walls with frozen soil Fuel removal from Unit 4 SFP is underway. Preparatory works for fuel removal from Unit 1-3 SFP and fuel debris (Note 1) removal are ongoing. (Note 1) Fuel assemblies melted through in the accident. Remove contaminated water in the trench (Note 2) (Note 2) Underground tunnel containing pipes. * Operation is suspended from July 1 to early September for crane inspection Provided by Japan Space Imaging, (C) DigitalGlobe Remove contaminated water in the trench Waterproof pavement Flow of groundwater Multi-nuclide removal equipment Groundwater bypass Wells near the buildings (sub-drain) Land-side frozen walls Ground improvement Sea-side impermeable walls Area for installation of tanks Tank increase area

Upload: buiphuc

Post on 19-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Summary of Decommissioning and Contaminated Water Management July 31, 2014

Main works and steps for the decommissioning

Three principles for contaminated water countermeasures

1. Eliminate contamination sources

Contaminated water countermeasures are implemented with the following three principles:

2. Isolate water from contamination

3. Prevent leakage of contaminated water

① Multi-nuclide removal equipment

③ Pump up ground water for bypassing

④ Pump up ground water near buildings

⑤ Land-side frozen walls

⑥ Waterproof pavement

⑦ Soil improvement by sodium silicate

⑧ Sea-side impermeable walls

⑨ Increase tanks (welded-joint tanks)

Multi-nuclide removal equipment (ALPS)

• This equipment removes radionuclides from the

contaminated water in tanks, and reduces risks.

• It aims to reduce the levels of 62 nuclides in contaminated

water to the legal release limit or lower (tritium cannot be

removed).

• Furthermore, additional multi-nuclide removal equipment is

installed by TEPCO as well as a subsidy project of the

Japanese Government.

Land-side impermeable walls with frozen soil

• The walls surround the buildings with frozen soil

and reduce groundwater inflow into the same.

• On-site tests have been conducted since last

August. Construction work started in June and the

freezing operation will start within FY2014.

Sea-side impermeable walls

•The walls aim to prevent the flow of contaminated groundwater

into the sea.

•Installation of steel sheet piles is almost (98%) complete. In the

earliest case, the closure is scheduled for completion at the end of

September 2014.

Fuel removal from SFP

Fuel removal from Unit 4 SFP has been

underway since Nov. 18, 2013.

The work at Unit 4 will be accomplished

around the end of 2014.

(Fuel-removal operation)

1188/1533

Transferred fuel

77% of removal completed

(As of June 30 )

Fuel Removal

from SFP

Fuel Debris

(Corium) Removal

Dismantling

Facilities

Storage and

handling

Fuel

removal

Installing

FHM*

Rubble

removal &

dose

reduction

Unit 4

FHM*: Fuel Handling Machine

Unit 3 Unit 1&2

Storage and

handling

Fuel debris

removal

Stop

leakage

Dose

reduction &

leakage

identification

Unit 1-3

Dismantling

Design &

Manufacturing

of devices/

equipment

Scenario

development

& technology

consideration

Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment

(Installation status of the facility to absorb radioactive materials)

(Length: approx. 1,500m)

(Installation status)

Freezing plant

Impermeable walls with frozen soil

Fuel removal from Unit 4 SFP is underway. Preparatory works for fuel removal from Unit 1-3 SFP and fuel debris (Note 1) removal are ongoing.

(Note 1) Fuel assemblies melted through in the accident.

② Remove contaminated water in the

trench (Note 2)

(Note 2) Underground tunnel containing pipes.

* Operation is suspended from July 1 to early September for crane inspection

Provided by Japan Space Imaging, (C) DigitalGlobe

1 2 3 4

②Remove contaminated water in the trench

⑥ Waterproof pavement

Flow

of groundwater ①Multi-nuclide removal equipment

③Groundwater bypass

④Wells near the buildings (sub-drain)

⑤Land-side frozen walls

⑦Ground improvement

⑧Sea-side impermeable walls

Area for installation

of tanks

⑨Tank increase area

2/8

Anti-scattering measures when dismantling R/B Unit 1 cover

Status of multi-nuclide removal equipment

(ALPS) Regarding multi-nuclide removal equipment, 3-system operation has been maintained except for planned suspension from late June. Regarding System B, treatment will resume after replacing with improved filters, which are less degraded by radiation. Regarding Systems A and C, operation will be suspended for about one week to sequentially replace with improved filters.

Tank construction plan to add 100,00

ton capacity

The tank construction plan was reviewed to increase 800,000 tons of welded-joint tanks by adding 100,000 tons to the existing plan. Flange- (bolt-fixed) type tanks will be sequentially replaced with welded-joint tanks.

Prior to removing fuel from Unit 1, there is a need to dismantle the building cover and remove rubble on the upper part of the Reactor Building (R/B). To prevent scattering of radioactive materials as in last August, various new measures will be taken with the greatest care: (1) thoroughly spraying anti-scattering agents, (2) removing dust and dirt by suctioning devices, (3) preventing dust from being stirred up by a windbreak sheet and sprinkling water and (4) enhancing the dust monitoring system by installing additional monitors.

Covering started inside the port To prevent contaminated soil from being stirred up, covering over the sea bottom soil inside the port commenced from July 17, with completion scheduled within this fiscal year.

Progress status of impermeable walls

with frozen soil To reduce the inflow of groundwater into the buildings, there are plans to surround the buildings by impermeable walls with frozen soil. Aiming to start freezing at the end of this fiscal year, drilling of holes to install frozen pipes commenced from June 2. As of July 30, more than 10% of drilling had been completed.

To reduce the inflow of groundwater into the buildings and prevent any increase in contaminated water, the groundwater pumped up on the mountain side of the buildings has been released after ensuring the density is lower than the announcement level each time. It is estimated that months will be required to confirm any decrease of inflow into the buildings. The groundwater bypass continues to reduce the groundwater level around the buildings, which is gradually decreasing.

Status of groundwater bypass Additional measures for removing contaminated water from the seawater pipe trench

In the seawater pipe trenches(Note) installed from Turbine Buildings Unit 2 and 3 to the seaside, a high-density of contaminated water having flowed out immediately after the accident remains. To prevent new contaminated water flowing from the Turbine Buildings into the trenches, there are plans to remove contaminated water from the trenches after isolating them from the Turbine Buildings. Though separation was attempted by freezing water at connections, the water could not be frozen sufficiently. Additional measures such as installing more frozen pipes are conducted.

2号機タービン建屋 3号機タービン建屋

2号機海水配管トレンチ

3号機海水配管トレンチ

立坑A

立坑B

立坑C

立坑D

立坑A

立坑B立坑C

立坑D

開削ダクト

既閉塞済

トンネルB トンネルB

トン

ネルA

トン

ネルA

トン

ネルC

トン

ネルC

Additional measures underway

Drilling

Freezing operation

Drilling

<Overall status of trench water stoppage by freezing> (Note) Seawater pipe trench: Tunnel containing pipes and cables

Switch of release channels from outside to inside the port

To prevent contaminated water from flowing directly outside the port, even in case it leaks and flows into a release channel, the release channel route is steadily switched to inside the port and the work is almost complete. The release route will be switched sequentially according to assessment results of the effect inside the port.

Unlike impermeable walls with frozen soil, which freeze “water within soil,” these measures are to freeze “the target water.”

Investigation of underground east-side walls of R/B Unit 2 To prevent accumulated water flowing from R/Bs to Turbine Buildings in future, robots for checking the underwater flow at the points where pipes penetrate through building walls are developed. On the underground east side (Turbine Building side) of R/B Unit 2, tests on robots were conducted to confirm that they could check the situations. Other parts will be implemented based on the investigative results of these tests.

<Installation status of water pipes>

Regarding the sea bottom in front of the intake channel, covering was completed by 2012.

Floating crane

Covering material placement point

Hopper barge

Cement material mixing ship

Cement silo ship

Floating hose

<Covering inside the port>

*Fuel removal is suspended from July 1

Progress status ◆ The temperatures of the Reactor Pressure Vessel (RPV) and the Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 25-45C*1 for the past month.

There was no significant change in the density of radioactive materials newly released from Reactor Buildings in the air*2. It was evaluated that the comprehensive cold shutdown condition had been maintained.

*1 The values vary somewhat depending on the unit and location of the thermometer. *2 The radiation exposure dose due to the current release of radioactive materials from the Reactor Buildings peaked at 0.03 mSv/year at the site boundaries. This is approx. 1/70 of the annual radiation dose by natural radiation (annual average in Japan: approx. 2.1 mSv/year).

Progress Status and Future Challenges of the Mid-and-Long-Term Roadmap toward the Decommissioning of TEPCO’s Fukushima Daiichi Nuclear Power Station Units 1-4 (Outline)

Vent pipe

Torus room

Blowout panel

(closed)

構台

安全第一 福島第一 安全第一 福島第一 安全

第一

福島第一

安全第一 福島第一 安全第一 福島第一 安全第一 福島第一

クローラクレーン 1188/1533 77% of removal completed (as June 30) *Fuel removal is suspended from July 1

Cover for fuel removal

Transferred fuel (assemblies)

Unit 2 Unit 3 Unit 4 Unit 1

Water injection

Water injection

Water injection

Spent Fuel Pool

(SFP) Building cover

Reactor Building (R/B) Primary

Containment Vessel (PCV)

Reactor Pressure Vessel (RPV)

Fuel debris

Suppression Chamber (S/C)

3/8

Uni

t 1

Uni

t 2

Uni

t 3

Uni

t 4

Site boundary

No.12 No.1

Groundwater bypass temporary

storage tank

Groundwater bypass well points

Status of groundwater bypass

Status of multi-nuclide removal equipment (ALPS) Multi-nuclide

removal equipment

Tank construction plan to add 100,000 ton capacity

Covering started inside the port

Seawater

pipe trench

Land-side impermeable

walls with frozen soil

Anti-scattering measures when dismantling R/B Unit 1 cover Progress status of

impermeable walls with frozen soil

Investigation of underground east-side walls of R/B Unit 2

Release channel

switch route

Additional measures for removing contaminated water from seawater pipe trench

Switch of release channels from outside to inside the port

Major initiatives – Locations on site

Uni

t 6

Uni

t 5

Outlet

Provided by Japan Space Imaging, (C) DigitalGlobe

4/8

I. Confirmation of the reactor conditions 1. Temperatures inside the reactors

Through continuous reactor cooling by water injection, the temperatures of the Reactor Pressure Vessel (RPV) bottom and the Primary Containment Vessel (PCV) gas phase have been maintained within the range of approx. 25 to 45C for the past month, though they vary depending on the unit and location of the thermometer.

2. Release of radioactive materials from the Reactor Buildings The density of radioactive materials newly released from Reactor Building Units 1-4 in the air measured at site boundaries was evaluated at approx. 1.3 x 10-9 Bq/cm3 for both Cs-134 and -137. The radiation exposure dose due to the release of radioactive materials was 0.03 mSv/year (equivalent to approx. 1/70 of the annual radiation dose by natural radiation (annual average in Japan: approx. 2.1 mSv/year)) at the site boundaries.

3. Other indices There was no significant change in indices, including the pressure in the PCV and the PCV radioactivity density (Xe-135) for monitoring criticality, nor was any abnormality of cold shutdown condition or sign of criticality detected. Based on the above, it was confirmed that the comprehensive cold shutdown condition had been maintained and the reactors remained in a stabilized condition.

II. Progress status by each plan 1. Reactor cooling plan

The cold shutdown condition will be maintained by cooling the reactor by water injection and measures to complement status monitoring will continue to be implemented

Reinstallation of supervisory instrumentation for Unit 2 PCV ・ On June 5 and 6, the supervisory instrumentation (thermometer and water-level gauge) for PCV was reinstalled.

Based on the temperature trend for approx. one month from the installation, it was judged that the thermometer indicated the true values to be presented.

Replacement of the thermometer at the bottom of Unit 2 RPV ・ Attempts to remove and replace the thermometer installed at the bottom of the RPV, which was broken in February

2014, failed in April and the operation was suspended. The estimated cause was fixing or added friction due to rust having formed. To help remove the thermometer, tests to check rust formation and fixing are underway (from May 12). The next step will involve conducting a full-scale mock-up test of the piping.

2. Accumulated water-treatment plan To tackle the increase in accumulated water due to groundwater inflow, fundamental measures to prevent such inflow into the Reactor Buildings will be implemented, while improving the decontamination capability of water-treatment and preparing facilities to control the contaminated water

Preventing groundwater inflow to the Reactor Buildings ・ From April 9, the operation of 12 groundwater bypass pumping wells commenced sequentially to pump up

groundwater. Release commenced from May 21 in the presence of officials from the Intergovernmental Liaison Office for the Decommissioning and Contaminated Water Issue of the Cabinet Office. As of July 30, 17,791 m3 of groundwater had been released. The pumped up groundwater has been temporarily stored in tanks and released after TEPCO and the third-party organization (Japan Chemical Analysis Center) confirmed that its quality met operational targets.

・ The groundwater level at pumping wells is being decreased to the lowest level that can be pumped up. ・ The effect of the underground bypass was evaluated using water levels of three Observation Holes installed

downstream of the pumping well. The result showed that the groundwater levels were decreasing. According to the latest data on groundwater levels, further decline was measured because of reduced rainfall. The behavior of groundwater will continue to be carefully observed (see Figure 1).

・ To facilitate the installation of frozen impermeable walls surrounding Units 1-4 (a subsidy project of the Ministry of Economy, Trade and Industry), drilling to place frozen pipes commenced (from June 2). As of July 29, drilling at 217 points had been completed (for frozen pipes: 194 points, for temperature measurement pipes: 23 points) (see Figure 2).

Figure 1: Water levels of groundwater bypass Observation Holes

1100mm--AA

1100mm--BB 1100mm--CC

観観測測孔孔配配置置平平面面図図

Note: Regression analysis of observation data from November 2012 to April 9, 2014 As the 10M aquifer Observation Hole has a high correlation with the accumulated rainfall for 1 – 2 months, the effect of the groundwater bypass operation was evaluated by accumulated rainfall for 30 days. In Hole C, a decrease exceeding 10cm is identified after starting the groundwater bypass operation. Data since late June, about one month after the operation commenced, centers on the lower part of the whole distribution compared to that in the initial phase of the operation.

0

10

20

30

40

50

60

70

80

90

100

4/26 5/6 5/16 5/26 6/5 6/15 6/25 7/5 7/15 7/25 8/4

0

10

20

30

40

50

60

70

80

90

100

4/26 5/6 5/16 5/26 6/5 6/15 6/25 7/5 7/15 7/25 8/4

PCV gas phase temperatures (recent quarter)* The trend graphs show part of the temperature data measured at multiple points.

RPV bottom temperatures (recent quarter)

Reactor injection water temperature Unit 1

Unit 2

Unit 3

Air temperature:

Unit 1

Unit 3

Reactor injection water temperature

Unit 2 Air temperature:

(Reference) * The density limit of radioactive materials in the air outside the

surrounding monitoring area: [Cs-134]: 2 x 10-5 Bq/cm3 [Cs-137]: 3 x 10-5 Bq/cm3

* Dust density around the site boundaries of Fukushima Daiichi Nuclear Power Station (actual measured values):

[Cs-134]: ND (Detection limit: approx. 1 x 10-7 Bq/cm3) [Cs-137]: ND (Detection limit: approx. 2 x 10-7 Bq/cm3)

* Data of Monitoring Posts (MP1-MP8). Data of Monitoring Posts (MPs) measuring airborne radiation rate

around site boundaries show 1.6 - 4.7μSv/h (as of 2014/07/30 18:00) To measure the variation in the airborne radiation rate of MP2-MP8 more accurately, environmental improvement (tree trimming, removal of surface soil and shielding around the MPs) has been completed.

Annual radiation dose at site boundaries by radioactive materials (cesium) released from Reactor Building Units 1-4

2014 2013 2012 2011 Note: Different formulas and coefficients were used to evaluate the radiation dose in the facility operation plan and monthly report. The evaluation methods were integrated in

September 2012. As the fuel removal from the spent fuel pool (SFP) commenced for Unit 4, the radiation exposure dose from Unit 4 was added to the items subject to evaluation since November 2013.

0

0.1

0.2

0.3

0.4

0.5

0.6

Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul

Expo

sure

dose

(mSv

/year)

OObbsseerrvvaattiioonn llooccaattiioonn ppllaaiinn vviieeww 10m-Hole B

Grou

ndwa

ter le

vel (O

P.m)

30-day rainfall (mm)

Apr 1, 2013 – May 20, 2014 May 21, 2014 – May 31 Jun 1, 2014 – Jun 10 Jun 11, 2014 – Jun 20 Jun 21, 2014 – Jun 30 Jul 1, 2014 – Jul 20 Jul 21, 2014 –

10m-Hole A

Grou

ndwa

ter le

vel (O

P.m)

Apr 1, 2013 – May 20, 2014 May 21, 2014 – May 31 Jun 1, 2014 – Jun 10 Jun 11, 2014 – Jun 20 Jun 21, 2014 – Jun 30 Jul 1, 2014 – Jul 20 Jul 21, 2014 –

30-day rainfall (mm)

6.5

7.0

7.5

8.0

8.5

9.0

0 100 200 300 400 500

30日降雨量(mm)

地下

水位

(O

P.m

)

H25.4.1~H26.5.20

H26.5.21~5.31

H26.6.1~6.10

H26.6.11~6.20

H26.6.21~6.30

H26.7.1~7.20

H26.7.21~

10m-B孔

9.00

9.25

9.50

9.75

10.00

0 100 200 300 400 500

30日降雨量(mm)

地下

水位

(O

P.m

)

H25.4.1~H26.5.20

H26.5.21~5.31

H26.6.1~6.10

H26.6.11~6.20

H26.6.21~6.30

H26.7.1~7.20

H26.7.21~

10m-C孔

7.0

7.5

8.0

8.5

9.0

0 100 200 300 400 500

30日降雨量(mm)

地下

水位

(O

P.m

)

H25.4.1~H26.5.20

H26.5.21~5.31

H26.6.1~6.10

H26.6.10~6.20

H26.6.21~6.30

H26.7.1~7.20

H26.7.21~

10m-A孔 10m-Hole C

Grou

ndwa

ter le

vel (O

P.m)

30-day rainfall (mm)

Apr 1, 2013 – May 20, 2014 May 21, 2014 – May 31 Jun 1, 2014 – Jun 10 Jun 11, 2014 – Jun 20 Jun 21, 2014 – Jun 30 Jul 1, 2014 – Jul 20 Jul 21, 2014 –

30-day rainfall (mm)

Grou

ndwa

ter le

vel (O

P.m)

Apr 1, 2013 – May 20, 2014 May 21, 2014 – May 31 Jun 1, 2014 – Jun 10 Jun 11, 2014 – Jun 20 Jun 21, 2014 – Jun 30 Jul 1, 2014 – Jul 20 Jul 21, 2014 –

10m-Hole B

10m-Hole A

Grou

ndwa

ter le

vel (O

P.m)

30-day rainfall (mm)

Apr 1, 2013 – May 20, 2014 May 21, 2014 – May 31 Jun 1, 2014 – Jun 10 Jun 11, 2014 – Jun 20 Jun 21, 2014 – Jun 30 Jul 1, 2014 – Jul 20 Jul 21, 2014 –

5/8

・ To facilitate the installation of the sub-drain facility (by the end of September), drilling in 12 of 15 new pits was completed as of July 30. Regarding the sub-drain treatment facility, construction of the building from March 12 and installation of equipment inside it from March 19 are underway. From July 8-17, water flow tests using filtered water were conducted.

Operation of multi-nuclide removal equipment ・ Hot tests using radioactive water are underway (System A: from March 30, 2013, System B: from June 13, 2013,

System C: from September 27, 2013). To date, approx. 115,000 m3 has been treated (as of July 29, including approx. 9,500m3 stored in J1(D) tank, which contained water with a high density of radioactive materials at the System B outlet).

・ Regarding System A, operation was suspended to implement anti-corrosion measures (from July 8-14). As with System C, small crevice corrosion was identified at the absorption vessel under the alkaline environment. Operation resumed from July 15. From August 3, operation will be suspended to replace the filters after iron coprecipitation treatment with improved filters (those improved based on slurry outflow due to degradation of filter parts after carbonate treatment.

・ Regarding System B, operation has been suspended to implement additional anti-corrosion measures (from July 21). In parallel with the additional anti-corrosion measures, based on the slurry outflow due to degradation of filter parts after carbonate treatment, the filters after iron coprecipitation treatment were also replaced with improved filters. Treatment will be suspended from August 1.

・ Regarding System C, after implementing additional anti-corrosion measures, operation has continued since June 22. Filters after iron coprecipitation treatment will be replaced with improved filters.

・ As four nuclides such as iodine 129 were detected from treated water (excluding tritium), actual equipment tests on performance improvement measures are underway, using activated carbon adsorbent. It is estimated that by changing the two additional absorption vessels and absorbencies based on these tests, performance within the announcement density limit can be achieved.

・ Regarding the additional multi-nuclide removal equipment, foundation steel frame building (from June 12) and equipment installation (from June 21) are underway (see Figure 3). The foundation construction was completed on July 8.

・ To facilitate the installation of high-performance multi-nuclide removal equipment, a subsidy project of the Ministry of Economy, Trade and Industry, foundation construction is underway from May 10. In parallel, installation of equipment commenced from July 14 (see Figure 4).

・ Regarding the verification equipment of high-performance multi-nuclide removal equipment, transportation and installation were underway from July 25.

Construction of tanks ・ By creating new tank installation areas, there are plans to construct approx. 100,000 m3 of tanks.

Measures in Tank Areas ・ To guard against accumulated water leaking from a tank, tank fences were duplicated and paint applied inside the

fences for existing Tank Areas (completed on July 13). Regarding new areas, the tank fences will be duplicated and painting applied inside the fences in line with the installation of tanks.

・ The release channel C route was switched from outside to inside the port from July 14. The volume released into the port will be steadily increased according to the assessment results on the effect inside the port.

・ Rainwater under the temporary release standard, which is accumulated inside the fences in the contaminated water tank area, was sprinkled on site after removing radioactive materials using rainwater treatment equipment since May 21 (as of July 28, a total of 4,040 m3).

Treatment and removal of contaminated water from the Main Trenches ・ As for the Main Trench Unit 3, removal of cesium in contaminated water using mobile treatment equipment is

underway (from November 15, 2013). It was confirmed that the density of radioactive cesium had declined. ・ To facilitate the removal of contaminated water in the Main Trench Unit 2, water stoppage by freezing two

connections between the trench and Reactor Building is scheduled. The freezing operation is underway (Vertical Shaft A: from April 28, open-cut duct: from June 13). As the temperature did not decrease sufficiently, additional measures such as injecting ice and dry ice are being conducted sequentially (see Figure 5).

・ To facilitate the removal of contaminated water from the Main Trench Unit 3, water stoppage by freezing two connections between the trench and building is scheduled. Drilling of holes to install frozen pipes and temperature measurement pipes is underway (from May 5 and scheduled for completion in mid-August).

3. Plan to reduce radiation dose and mitigate contamination Effective dose-reduction at site boundaries and purification of the port water to mitigate the impact of radiation on the external environment

Status of groundwater and seawater on the east side of Turbine Building Units 1 to 4 ・ Regarding the groundwater near the bank on the north side of the Unit 1 intake, the density of tritium decreased at

all groundwater Observation Holes as in June. Pumping of 1 m3/day of water from Observation Hole No. 0-3-2 continues.

・ Regarding the groundwater near the bank between the Unit 1 and 2 intakes, though the densities in water pumped from the well point had been maintained at around 90,000 Bq/L for tritium and 400,000 Bq/L for gross β radioactive materials until mid-May, they are currently decreasing. Though the gross β radioactive materials at groundwater Observation Hole No. 1-16 increased to 3.1 million Bq/L on January 30, the figure started decreasing from mid-February and has been maintained at around 700,000 Bq/L recently. From the added groundwater Observation Hole No. 1-15, water sampling commenced from July 10 and the same trend as No. 1-12, which is located near the new hole, was confirmed. Water pumping from the well point (approx. 50 m3/day) and the pumping well No. 1-16 (P) (1m3/day) installed near the Observation Hole No. 1-16 continues.

・ Regarding the groundwater near the bank between the Unit 2 and 3 intakes, the density of gross β radioactive materials is high on the north (Unit 2) side as until June. Water pumping from north of the well point continues (4 m3/day).

・ Regarding the groundwater near the bank between the Unit 3 and 4 intakes, a low density of radioactive materials has been maintained at all Observation Holes as until June.

Figure 5: Unit 2 Vertical Shaft A - Frozen water stoppage measurement

Boring machine (for drilling)

Figure 2: Status of drilling for installing frozen pipes

[Cooling of accumulated water] ① Injection of ice and dry ice

[Improvement of cooling capability] ② Change of existing temperature

measurement pipes to frozen pies ③ Installation of frozen pipe to outside the

structure

[Reduction of water flow] ④ Installation of additional packers ⑤ Injection of interfiller

(under examination, including materials and construction method)

STEPⅡ: Interfilling

2号T/B

T1 T2 T3 T4 T5 T6 T7 T8

T9 T10 T11 T12 T13 T14 T15 T16K1S5 S6

S7

S1 S2

S3 S4S8

⑤ Injection of interfiller

④ Installation of additional packers

① Injection of ice and dry ice

K3K2

② Change from existing temperature measurement pipes to frozen pipes

Building

Trench

③ Installation of frozen pipe outside the structure

Figure 3: Installation status of additional multi-nuclide removal equipment

Chemical supply equipment

Figure 4: Installation status of high-performance multi-nuclide removal equipment

Treatment water tank

Treatment water pump

NN

#1 T/B #2 T/B #3 T/B #4 T/B

#1R/B #2

R/B

#3

R/B

#4R/B

13BLK13BLK

3BLK3BLK

4BLK4BLK

5BLK5BLK

6BLK6BLK

7BLK7BLK

8BLK8BLK

9BLK9BLK

10BLK10BLK2BL

K

2BLK

11BLK11BLK12BLK12BLK

1BLK1BLK

NN

#1 T/B #2 T/B #3 T/B #4 T/B

#1R/B #2

R/B

#3

R/B

#4R/B

NN

#1 T/B #2 T/B #3 T/B #4 T/B

#1R/B #2

R/B

#3

R/B

#4R/B

NNNN

#1 T/B #2 T/B #3 T/B #4 T/B

#1R/B #2

R/B

#3

R/B

#4R/B

13BLK13BLK

3BLK3BLK

4BLK4BLK

5BLK5BLK

6BLK6BLK

7BLK7BLK

8BLK8BLK

9BLK9BLK

10BLK10BLK2BL

K

2BLK

11BLK11BLK12BLK12BLK

1BLK1BLK

Frozen pipes: 30/75 T/Mt pipes: 2/15

Frozen pipes: 7/196 T/Mt pipes: 1/38

Frozen pipes: 38/221 T/Mt pipes: 0/44

Frozen pipes: 13/28 T/Mt pipes: 3/6

Frozen pipes: 92/104 T/Mt pipes: 17/21

Frozen pipes: 14/125T/Mt pipes: 0/27

T/M pipes: Temperature measurement pipes

STEP I: Accelerating Freezing

6/8

・ Regarding the seawater inside the sea-side impermeable walls, though densities of both gross β radioactive materials and tritium have been increasing since March, they have been decreasing since July.

・ The density of radioactive materials in seawater inside the open channels of Units 1-4 has been declining slightly since last autumn. The density of radioactive materials in seawater at the additional sampling point installed outside the sea-side impermeable walls after March was equivalent to that at the point on the north side of the east breakwater.

・ The density of radioactive materials in seawater within the port has been declining slightly as until June. ・ The radioactive material density in seawater at and outside the port entrance has been maintained within the same

range as previously. ・ To prevent contamination spreading due to soil being stirred up from under the sea, covering over the sea bottom

soil inside the port commenced from July 17. ・ As an additional investigation on the Unit 1-3 release channels* where contamination had been detected, an inflow

of water into the release channel vertical shaft was investigated during rain on June 12. The result showed that the density of radioactive materials was high in the inflow water from around the Turbine Building Unit 3. The cause and measures are currently being examined.

・ Regarding 32 samples for which radioactive materials had been analyzed within the Fukushima Daiichi Nuclear Power Station, errors were identified in the calculation of detection limit densities. These are attributable to mistakes in the sample amount used for the calculation. Checking for any similar error is underway.

・ The water pumped from the groundwater drain, which is pumping groundwater inside the seaside impermeable walls, was analyzed. The result showed that it was at a level equivalent to the seawater density before the landfill.

・ Aiming to monitor any leakage from tanks, a monitor for radioactive materials in side diches was installed in the upper stream, near the switch of the release channel C, operation of which commenced from July 14.

Figure 6: Groundwater density on the Turbine Building east side

Figure 8: Progress status of impermeable walls on the sea side

Figure 7: Seawater density around the port

<Unit 1 intake north side, between Unit 1 and 2 intakes>

<Between Unit 2 and 3 intakes, between Unit 3 and 4 intakes> Figure 9: Status of covering over the sea bottom soil inside the port

Route to discharge covering material

(displaying only one direction)

Edge of tremie pipe (part of covering material discharge)

Pollution prevention frame (silt fence)

Tremie pipe

Installation status of groundwater drain pumping well (in front of Unit 1 intake)

Installation status of groundwater drain pipes

* Release channel: A channel for releasing seawater used for cooling during normal operation, where rainwater is currently mixed with existing seawater.

13mJul 28

<0.54

<18

16000

Sampling date

Cs-137

Gross β

H-3

Dec 7

0.58

21

18000

Sampling date

Cs-137

Gross β

H-3

16m

* "<○" represents the detection limit.* Unit: Bq/L* Some tritium samples were collected before the

sampling date.* "○m" beside the observation hole No. represents the

depth of the observation hole.

5m

5m

5m5m

16m

16m

16m19m

16m

5m13m

16m16m

Jul 27

55

150

4000

Sampling date

Cs-137

Gross β

H-3

Jul 27

0.72

<17

380

Sampling date

Cs-137

Gross β

H-3

Jul 27

0.56

<17

<100H-3

Cs-137

Gross β

Sampling date

Jul 28

0.7

92

150000

Sampling date

Cs-137

Gross β

H-3

Jul 28

24

14000

7600H-3

Cs-137

Gross β

Sampling date

Jul 29

9.1

29

<110

Sampling date

Cs-137

Gross β

H-3

Jul 28

86

560000

5500

Gross β

H-3

Sampling date

Cs-137Jul 28

0.65

150000

9900

Gross β

Cs-137

Sampling date

H-3

Jul 28

18

310000

51000

Gross β

Sampling date

H-3

Cs-137

5m

Jul 27

<0.47

<17

570

Sampling date

Gross β

Cs-137

H-3

5m

Jan 27

78

270000

Gross β

H-3

Sampling date

Cs-137

5m

Jul 28

40

12000

4500

Sampling date

Cs-137

Gross β

H-3

Jul 28

1.7

160

3800

Sampling date

Cs-137

Gross β

H-3

Jul 28

28000

1200000

7100

Sampling date

Cs-137

Gross β

H-3

Jul 27

<0.47

<17

4900

Sampling date

Cs-137

Gross β

H-3

Feb 13

93000

260000

62000

Sampling date

Cs-137

Gross β

H-3

16m

Jul 28

130

380

16000

Sampling date

Cs-137

Gross β

H-3

Well point

16mJul 10

0.88

110

74000

Sampling date

Cs-137

Gross β

H-3

5m5m

16m16m

5m

5m

16m

16m

5m

5m

Well point

Well point16m

5m

Jul 29

<0.45

2100

890

Sampling date

Cs-137

Gross β

H-3

Jul 13

12

33000

1600

Cs-137

Gross β

Sampling date

H-3

Jul 27

4

110000

7000

Cs-137

Gross β

Sampling date

H-3

Jul 27

19

440

400

Gross β

H-3

Sampling date

Cs-137

Jul 232.339

140

Cs-137Gross β

Sampling date

H-3

Jul 23

<0.51

840

1000

Sampling date

Cs-137

Gross β

H-3

5m

Jul 27

<0.45

210

750H-3

Cs-137

Gross β

Sampling date

5m

Jul 231435

140

Cs-137Sampling date

Gross βH-3

Jul 2317

30003400

Sampling dateCs-137Gross βH-3

Jul 23100330

<100

Cs-137Gross β

Sampling date

H-3

Jul 27

<0.48

5500

1400

Sampling date

Cs-137

Gross β

H-3

Jul 23140

65004400

Sampling date

Gross βH-3

Cs-137

16m

Jul 27

1.3

1000

680

Gross β

H-3

Cs-137

Sampling date

Feb 11

0.58

1200

13000

Sampling date

Cs-137

Gross β

H-3

* "<○" represents the detection limit.* Unit: Bq/L* Some tritium samples were collected

before the sampling date.

Jul 28<1.7<18

<3.5H-3

Sampling dateCs-137Gross β

Jul 28<2.1

203.8

Cs-137Gross β

Sampling date

H-3

Jul 28<1.1<16

34

Cs-137Gross βH-3

Sampling date

Jul 28<0.9<16

13

Cs-137Gross βH-3

Sampling date

Jul 28<1.1<16

13

Cs-137Gross βH-3

Sampling date

Jul 28<0.98

<1621

Cs-137Gross βH-3

Sampling date

Jul 281.715

2.6

Cs-137Gross β

Sampling date

H-3

Jul 28<0.58

134.1

Sampling dateCs-137Gross βH-3

Jul 28<1.1<165.7H-3

Cs-137Gross β

Sampling date

Jul 22<0.66

<16<1.9

Sampling date

Gross βH-3

Cs-137

Jul 22<0.71

<16<1.9

Cs-137Gross β

Sampling date

H-3

Jul 22<0.73

<16<1.9

Cs-137Gross βH-3

Sampling dateJul 22<0.66

<16<1.9

Sampling dateCs-137Gross βH-3

Jul 22<0.58

<16<1.9

Sampling dateCs-137Gross βH-3

Jul 288.631

<110

Cs-137Gross β

Sampling date

H-3

Jul 281271

280

Cs-137

intake (in front of impermeable

Gross β

Sampling date

H-3

Jul 282096

280H-3

Unit 2 intake (in front of impermSampling dateCs-137Gross β

Jul 2851

5501900

Cs-137Gross βH-3

Sampling date

Jul 2844

4802200

Cs-137Gross β

Unit 4 inside the siltfenceSampling date

H-3

Jul 2829

170780

outh side (in front of impermeabSampling dateCs-137Gross βH-3: At or below the annoucement density

: Exceeding any of the announcement density<Announcemen density>

Cs-137: 90Bq/LSr-90 : 30Bq/LH-3 :60,000Bq/l

*For Sr-90, the announcemen density is 1/2of that of total β radioactive materials

: Silt fence: Installation of steel pipe

sheet piles completed: Connection completed

(As of July 29)

: Seawater sampling point(As of July 29)

: Groundwater sampling point

North side of Units 1-4 intakes

North side of east breakwater

No.0-1Unit 1 intake

No.1-9Unit 2 intake

No.2-7

Between Units 2 and 3 intakes

Unit 3 intakeNo.3-5

Between Units 3 and 4 intakes

Unit 4 intake

Zone 2Zone 1Inside Unit 1-4 intakesSouth side

(in front of impermeable walls)

East breakwater

Unit 1 intake(in front of impermeable walls)

Jan 31: Silt fence in front of Unit 1 intake was removedFeb 25: Silt fence in front of Unit 2 intake was removedMar 5: Silt fences in front of Unit 1-4 intakes were installedMar 6: Additional sampling points in front of Unit 1-4 intakes were selectedMar 11: Silt fence between Unit 2 and 3 intakes were removedMar 12: Silt fence in front of Unit 3 intake was removedMar 25: Sampling point on north side of Unit 1-4 intakes was abolishedMar 27: Sampling point inside silt fence in front of Unit 1 intake was abolishedApr 19: Sampling point inside silt fence in front of Unit 2 intake was abolishedApr 28: Sampling point of Unit 1 intake (in front of impermeable walls) was addedMay 18: Sampling point inside silt fence in front of Unit 3 intake was abolishedJun 2; Sampling point Unit 2 intake (in front of impermeable walls) was addedJun 6: Sampling point between Units 2 and 3 intakes was abolishedJun 12: Sampling point between Units 1 and 2 intakes was abolishedJune 23: Silt fence in front of Unit 4 intake was removed

埋立

水中コン

埋立

割栗石

凡例

施工中 施工済

(As of July 29)

Between Units 1 and 2 intakes

Breakwater

LegendUnder

constructionCompleted

Landfill concrete in

waterLandfill

broken stone

Covering completed (intake open channel)

AArreeaa ttoo bbee ccoovveerreedd iinn tthhiiss ccoonnssttrruuccttiioonn

Area covered in the construction

from July 17 Covering completed (intake open channel)

7/8

4. Plan to remove fuel from the spent fuel pools Work to help remove spent fuel from the pool is progressing steadily while ensuring seismic capacity and safety. The removal of spent fuel from the Unit 4 pool commenced on November 18, 2013 and efforts are being made to complete the process by around the end of 2014

Fuel removal from the Unit 4 spent fuel pool ・ Fuel removal from the spent fuel pool (SFP) commenced on November 18, 2013. ・ For the annual inspection of overhead cranes of Unit 4 and the SFP, fuel removal will be suspended from July 1 to

early September. During this period, racks for distorted/damaged fuel assemblies will be installed in the common pool.

・ As of June 30, 1166 of 1331 spent fuel assemblies and 22 of 202 non-irradiated fuel assemblies had been transferred to the common pool. More than 77% of the fuel removal was completed.

Check of soundness of Reactor Building Unit 4 ・ To check the soundness of the Reactor Building and the spent fuel pool, the 9th periodical inspection was conducted

(from June 19 to July 24) in the presence of external experts. The result showed that the “Reactor Building” and the “spent fuel pool” were in a sound condition.

・ Regarding the measurement of the external wall surface and check of the concrete strength, the future inspection frequency will be reviewed to conduct it annually.

Main work to help remove spent fuel at Unit 3 ・ The removal of rubble inside the SFP was suspended due to failure of the brake on the crawler crane rotary (May

19). The brake for the rotary will be replaced during the annual inspection of the crawler crane (from June 16 to the end of July 31). Operation will resume from late August after preparation is completed.

Main work to help remove spent fuel at Unit 1 ・ To facilitate the removal of rubble on the Reactor Building (R/B) 5th floor (operating floor) prior to fuel removal,

dismantling of the R/B cover was scheduled to start from early July, but postponed due to the effect of typhoons and failure of the crane. It will be restarted after coordinating with other construction work and when preparation is complete. When dismantling the building cover and removing rubble, sufficient measures to reduce the spread of radioactive materials will be implemented along with monitoring of radioactive material densities.

5. Fuel debris removal plan In addition to decontamination and shield installation to improve PCV accessibility, technology was developed and data gathered as required to prepare to remove fuel debris (such as investigating and repairing PCV leak locations)

Demonstration on the east-side wall of the Unit 2 torus room ・ Regarding the torus room wall, investigative equipment is being developed in a project subsidized by the Ministry of

Economy, Trade and Industry “Development of technology to identify and repair leakage points of Primary Containment Vessels (PCVs),” and a demonstration on the walls (on the north side of east-side walls) of the Unit 2 torus room was conducted (from July 16-25). Two types of equipment (a swimming robot and a floor traveling robot) were developed to investigate the torus room wall. The result showed that the equipment was able to check the status of penetrations (see Figure 10).

6. Plan to store, process and dispose of solid waste and decommission reactor facilities Promoting efforts to reduce and store waste generated appropriately and R&D to facilitate adequate and safe storage, processing and disposal of radioactive waste

Management status of rubble and trimmed trees ・ As of the end of June, the total storage volume of concrete and metal rubble was approx. 103,900m3 (+400m3

compared to at the end of May, area occupation rate: 60%). The total storage volume of trimmed trees was approx. 77,200m3 (+700m3 compared to at the end of May, area occupation rate: 56%). The increase in rubble was mainly attributable to arrange of rubble stored in the area and construction related to the installation of impermeable walls with frozen soil. The increase in trimmed trees was mainly attributable to arrange of trimmed trees stored in the area and collection of chipped branches and leaves.

Management status of secondary waste from water treatment ・ As of July 29, the total storage volume of waste sludge was 597 m3 (area occupation rate: 85%). The total number

of stored spent vessels and high-integrity containers (HIC) of multi-nuclide removable equipment was 1,012 (area occupation rate: 40%).

7. Plan for staffing and ensuring work safety Securing appropriate staff long-term while thoroughly implementing workers’ exposure dose control. Improving the work environment and labor conditions continuously based on an understanding of workers’ on-site needs

Staff management ・ The monthly average total people registered for at least one day per month to work on site during the past quarter

from March to May was approx. 11,000 (TEPCO and partner company workers), which exceeds the monthly average number of actual workers (approx. 8,500). Accordingly, sufficient people are registered to work on site.

・ It was confirmed with the prime contractors that the estimated manpower necessary for the work in August (approx. 5,800 per day: TEPCO and partner company workers)* would be secured at present. The average numbers of workers per day for each month of the last fiscal year (actual value) were maintained with approx. 3,000 to 5,500 per month since the last fiscal year (See Figure 11).

・ The number of workers is increasing, both those from within and outside Fukushima prefecture. However, as the growth rate of workers from outside exceeds that of those from within the prefecture, the local employment ratio (TEPCO and partner company workers) as of June decreased to approx. 45%.

・ The average exposure dose of workers was maintained at approx. 1mSv/month by implementing measures to reduce the exposure dose and relocation of workers based on the forecast dose for each work. (Reference: annual average exposure dose 20mSv/year≒1.7mSv/month)

・ For most workers, the exposure dose is sufficiently within the limit and at a level which allows them to continue engaging in radiation work.

0

5

10

15

20

25

30

35

Expo

sure

dose

(mo

nthly

avera

ge)

mSv

TEPCO Partner companies

May 2014

平均0.82mSv

(暫定値)

Figure 13: Distribution of workers’ accumulated exposure dose (Distribution of accumulated exposure dose since March 11, 2011)

Figure 12: Changes in monthly individual worker exposure dose (monthly average exposure dose since March 2011)

Figure 10: Unit 2 torus room east-side walls investigation results

○ Among 35,087 persons working between March 11, 2011 to May 31, 2014

・34,913 (99.5%): accumulated dose since the accident is 100mSv or lower

・33,169 (94.5%): accumulated dose is 50mSv or lower

Flow around penetrations

Floor traveling robot

Penetration 3

Pipes of peetrations

Tracer

* Some works with which contract procedures have yet to be completed are excluded from the August estimate.

Investigation image

T/B

East-side wall

S/C

Underwater

Swimming robot

R/B 1st floor

Tracer

Sonar

(Investigative equipment insert point)

R/B torus room

Figure 11: Changes in the average number of workers per weekday for each month since fiscal 2013 (actual values)

2950 3060 3130 2990

3130 3290

3220 3410 3540

3730 4020

4270

4450

4840 5490

0

1000

2000

3000

4000

5000

6000

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Wor

kers

per w

eekd

ay

2013 2014

May 2014 Average 0.82mSv (provisional value)

TEPCO Partner companies Total

More than 250 6 0 6

More than 200 up to 250 1 2 3

More than 150 up to 200 25 2 27

More than 100 up to 150 118 20 138

More than 75 up to 100 273 136 409

More than 50 up to 75 322 1013 1335

More than 20 up to 50 609 4661 5270

More than 10 up to 20 562 4264 4826

More than 5 up to 10 459 4040 4499

More than 1 up to 5 738 7747 8485

Up to 1 1092 8997 10089

Total 4205 30882 35087

Max. (mSv) 678.80 238.42 678.80

Average (mSv) 23.45 10.87 12.38

Category (mSv)Mar 2011-Apr 2014

Penetrations investigated

貫通部①(CUW-17)

貫通部②

(RCW-20)

貫通部③

(MSC-14)

貫通部④

(RCW-29)

貫通部⑤(FPC-41)

北側 南側

貫通部①(CUW-17)

貫通部②

(RCW-20)

貫通部③

(MSC-14)

貫通部④

(RCW-29)

貫通部⑤(FPC-41)

北側 南側

Penetration (1) Penetration (2)

Penetration (3)

Penetration (4)

Penetration (5)

North side South side

8/8

Efforts to improve the labor environment ・ The 1st phase construction of the Temporary Administration Office Building was completed on June 30. Approx. 400

staff members, including those of water treatment-related sections of the Fukushima Daiichi D & D Engineering Company, who had worked at Fukushima Daini Nuclear Power Station, started working at the new Administration Office Building from July 22 (see Figure 14).

Outbreak status of heat stroke ・ This fiscal year, a total of 16 workers got heat stroke as of July 30, including eight attributable to work and potential

patients. Continued measures will be taken to prevent heat stroke. (Last year, five workers got heat stroke as of the end of July, with causes for two persons attributable to work and potential patients)

・ Continued from last year, measures to prevent heat stroke were implemented from May to cope with the hottest season. Using WBGT (*), work time, the frequency and timing of breaks, and work intensity were altered. Work under the blazing sun is prohibited in principle from 14:00 to 17:00 in July and August. Appropriate rest and frequent intake of water and salt are encouraged. Physical management using check sheets and wearing cool vests. A workplace environment where workers are allowed to claim poorly conditions is established and early

diagnosis at the emergency medical room. 8. Others

Implementers of the decommissioning project (METI FY2013 supplementary budget) were decided ・ Public offerings were made regarding full-scale technology tests for (1) removal of fuel debris and structures in the

reactors, (2) investigation inside the reactor pressure vessels (RPVs), (3) soundness assessment of RPVs/PCVs, (4) repair and water stoppage of leakage points of RPVs and (5) repair and water stoppage of leakage points of PCVs (offering period: May 23 – Jun 23 for (1) - (3), June 13 -27 for (4) and (5)).

・ Following screening by the review board, comprising exerts within and outside Japan, the above five proposals were adopted on June 30.

Figure 14: External appearance and work at the new Administration Office Building

WBGT: Index using three perspectives of humidity, radiation heat, and temperature, which significantly impact on the heat balance of human bodies

Cesium-134: 3.3 (2013/10/17) → ND(0.98) Cesium-137: 9.0 (2013/10/17) → ND(1.1) Gross β: 74 (2013/ 8/19) → ND(16) Tritium: 67 (2013/ 8/19) → 34

Legal discharge

limit

Cesium-134 60

Cesium-137 90

Strontium-90 (strongly correlate with Gross β)

30

Tritium 60,000

Sea side impermeable wall

Silt fence

Cesium-134: 4.4 (2013/12/24) → ND(0.79) Cesium-137: 10 (2013/12/24) → ND(0.90) Gross β: 60 (2013/ 7/ 4) → ND(16) Tritium: 59 (2013/ 8/19) → 13

Cesium-134: 5.0 (2013/12/2) → ND(1.2) Cesium-137: 8.4 (2013/12/2) → ND(1.1) Gross β: 69 (2013/8/19) → ND(16) Tritium: 52 (2013/8/19) → 13

Cesium-134: 2.8 (2013/12/2) → ND(1.8) Cesium-137: 5.8 (2013/12/2) → ND(1.7) Gross β: 46 (2013/8/19) → ND(18) Tritium: 24 (2013/8/19) → ND(3.5)

Cesium-134: 3.5 (2013/10/17) → ND(0.98) Cesium-137: 7.8 (2013/10/17) → ND(0.98) Gross β: 79 (2013/ 8/19) → ND(16) Tritium: 60 (2013/ 8/19) → 21

Cesium-134: 5.3 (2013/8/ 5) → ND(2.2) Cesium-137: 8.6 (2013/8/ 5) → ND(2.1) Gross β: 40 (2013/7/ 3) → 20 Tritium: 340 (2013/6/26) → 3.8

Below 1/3

Below 1/7 Below 1/4

Below 1/2

Below 1/2

Below 1/4

Below 1/2

Below 1/100

Below 1/3

Below 1/8

Below 1/4

Below 6/10

Below 1/5

Below 1/10

Below 1/3

Below 1/4

Below 1/4

Below 1/7

Below 1/4

Below 1/4

Below 1/3

Below 1/2

Below 1/6

Cesium-134: 3.3 (2013/12/24) → ND(1.1) Cesium-137: 7.3 (2013/10/11) → ND(1.1) Gross β: 69 (2013/ 8/19) → ND(16) Tritium: 68 (2013/ 8/19) → 5.7

Below 1/3

Below 1/6

Below 1/4

Below 1/10

Below 7/10

Cesium-134: 32 (2013/10/11) → ND(2.0) Cesium-137: 73 (2013/10/11) → 8.6 Gross β: 320 (2013/ 8/12) → 31 Tritium: 510 (2013/ 9/ 2) → ND(110)

Below 1/10

Below 1/8

Below 1/4

Below 1/10

Cesium-134: 12 Cesium-137: 29 Gross β: 170 Tritium: 780

Cesium-134: 4.8 Cesium-137: 12 Gross β: 71 Tritium: 220

Cesium-134: 5.8 Cesium-137: 20 Gross β: 96 Tritium: 280 * *

* * Monitoring commenced in or after

March 2014

Cesium-134: 28 (2013/ 9/16)→ 16 Cesium-137: 53 (2013/12/16)→ 51 Gross β: 390 (2013/ 8/12)→ 550 Tritium: 650 (2013/ 8/12)→ 1,900

Below 6/10

Cesium-134: 62 (2013/ 9/16)→ 14 Cesium-137: 140 (2013/ 9/16)→ 44 Gross β: 360 (2013/ 8/12)→ 480 Tritium: 400 (2013/ 8/12)→ 2,200

Below 1/4 Below 1/3

Status of seawater monitoring within the port (comparison between the highest values in 2013 and the latest values)

“The highest value” → “the latest value (sampled during June 16-23)”; unit (Bq/L); ND represents a value below the detection limit

Summary of

TEPCO data

as of July 30

【Port entrance】

【South side

in the port】

【East side in the port】

【West side in the port】

【North side in the port 】

【In front of Unit 6 intake】 【In front of shallow

draft quay】

Source: TEPCO website

Analysis results on nuclides of

radioactive materials around

Fukushima Daiichi Nuclear Power

Station

http://www.tepco.co.jp/nu/fukushima

-np/f1/smp/index-j.html

【East side of port entrance (offshore 1km)】

【South side of south breakwater(offshore 0.5km)】

【North side of north breakwater(offshore 0.5km)】

Unit 1 Unit 2 Unit 3 Unit 4

Unit (Bq/L); ND represents a value below the detection limit; values in ( ) represent the detection limit; ND (2013) represents ND throughout 2013

Source: TEPCO website, Analysis results on nuclides of radioactive materials around Fukushima Daiichi Nuclear Power Station,

http://www.tepco.co.jp/nu/fukushima-np/f1/smp/index-j.html

【North side of Units 5 and 6 discharge channel】

【Around south discharge channel】

Status of seawater monitoring around outside of the port (comparison between the highest values in 2013 and the latest values)

Summary of

TEPCO data

as of July 30

【Northeast side of port entrance(offshore 1km)】

【Southeast side of port entrance(offshore 1km)】

【Port entrance】

Sea side impermeable wall Silt fence

(The latest values sampled

during July 16-28)

Legal discharge limit

Cesium-134 60

Cesium-137 90

Strontium-90 (strongly correlate with Gross β)

30

Tritium 60,000

Cesium-134: ND (2013) → ND (0.68) Cesium-137: ND (2013) → ND (0.71) Gross β: ND (2013) → ND (16) Tritium: ND (2013) → ND (1.9)

Cesium-134: ND (2013) → ND (0.73) Cesium-137: 1.6 (2013/10/18) → ND (0.73) Gross β: ND (2013) → ND (16) Tritium: 6.4 (2013/10/18) → ND (1.9)

Below 1/2

Below 1/3

Cesium-134: ND (2013) → ND (0.67) Cesium-137: ND (2013) → ND (0.66) Gross β: ND (2013) → ND (16) Tritium: ND (2013) → ND (1.9)

Cesium-134: ND (2013) → ND (0.70) Cesium-137: ND (2013) → ND (0.66) Gross β: ND (2013) → ND (16) Tritium: 4.7 (2013/ 8/18) → ND(1.9) Below 1/2

Cesium-134: ND (2013) → ND (0.74) Cesium-137: ND (2013) → ND (0.58) Gross β: ND (2013) → ND (16) Tritium: ND (2013) → ND (1.9)

Cesium-134: 3.3 (2013/12/24) → ND (1.1) Cesium-137: 7.3 (2013/10/11) → ND (1.1) Gross β: 69 (2013/ 8/19) → ND (16) Tritium: 68 (2013/ 8/19) → 5.7

Below 1/3

Below 1/6

Below 1/4

Below 1/10 Cesium-134: 1.8 (2013/ 6/21) → 0.69 Cesium-137: 4.5 (2013/ 3/17) → 1.7 Gross β: 12 (2013/12/23) → 15 Tritium: 8.6 (2013/ 6/26) → 2.6

Below 1/2

Below 1/7

Below 1/4 Cesium-134: ND (2013) → ND (0.74) Cesium-137: 3.0 (2013/ 7/15) → ND (0.58) Gross β: 15 (2013/12/23) → 13 Tritium: 1.9 (2013/11/25) → 4.1

2/2

Unit 6 Unit 5

Below 9/10

MP-1

MP-2

MP-3

MP-4

MP-5

MP-6

MP-8

H2

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5

Unit 6

G

B

H5 H6

H4

C

E

F

F

F

Main Anti-Earthquake

Building

H1

0m 100m 500m 1000m

Site boundary

D H9

Underground reservoirs

Temporary trimmed trees storage pool

Rubble

Rubble

H3

H8

Rubble

Rubble

Rubble

Rubble

Rubble

Rubble

Rubble

Rubble

Trimmed trees

Rubble

Temporary trimmed trees storage pool

Rubble

Spent absorption vessel temporary storage

G6

C

Rubble Rubble

Rubble

Rubble

Trimmed trees

G3・G4・G5

J MP-7

Rubble

Common pool Temporary rest house

outside the site

Tank installation status

Access control facility

Large rest house (Under construction)

Administration Office Building

(planned)

Temporary Administration Office

Building (planned)

Rubble (container storage)

Inside the rubble storage tent

Rubble storage area

Trimmed trees area

Mid-/ low-level contaminated water

High-level contaminated water tank

Dry cask temporary storage facility

Multi-nuclide removal equipment

Trimmed trees area (planned)

Mid-/ low-level contaminated water tank (planned)

High-level contaminated water tank (planned)

Rubble storage area (planned)

Treatment facility for sub-drain water (planned)

TEPCO Fukushima Daiichi Nuclear Power Station Site Layout Appendix 2 July 31, 2014

Rubble storage tent

Temporary soil cover type storage

Rubble (outdoor accumulation)

Futaba town

Solid waste storage Town boundary

Mega float

Ohkuma town

Rubble (outdoor accumulation)

Chiller for reactor water injection facility

Sea side impermeable wall

(Instllation underway)

Temporary trimmed trees storage pool

Cesium absorption apparatus (Incineration Workshop Building)

Decontamination instruments (Process Building)

Cesium absorption vessel temporary storage

Temporary waste sludge storage

High-level accumulated water reception tank

(emergency reception)

Mid-/ low-level fresh water tank

Trimmed trees (outdoor accumulation)

Spent absorption vessel temporary storage

Spent absorption vessel temporary storage

(multi-nuclide removal equipment, etc.)

Provided by Japan Space Imaging Corporation, (C)DigitalGlobe Temporary waste sludge storage

Water desalinations (RO)

Water desalinations (evaporative concentration)

Groundwater bypass temporary storage tank

Underground reservoirs

Additional multi-nuclide removal equipment (planned)

High-performance multi-nuclide removal equipment (planned)

Trimmed trees

Miscellaneous Solid Waste Volume

Reduction Treatment Building (Instllation

underway)

Trimmed trees

Temporary trimmed trees storage pool

Temporary trimmed trees storage pool

Multi-nuclide removal

Dry cask temporary

storage facility

Treatment facility for sub-drain water

2nd cesium absorption apparatus

(HTI Building)

Vehicle screening and decontamination

site

Vehicles maintenance site

Rubble

Land-side impermeable walls with frozen soil (Instllation underway)

Pipe route

Frozen soil impermeable wall demonstration test Temporary

trimmed trees storage pool

2012

Reactor cooling plan

Unit 1

Unit 2

Unit 3

Plan

for r

etriev

ing fu

el fro

m sp

ent fu

el po

ol

Challenges

Unit 4

Attachment 3

20152013 2014

Status of efforts on various plans (Part 1)

Phase 1 (no later than 2 years after the completion of the current efforts) Phase 2 (Early period)

Review on fuel removing method

Improvement of the reliability of the circulating water injection cooling system (water intake from the turbine building) (Review/implement measures to strengthen some materials for pipes, etc./improve earthquake resistance)

Reliability improvement measures for the lines taking water supplies from the condensate water storage tanks of Units 1 to 3

Maintenance and monitoring of the cold shut down condition of nuclear reactor (by continuous monitoring on the continuation of water injection and parameters including temperature etc., preservation and improvement of reliability through maintenance and management)

Partial observation of the PCV

Remote visual check of the PCV, direct measurement/evaluation of temperature etc.

Water source: Condensate water storage tank for Units 1 to 3Water source: Treated water buffer tank

Objective: Completion of switching to the equipment for water intake from the reactor building (or from the bottom of the PCV)

Review on water take from reactor building (or from the bottom of the PCV) - Construction work Switching among the water intake equipment (sequential)

Inspection/review for early construction of the Construction of circulation loop in the building (for Units 1 to 3)

Review on the method for inserting alternative thermometer in Unit 1 RPV*Narrowing-down of candidate systems for inserting alternative thermometer in Unit 1 RPV

Pool circulation cooling (preservation/improvement of reliability by maintenance management and facility update etc.)

Review on the method for inserting alternative thermometer in Unit 3 RPV*

Consideration/preparation for the decontamination and shielding in the building

Pool circulation cooling (preservation/improvement of reliability by maintenance management and facility update etc.)

Decontamination/shielding, restoration of fuel handling equipment

Pool circulation cooling (preservation/improvement of reliability by maintenance management and facility update etc.)Fuel removalConsideration, design and manufacturing of on-site shipping containers

Design and manufacturing of crane/fuel handling machines

Design and manufacturing of fuel removal cover

Pool circulation cooling (preservation/improvement of reliability by maintenance management and facility update etc.)

Construction of fuel removal cover/installation of fuel handling equipment

Removal of debris In the pool/fuel check etc.

Fuel removal

Installation of thermometer in Unit 2 RPV (including inspection in nuclear reactors)

*The time for executing the installation work will be determined after on-site studies etc., on the basis of the status of environmental improvement by means of decontamination/shielding.

Selection of a fuel/fuel debris removing plan

Selection of a fuel/fuel debris removing plan

Selection of a fuel/fuel debris removing plan

: Field work

: R&D: Review:Plan until last monthGreen frame: Change from last month

: Main processes: Sub-main processes

Preparatory work/debris removing work

Construction of fuel removal cover/installation of fuel handling equipment

Removal of debris, decontamination and shielding in the

Removal of debris In the pool/fuel check

Modification/recovery of building cover

▼As of July 31, 2014

HP3-1

Narrowing-down of candidate systems for inserting alternative thermometer in Unit 3 RPV

Dismantling of building cover

Removal of debris, decontamination and shielding

The circulating injection cooling system(water intake from the reactor building (or the lower part of the reactor containment vessel))

circulation loop in the building

HP2-1

HP1-1

2012

Others

Stable storage,processing/disposalof fuel debris after

removal

Challenges

Decontamination of theinside of the building

Fuel debris removal

Fuel

debr

is re

mova

l plan

Measures to reduceoverall dose

Inspection/repair ofleaking locations of

the PCV

2013 2014

Status of efforts on various plans (Part 2)

2015

To be continuedDecontamination, shielding, etc. in the building (Work environment improvement (1))

Formulation of a comprehensive plan for exposure reduction

R&D toward the removal of fuel debris (to be continued to address long-term challenges including internal R&D of equipment etc.)

Development of criticality evaluation and detection technologies

Design, manufacturing and testing etc. of the equipment for inspecting the inside of the PCV (5)

Inspection from outside the PCV (including on-site demonstration of development results)

Establishment of nuclear material accountancy and control measures for the fuel debris

R&D for inspection/repair of leaking locations of the PCV (including stop leakage between buildings).

Design, manufacturing and testing etc. of the equipment for inspecting the PCV (3), (6)

Design, manufacturing and testing etc. of the equipment for inspecting the PCV (2)

Review on decontamination technology/development of remote decontamination equipment

Development of remote contamination investigation technologies (1)Development of remote decontamination technologies (1)Site survey and on-site demonstration

Objective: Establish decontamination robot technology

[Units 1 and 3] Inspection of the basement of the nuclear reactor building, Inspection of leaking locations☆

First floor of the reactor building

Development of storage cans (surveys on existing technologies, review on storage systems/development of safety evaluation technique etc.)Research on/development of mock-up processing/disposal technologies

[Unit 2] Inspection of the basement of the nuclear reactor building, Inspection of leaking locations☆☆: Including on-site demonstration

Phase 1 (no later than 2 years after the completion of the current efforts) Phase 2 (Early period)

: Main processes: Sub-main processes

: Field work: R&D: Review:Plan until last month

Green frame: Change from last month▼As of July 31, 2014

Grasping of the situation of work areaFormulation of work plan in the reactor building

Formulation of a comprehensive plan for exposure reductionGrasping of the situation of work areaFormulation of work plan in the reactor building

Formulation of work plan on the floor with damage from explosion * Reviewed based on the actual situation

2012

Retained watertreatment plan

Plan for preventingthe spread of

marine pollution

Reduction inradiation dose atthe site boundary

Plan

s tow

ard t

he re

ducti

on in

the r

adiat

ion do

se an

d pre

venti

on of

the s

prea

d of c

ontam

inatio

n in t

he en

tire po

wer p

lant

2015

Challenges

Plan

for m

aintai

ning a

nd co

ntinu

ing th

e stea

dy st

ate of

plan

t

2013 2014

Sitedecontamination

plan

Gas/liquid waste

Status of efforts on various plans (Part 3)

Construction of sea side water barrier wall

Objective: Implement the measures to improve the reliability of the current facilities

Improving the reliability of the current facilities, etc. (improve the reliability of transfer, processing, and storage facilities).

Replacement of branch pipe pressure hoses with PE pipes

Treatment of retained water by water treatment facilities with improved reliability

Groundwater inflow is reduced (Retained water is decreased).

Consider and implement measures to increase the processing amountPurification of on-site reservoir water

Installation of multi-nuclide removal equipment

Retained water treatment by means of existing treatment facilities

Restore sub-drain facilities, reduce the amount of groundwater inflow

(reduction in retained water)Review on sub-drain and other purification facility → Installation work

Drawdown of groundwater in the building

Sub-drain restoration workReview on sub-drain recovery methods

Consideration of reducing the circular lines

Decontamination of Radioactive strontium (Sr )

▽Objective: Reduction of the risk of spreading marine contamination during the leakage of contaminated water

Monitoring of ground water and seawater (implemented on an ongoing basis)

Landfilling etc. in the harbor areaObjective: Reduction of the concentration of radioactive substances contained in the seawater of the harbor (to less than the notified concentration)Consideration of technologies for decontaminating radioactive strontium (Sr)

Seawater circulation purification Sea water purification by fibrous adsorbent material (ongoing)

Operation of the gas management system of Units 1 to 3 PCVs

Land and marine environmental monitoring (implemented in an ongoing basis)

Installation of ventilation equipment/closure of the opening of blow-out panel for Unit 2

Measurement of dust concentration at the opening of buildings etc., on-site survey

Improve the accuracy of gas monitoring

The Phase 1 (no later than 2 years after the completion of the current efforts) The Phase 2 (Early period)

Reduction of radiation dose by shielding, etc.

Reduction of radiation dose by the purification of contaminated water etc.

Land and marine environmental monitoring (implemented in an ongoing basis)

Objective: Control the radiation dose at the site boundaries caused by radioactive substance etc. additionally released from the entire power plant at 1mSv/year or less

: Main processes: Sub-main processes

: Field work

: R&D: Review:Plan until last monthGreen frame: Change from last month

Preparation work for frozen soil impermeable wallsInstallation work

▼As of July 31, 2014

Installation of steel pipe sheet pile

Covering etc. of dredge soil over sea routes and berths

Reduce groundwater inflow rate(Reduce accumulated water)

Measures to prevent the expansion of tank leakage (Reinforced concrete dam/embankment/replacement by closed conduits), to be taken sequentially along with the installation of tanks

▽Objective: Reduction to average 5 �Sv/hour in the South side area on site except for around Units 1-4.

Systematic implementation of decontamination in the site of power generation plant

Groundwater bypass installation work

* Launched

2012

Installation ofreactor building

Fuel

debr

isre

mova

l plan

Storage andmanagement plans

for solid wastes

Decommissioningplans for reactor

facilities

Preservation of theintegrity ofRPV/PCV

Plan to ensure the safety ofwork

R&D

Cask for bothtransport and

storage

Dry storage cask

Harbor

Challenges

Plan

for r

etriev

ing fu

el fro

m sp

ent fu

el po

ol

20152014

Implementation system andpersonnel procurement plan

Plan

for m

anag

emen

t and

proc

essin

g/disp

osal

of so

lid ra

dioac

tive w

aste,

and t

he de

comm

ission

ingof

reac

tor fa

cilitie

s

Processing/disposal plans for

solid wastes

Common pool

Temporary caskstorage facility

2013

Status of efforts on various plans (Part 4)

Cask manufacturing

Inspection of existing dry storage casks (9 pieces)

Fixation

Storage of fuel retrieved from spent fuel pool (storage and management).

Acceptance and interim storage of casks

Sequential carrying-inAlready carried-inRetrieval of fuel from the common pool

Design/manufacturing of damaged fuel racks

Installation

Development of evaluation technology for integrity against corrosion of RPV/PCV

Evaluation of long-term integrity of fuel retrieved from spent fuel pool

Examination of the processing method of damaged fuel etc. retrieved from spent fuel pool

The Phase 1 (no later than 2 years after the completion of the current efforts) The Phase 2 (Early period)

Systematic cultivation/deployment of personnel, including the cooperative companies, and implementation of measures to stimulate motivation etc.

Reduction of radiation dose in the rest area of the main office building, rest area in front of the important quake-proof building, and the important quake-proof building

: Main processes

: Sub-main processes

Continuation of secure storage equipped with adequate shielding and scattering prevention measures

Waste characterization (radiochemistry analysis, assessment of volume etc.)

Verification of applicability of processing/disposal technologies in Japan and foreign countriesDevelopment of R&D plan for safety processing/disposal

Establishment of vehicle maintenance shops

Evaluation of waste prevention measures

Update the storage management plan

Establishment of drum storage facility

Facility renewal plan developmentEvaluation of secondary wastes from water treatment and lifespan of storage containers

Development of feasible and rational decommissioning scenarios

Transfer of debris to the soil-coveried temporary storage facility

Soil covering work for felled trees

Reduction of radiation dose from stored secondary wastes from water treatment through shielding etc.

Improvement of waste reducing management policy

Improvement of waste storage management policy

Design and manufacturing of incineration plants for miscellaneous solid wastes

Installation of incineration plants for miscellaneous solid wastes

Development of storage management plans (Reduction in

generation amount/optimization

of storage)

Cask manufacturing

Establishment of decommissioning scenarios

HPND-1

Carrying-in of empty casks (sequential)

: Field work

: R&D: Review:Plan until last month

Green frame: Change from last month

Design and production

▼As of July 31, 2014

Wharf restoration work

Corrosion protection (Reduction in dissolved oxygen contained in reactor cooling water by means of nitrogen bubbling)

Continuation of safety activities, maintenance and enhancement of radiation management, continuous ensurement of medical services, etc.

Installation of incineration plants for miscellaneous solid wastes

* Reviewed based on the progress status in the field

In the Mid- and Long-Term Roadmap, the target of Phase 1 involved commencing fuel removal from inside the spent fuel pool (SFP) of the 1st Unit within two years of completion of Step 2 (by December 2013). On November 18, 2013, fuel removal from Unit 4, or the 1st Unit, commenced and Phase 2 of the roadmap started.As of June 30, 1,166 of 1,331 spent fuel assemblies and 22 of 202 new fuel assemblies have been transferred to the common pool, meaning 78% of the removal has been completed to date.Due to annual inspection of the overhead cranes for Unit 4 and the common pool, fuel removal will be suspended from July 1 to early September. There is no change in the scheduled removal completion within 2014.Since the procurement of storage casks was partially prolonged, the common pool run out of space. The plan was changed to transferring new fuel assemblies (all remaining 180 fuel assemblies) in the Unit 4 spent fuel pool to Unit 6.

To facilitate the installation of a cover for fuel removal, installation of the gantry was completed (March 13, 2013). Removal of rubble from the roof of the Reactor Building was completed (October 11, 2013). Currently, toward the installation of a cover for fuel removal and the fuel-handling machine on the operating floor (*1), measures to reduce the radiation dose (decontamination and shielding) are underway (from October 15, 2013). Removal of large rubble from the SFP is also underway (from December 17, 2013).

July 31, 2014Secretariat of the Team for Countermeasures for

Decommissioning and Contaminated Water Treatment1/6

Progress toward decommissioning: Fuel removal from the spent fuel pool (SFP)

Removal of rubble from the roof of the Reactor Building

Installation of cover for fuel removal

Completed in Dec. 2012 From Apr. 2012, completed in Nov. 2013

Commence fuel removal from the Spent Fuel Pool (Unit 4, November 2013)Immediate target

Steps toward fuel removal Cover(or container)

Spent fuel pool

Overhead crane

Fuel Exchanger

Transfer

Removal

Commenced in Nov. 2013

Unit 3Unit 3

Common poolCommon pool

An open space will be maintained in the common pool (Transfer to the

temporary dry cask storage facility)

Progress to date・ The common pool has been restored to the condition

whereby it can re-accommodate fuel to be handled (November 2012)

・ Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)

・ Fuel removed from the Unit 4 spent fuel pool began to be received (November 2013)

Units 1 and 2Units 1 and 2

Reference

クレーン

防護柵 モジュール

Spent fuel is accepted from the common pool

Temporary dry cask (*3)

storage facilityTemporary dry cask (*3)

storage facility

Operation commenced on April 12, 2013; from the cask-storage building, transfer of 9 existing dry casks completed (May 21); fuel stored in the common pool sequentially transferred.

Measures to reduce release

● Regarding Unit 1, to remove rubble from the top of the operating floor, there are plans to dismantle the cover over the Reactor Building is planned. Prior to dismantling, the ventilation system of the cover was suspended (September 17, 2013). Dismantling will be launched once preparation is complete.When the building cover is dismantled and the rubble is removed, sufficient measures to prevent radioactive materials from scattering will be taken and monitoring will be conducted.● Regarding Unit 2, based on the progress of decontamination and shielding within the Reactor Building, the facilities will be inspected and a concrete plan examined and prepared.

<Glossary>(*1) Operating floor: During regular inspection, the roof over the reactor is opened while on the operating floor, fuel inside the core is replaced and the core internals are inspected.(*2) Equipment hatch: A through-hole used to carry equipment in and out of the PCV.(*3) Cask: Transportation container for samples and equipment, including radioactive materials.

Image of the cover for fuel removal

Unit 4Unit 4

Before removal of the large rubble After removal of the large rubblePhoto taken on February 21, 2012 Photo taken on October 11, 2013

Work is proceeding with appropriate risk countermeasures, careful checks and safety first

* Some portions of these photos, in which classified information related to physical protection is included, were corrected.Fuel removal status

Loading the transportation container onto the trailer

Check of the soundness of the Reactor BuildingSince May 2012, regular quarterly inspections have been conducted, which have confirmed that the soundness of the Reactor Building has been maintained.

Check for tilt (measurement of the water level)

Check for tilt (measurement of the external wall)

Legend : Measurement pointNorth

Reactor Building Cover for fuel removal

Measures for rainwater infiltration

Measurement points Spent fuel pool

Fuel storage pool

Reactor well

North

Approx. 10m

Approx. 12m 5th floor

Optical equipment

Rainwater preventionmeasures

(Protection)

North

fuel-handling machine

Crane

Cover for fuel removal

Dismantling of the cover over Reactor Building Unit 1

To facilitate the early removal of fuel and fuel debris from the SFP, the cover over the Reactor Building will be dismantled to accelerate the removal of rubble on the operation floor. The radiation dose on the site boundaries will also increase compared to before the dismantling. However, through measures to reduce the release, the estimated impact of the release from Units 1 to 3 on the site boundaries (0.03mSv/year) will be limited.

Cask pit Storage area

Open space

Cask pit

Crane Protection

fence Modules Progress to date

・The common pool has been restored to a condition allowing it to re-accommodate fuel to be handled (November 2012)

・Loading of spent fuel stored in the common pool to dry casks commenced (June 2013)

・Fuel removed from the Unit 4 spent fuel pool began to be received (November 2013)

Transportationcontainer

①Spraying anti-scattering agents

②Removing dust and dirt by suctioning devices

③Preventing dust from being stirred up via a windbreak sheet

④ Enhancing the dust-monitoring system by installing additional monitors

Progress toward decommissioning: Works to identify the plant status and toward fuel debris removal

Identify the plant status and commence R&D and decontamination toward fuel debris removalImmediatetarget

* Indices related to the plant are values as of 11:00, July 30, 2014

Unit 1

Turbine Building

July 31, 2014Secretariat of the Team for Countermeasures for

Decommissioning and Contaminated Water Treatment2/6

<Glossary>(*1) S/C (Suppression Chamber):

Suppression pool, used as the water source for the emergent core cooling system.

(*2) SFP (Spent Fuel Pool):(*3) RPV (Reactor Pressure Vessel)

(*4) PCV (Primary Containment Vessel)1号機

:808

0mm

ベント管

自己位置検知要素技術実証試験イメージ

長尺ケーブル処理技術実証試験イメージ(水上ボート利用)

サプレッションチェンバ(S/C)

①のベント管

の下のサンド

クッションド

レン管が外れ

ており、そこか

らの流水を確

認した

S/C 側面

トーラス室水面

④のベント管の

上部方向からト

ーラス室滞留水

面への流水を確

認した

⑦ ⑧

X-5B X-5C

X-5D

X-5E

X-5A

X-5G

X-5H

N

X-5F

⑦ ⑧

X-5B X-5C

X-5D

X-5E

X-5A

X-5G

X-5H

N

X-5F

⑦ ⑧

X-5B X-5C

X-5D

X-5E

X-5A

X-5G

X-5H

NN

X-5F

Image of the swimming investigation robot demonstration

Status of leak water from the sand cushion drain pipe and above the vent pipe

Sand cushion drain pipe

under the vent pipe (1) was

disconnected, from which

water flow was detected.

Water flow was detected from above

the vent pipe (4) to the

accumulated water surface in the torus

room.

S/C side surface

Water surface of the torus room

Vent pipe

Unit 1

Image of long cable treatment technology demonstration test (using a water boat)

Self-location detection element technology demonstration image

Suppression Chamber (S/C)

Status of equipment development toward investigating inside the PCVPrior to removing fuel debris, to check the conditions inside the Primary Containment Vessel (PCV), including the location of the fuel debris, investigation inside the PCV is scheduled. For Unit 1, where fuel debris may spread outside the pedestal, an investigation of the external side will commence.

[Investigative outline]・Inserting equipment from Unit 1 X-100B penetration(*5) to investigate in clockwise and counter-clockwise directions.

[Status of investigation equipment development]・Crawler-type equipment with a shape-changing structure which allows it to enter the PCV from the narrow access entrance (bore: φ100mm) and stably move on the grating is currently under development. A field demonstration is scheduled for the 2nd half of FY2014.

<Glossary>(*1) S/C (Suppression Chamber):Suppression pool, used as the water source for the emergent core cooling system.(*2) SFP (Spent Fuel Pool):(*3) RPV (Reactor Pressure Vessel)(*4) PCV (Primary Containment Vessel)(*5) Penetration: Through-hole of the PCV

Investigative route inside the PCV (draft plan)

D/W 1F grating゙

D/W underground

Existing guide pipe

X-6: Investigation route (draft plan) (*1)

*1) This is an image for the route. The actual investigation route and the scope depend on the situation of the field.

Existing guide pipe

[PCV sectional view]

PCV

X-100B

X-100B

High dose

A part

CRD replacement rail

MS system pipe

Board camera* Used when traveling inside the guide pipe

Composite cable

Shape change

When traveling in guide pipe

When traveling on gratingThermometer* Installed inside the cover

Investigation camera

Crawler(2 units)

Traveling directionInvestigation

D/W 1F grating゙

D/W underground

Existing guide pipe

X-6: Investigation route (draft plan) (*1)

*1) This is an image for the route. The actual investigation route and the scope depend on the situation of the field.

Existing guide pipe

[PCV sectional view]

PCV

X-100B

X-100B

High doseHigh dose

A part

CRD replacement rail

MS system pipe

Board camera* Used when traveling inside the guide pipe

Composite cable

Shape change

When traveling in guide pipe

When traveling on gratingThermometer* Installed inside the cover

Investigation camera

Crawler(2 units)

Traveling directionInvestigation

Demonstration of decontamination equipment(1) Demonstration of suction and blast decontamination equipment・Demonstration was conducted on the 1st floor of Unit 1 Reactor Building (from January 30 to February 4). The result showed that the β ray dose rate was reduced by removing dust throughaspiration decontamination and the coated surface was shaved by the subsequent blast decontamination.(2) Dry ice-blast decontamination equipment・A demonstration was conducted on the 1st floor of the Unit 2 Reactor Building (from April 15-21).(3) High-pressure water decontamination equipment・A demonstration was conducted on the 1st floor of Unit 1 Reactor Building (from April 23-29).

High-pressure water decontamination equipment

Dry ice blast decontamination equipment

Aspiration and blast decontamination equipment

* Blast decontamination: A method to shave the surface by injecting polygonal steel grains into the object to be decontaminated (floor surface)

Investigation in the leak point detected in the upper part of Unit 1 Suppression Chamber (S/C)Investigation in the leak point detected in the upper part of Unit 1 S/C from May 27 from one expansion joint cover among the lines installed there. As no leakage was identified from other parts, specific methods will be examined to halt the flow of water and repair the PCV.

Image of the S/C upper part investigationLeak point

Leak point

Vacuum break line

Torus hatch

Vacuum break equipment bellows

Vacuum break valve

Investigation equipment

Investigation camera

Air dose rate inside the Reactor Building:Max. 5,150mSv/h (1F southeast area) (measured on July 4, 2012)

Building cover

Temperature inside the PCV: approx. 29℃

PCV hydrogen concentrationSystem A: 0.01vol%,System B: 0.02vol%

Water level of the torus room: approx. OP3,700 (measured on February 20, 2013)Air dose rate inside the torus room:approx. 180-920mSv/h(measured on February 20, 2013)Temperature of accumulated water inside the torus room: approx. 20-23℃(measured on February 20, 2013)

Water level of the Turbine Building: OP2,551Temperature at the triangular corner: 32.4-32.6℃(measured on September 20, 2012)

Water level at the triangular corner: OP3,910-4,420(measured on September 20, 2012)

Water level inside the PCV:PCV bottom + approx. 2.8m

Temperature inside the PCV: approx. 26.9℃

Air dose rate inside the PCV: Max. approx. 11Sv/h

Nitrogen injection flow rate into the PCV(*4): -Nm3/h

Temperature of the RPV bottom: approx. 29℃

Reactor feed water system: 2.3m3/hCore spray system: 1.9m3/h

Nitrogen injection flow rate into the RPV(*3): 18.40Nm3/h

Reactor Building

SFP (*2) temperature: 30.0℃

Progress toward decommissioning: Works to identify the plant status and toward fuel debris removal

Identify the plant status and commence R&D and decontamination toward fuel debris removalImmediate target

* Indices related to plant are values as of 11:00, July 30, 2014

July 31, 2014Secretariat of the Team for Countermeasures for

Decommissioning and Contaminated Water Treatment3/6

Equipment developed to measure the water level

Probe press structureX direction guide

Status of equipment development toward investigating inside the PCVPrior to removing fuel debris, to check the conditions inside the Primary Containment Vessel (PCV), including the location of the fuel debris, investigations inside the PCV are scheduled. For Unit 2, where fuel debris is unlikely to have spread outside the pedestal, the focus will be placed on investigating the inside.[Investigative outline]・Inserting the equipment from Unit 2 X-6 penetration(*1) and accessing inside the pedestal using the CRD rail

to conduct investigation.[Status of investigative equipment development]・Based on issues confirmed by the CRD rail status investigation conducted in August 2013, the investigation

method and equipment design are currently being examined. A demonstration is scheduled in the field in the 2nd half of FY2014.

<Glossary>(*1) Penetration: Through-hole of the PCV (*2) SFP (Spent Fuel Pool)(*3) RPV (Reactor Pressure Vessel) (*4) PCV (Primary Containment Vessel)(*5) S/C (Suppression Chamber): Suppression pool; used as the water source for the emergency core cooling system.(*6) Tracer: Material used to trace the fluid flow. Clay particles

Investigative issues inside the PCV and equipment configuration (draft plan)

Installation of an RPV thermometer and permanent PCV supervisory instrumentation (1) Replacement of the RPV thermometer・ As the thermometer installed at the Unit 2 RPV bottom after the

earthquake had broken, it was excluded from the monitoring thermometers (February 19).

・On April 17, removal of the broken thermometer failed and was suspended. To facilitate removal, tests to check rust formation and fixingare underway (from May 12).

(2) Reinstallation of the PCV thermometer and water-level gauge・Some of the permanent supervisory instrumentation for PCV could not be

installed in the planned locations due to interference with existing grating (August 13, 2013).

・The instrumentation was removed on May 27, 2014 and new instruments were reinstalled on June 5 and 6. The trend of added instrumentation will be monitored for approx. one month to evaluate its validity.

・The measurement during the installation confirmed that the water level inside the PCV was approx. 300mm from the bottom.

X-6 penetration

Isolation valve

Insertion tool

5. Avoiding the foothold

Chamber

Isolation valve

7. Avoiding rail holding tool

9. Travel on the grating

6. Crossing over deposit on the rail

8. Crossing over the space between rail and platform

Platform

Self-traveling equipment (draft plan)

Front camera & lightPan & tilt function

Issues before using X-6 penetration1. Removal of existing shield in front of the

penetration2. Installation of alternative shield3. Boring in the penetration hatch4. Removal of inclusion of the penetration

Measurement equipment

Alternative shield

This plan may be changed depending on the future examination status

Method to measure water levels when re-installing monitoring instrumentation

for Unit 2 PCV

Nitrogen injection flow rate into the PCV(*4): -Nm3/h

PCV hydrogen concentration System A: 0.04vol%System B: 0.04vol%

Temperature of the RPV bottom: approx. 37℃

Temperature inside the PCV: approx. 38℃

Water level of the torus room: approx. OP3,270 (measured on June 6, 2012)

Water level inside the PCV: PCV bottom + approx. 300mm

Water level of the Turbine Building: OP2,660

Air dose rate inside the PCV: Max. approx. 73Sv/h

Temperature inside the PCV: approx. 50℃

Air dose rate inside the torus room: 30-118mSv/h(measured on April 18, 2012)6-134mSv/h(measured on April 11, 2013)

Water level at the triangular corner: OP3,050-3,190(measured on June 28, 2012)

Temperature at the triangular corner: 30.2-32.1℃(measured on June 28, 2012)

Air dose rate inside the Reactor Building: Max. 4,400mSv/h (1F southeast area, upper penetration(*1) surface) (measured on November 16, 2011)

SFP(*2) temperature: 26.8℃

Reactor feed water system:2.0m3/hCore spray system: 2.5m3/h

Reactor BuildingNitrogen injection flow rate into the RPV(*3): 15.17Nm3/h

Unit 2

Turbine Building

① Confirm that the top reaches the surface② Confirm that the equipment reaches the bottom based on the

movement of the top③ Raise the equipment to resolve deflection when reaching the bottom* Calculate the water level based on the difference of the inserted cable

length of ① and ③

Approx. 300mmVent pipe

PCV ①Surface

PCV bottom OP 5480

Monitoring equipment(collecting pipe)

②Bottoming

Camera

③Bottom

Top for confirming the bottoming

Investigative results on torus room walls・The torus room walls were investigated (on the north side of the east-side walls) using equipment specially developed for that purpose (a swimming robot and a floor traveling robot).・At the east-side wall pipe penetrations (five points), “the status” and “existence of flow” were checked.・A demonstration using the above two types of underwater wall investigative equipment showed how the equipment could check the status of penetration.・Regarding Penetrations 1 - 5, checking by camera and spraying tracer (*6) showed no flow around the penetrations. (investigation by the swimming robot)・Regarding Penetration 3, a sonar check showed no flow around the penetrations. (investigation by the floor traveling robot)

Swimming robot

Floor traveling robot

Penetration (3)

Image of the torus room east-side cross-sectional investigation

Penetrations investigated

T/B East-side wall

S/C

Underwater

Swimming robot

R/B 1st floor

Tracer

Sonar

(Investigative equipment insert point)

R/B torus room

Progress toward decommissioning: Works to identify the plant status and toward fuel debris removal

Identify the plant status and commence R&D and decontamination toward fuel debris removalImmediatetarget

Decontamination inside R/B・The contamination status inside the Reactor Building (R/B) was investigated by a robot (June 11-15, 2012).・To select an optimal decontamination method, decontamination samples were collected (June 29 to July 3, 2012).・To facilitate decontamination inside the Reactor Building, removal of obstacles on the 1st floor was conducted (from November 18, 2013 to March 20, 2014).

Robot for investigating the contamination status (gamma camera mounted)

* Indices related to plant are values as of 11:00, July 30, 2014

July 31, 2014Secretariat of the Team for Countermeasures for

Decommissioning and Contaminated Water Treatment4/6

Outline of the water-flow status* Main Steam Isolation Valve: A valve to shut off the steam generated from the Reactor in an emergency

Water flow was detected from the Main Steam Isolation Valve* room

On January 18, a flow of water from around the door of the Steam Isolation Valve room in the Reactor Building Unit 3 1st floor northeast area to the nearby floor drain funnel (drain outlet) was detected. As the drain outlet connects with the underground part of the Reactor Building, there is no possibility of outflow from the building.From April 23, image data has been acquired by camera and the radiation dose measured via pipes for measurement instrumentation, which connect the air-conditioning room on the Reactor Building 2nd floor with the Main Steam Isolation Valve Room on the 1st floor. On May 15, water flow from the expansion joint of one Main Steam Line was detected.This is the first leak from PCV detected in Unit 3. Based on the images collected in this investigation, the leak volume will be estimated and the need for additional investigations will be examined. The investigative results will also be utilized to examine water stoppage and PCV repair methods.

Visual check range

Blown out TIP room door

Inaccessible area for robot

Status of equipment development toward investigating inside the PCVPrior to removing fuel debris, to check the conditions inside the Primary Containment Vessel (PCV), including the location of the fuel debris, investigation inside the PCV is scheduled. For Unit 3, where there is little possibility of fuel debris spreading outside the pedestal, the focus will be placed on investigating the inside. As the water level inside the PCV is high and the penetration scheduled for use in Units 1 and 2 may decline in the water, another method needs to be examined. [Steps for investigation and equipment development](1) Investigation from X-53 penetration

・Following decontamination, a field investigation is scheduled in the areas around X-53 penetration to determine the plan for conducting the inside investigation and equipment specifications.

(2) Investigation plan following the investigation of X-53 penetration・Based on the measurement values of hydraulic head pressure inside the PCV, X-6 penetration may decline. It is

estimated that access to X-6 penetration is difficult.・For access from another penetration, approaches such as “further downsizing the equipment” or “moving in water to

access the pedestal” are necessary and will be examined.

<Glossary>(*1) SFP (Spent Fuel Pool)(*2) RPV (Reactor Pressure Vessel)(*3) PCV (Primary Containment Vessel)(*4) TIP (Traversing Incore Probe System)

Measures neutrons by moving the detector up and down inside the core.

CRD

PCV

PlatformCRD rail

Pedestal

opening

X-6 penetration1F grating

opening part

X-53 penetration

Workers access

entrance

CRD

PCV

PlatformCRD rail

Pedestal

opening

X-6 penetration1F grating

opening part

X-53 penetration

Workers access

entrance

Main Steam Isolation Valve room

Floor drain funnel

N

Water flow

PCV

side

Main Steam Line

Expansion joint

Expansion joint

Leak point

構台

安全第一福島第一安全第一福島第一 安全

第一福島第一

安全第一福島第一安全第一福島第一安全第一福島第一

Unit 3

Reactor feed water system: 1.9m3/hCore spray system: 2.3m3/h

Nitrogen injection flow rate into the PCV(*3): -Nm3/h

PCV hydrogen concentration System A: 0.06vol%System B: 0.04vol%

Temperature of the RPV bottom: approx. 34℃

Temperature inside the PCV: approx. 33℃

Water level of the Turbine Building: OP2,915

Water level inside the PCV: unconfirmed

Water level at the triangular corner: OP3,150 (measured on June 6, 2012)

Reactor Building

SFP temperature: 26.5℃

Air dose rate inside the Reactor Building: Max. 4,780mSv/h (1F northeast area, in front of the equipment hatch) (measured on November 27, 2012)

Water level of the torus room: approx. OP3,370 (measured on June 6, 2012)Air dose rate inside the torus room: 100-360mSv/h(measured on July 11, 2012)

Nitrogen injection flow rate into the RPV(*2): 16.17Nm3/h

Upper permeable layer

Low-permeable layer

Water pumping

Water pumping Water

pumping

Pumping wellLower permeable layer

Low-permeable layer

Sub-drain Sub-drain

Drainage

Groundwater level Reactor building

Turbine building

Land-side impermeable wall Land-side impermeable wall

Groundwater bypass

Preventing water from accessing contamination source

Progress toward decommissioning: Work related to circulation cooling and accumulated water treatment line

Stably continue reactor cooling and accumulated water treatment, and improve reliabilityImmediate target

Facilities improvement

Reliability increase

Reactor Building

Turbine Building

Estimated leak routeLegend

地下水

Accumulated water treatment (Kurion/ Areva/

Sarry)

Strengthened materials, etc.

Multi-nuclide removal

equipment

Condensate Storage tank

Buffer tank

Reactor water injection pump

Groundwater level

Storage tank

Salt treatment(RO

membrane)

Salt treatment(evaporative

concentration)

July 31, 2014Secretariat of the Team for Countermeasures for

Decommissioning and Contaminated Water Treatment5/6

Reducing groundwater inflow by pumping sub-drain water

Via a groundwater bypass, reduce the groundwater level around the Building and groundwater inflow into the Building

Drainage of groundwaterby operating the sub-drain

pump

Groundwater

To reduce groundwater level by sub-drain water pumping, treatment tests were conducted for some sub-drain pits of Units 1-4. The next stage will involve scheduled examination of the sub-drain recovery method.

Measures to pump up groundwater flowing from the mountain side upstream of the Building to reduce the groundwater inflow (groundwater bypass) have been implemented.The pumped up groundwater is temporarily stored in tanks and released after TEPCO and a third-party organization have confirmed that its quality meets operational targets.Through periodical monitoring, pumping of wells and tanks is operated appropriately.At the observation holes installed at a height equivalent to the buildings, the trend showing a decline in groundwater levels is checked.

Preventing groundwater from flowing into the Reactor Buildings

<Glossary>(*1) CST (Condensate Storage Tank)Tank for temporarily storing water used in the plant.

Work to improve the reliability of the circulation water injection cooling system and pipes to transfer accumulated water. ・ Operation of the reactor water injection system using Unit 3 CST as a water source commenced (from July

5, 2013). Compared to the previous systems, in addition to the shortened outdoor line, the reliability of the reactor water injection system was enhanced, e.g. by increasing the amount of water-source storage and enhancing durability.

・ By newly installing RO equipment inside the Reactor Building by the end of FY2014, the reactor water injection loop (circulation loop) will be shortened from approx. 3km to approx. 0.8km*.

* The entire length of contaminated water transfer pipes is approx. 2.1km, including the transfer line of surplus water to the upper heights (approx. 1.3km).

※1 4号T/Bオペフロは設置案の1つであり、作業環境等を考慮し、今後更に検討を進めて決定予定

※2 詳細なライン構成等は、今後更に検討を進めて決定予定

#1~#3

R/B

#1~#4

T/B集中ラドHTI

SPT塩分除去(RO装置)

RO装置

P

#1~#3

CST 現状ライン(建屋内循環開始後はバックアップ)

Cs除去(SARRY、

KURION)P

※1

地下水流入

移送ライン

排水ライン

RO装置を4号T/Bオペフロ※1に新設SPTからRO装置への移送ライン、

RO廃液の排水ライン設置※2

貯蔵タンク

※1 4号T/Bオペフロは設置案の1つであり、作業環境等を考慮し、今後更に検討を進めて決定予定

※2 詳細なライン構成等は、今後更に検討を進めて決定予定

#1~#3

R/B

#1~#4

T/B集中ラドHTI

SPT塩分除去(RO装置)

RO装置

P

#1~#3

CST 現状ライン(建屋内循環開始後はバックアップ)

Cs除去(SARRY、

KURION)P

※1

地下水流入

移送ライン

排水ライン

RO装置を4号T/Bオペフロ※1に新設SPTからRO装置への移送ライン、

RO廃液の排水ライン設置※2

貯蔵タンク貯蔵タンク

New RO equipment will be installed on Unit 4 T/B operation floor*1

Transfer line from SPT to RO equipment and a drainage line of RO wastewater will

be installed*2

RO equipment

Groundwater inflow

Concentrated Rad

Drainage line

Transfer line Cs removal

Current line (used as backup after commencing circulation in the

Building)

Desalination (RO

equipment)Storage

tank

Units 1-3 CST

*1 Unit 4 T/B operation floor is one of the installation proposals, which will be determined after further examination based on the work environment*2 A detailed line configuration will be determined after further examination

New RO equipment

Storage tank (Temporary RO treated

water storage tank)

Outdoor transfer pipes shortened

Pumping well

Groundwater flow(Mountain side→sea side)

Unit 1 Unit 2

Unit 4

Status of multi-nuclide removal equipment • Regarding multi-nuclide removal equipment, three-system operation has been maintained,

except for planned suspension from late June.• Regarding System B, operation has been suspended to implement additional anti-corrosion

measures. In parallel with the latter, treatment will resume after replacing with improved filters which are less degraded by radiation.

• Regarding Systems A and C, operation will be suspended for about one week to sequentially replace with improved filters.

Freezing plant

・Length: approx. 1,500mFrozen impermeable walls

To prevent the inflow of groundwater into the Reactor Buildings, installation of impermeable walls surrounding the buildings on the land side is planned.Targeting efforts to commence freezing at the end of this fiscal year, drilling holes to install frozen pipes commenced from June 2.

Installing frozen impermeable walls around Units 1-4 to prevent the inflow of groundwater into R/B

Measures in Tank Areas・To prevent contaminated water from flowing directly outside the port, even in case it leaks and flows into a release channel, the release channel route is steadily switched to inside the port. The release channel C route was switched from outside the port to inside it from July 14. The release route will be switched sequentially according to the results assessing the effect inside the port.

Water pipe installation status (1) Water pipe installation status (2)

AB

固体廃棄物貯蔵庫

OR

W

P

AB

固体廃棄物貯蔵庫

OR

W

P

瓦礫保管エリア

伐採木保管エリア瓦礫保管エリア(予定地)伐採木保管エリア(予定地)セシウム吸着塔保管エリア

セシウム吸着塔保管エリア(運用前)スラッジ保管エリア

スラッジ保管エリア(運用前)

Progress toward decommissioning: Work to improve the environment within the site

・ Reduce the effect of additional release from the entire power station and radiation from radioactive waste (secondary water treatment waste, rubble, etc.) generated after the accident, to limit the effective radiation dose to below 1mSv/year at the site boundaries.

・ Prevent contamination expansion in sea, decontamination within the site

Immediatetargets

July 31, 2014Secretariat of the Team for Countermeasures for Decommissioning

and Contaminated Water Treatment6/6

Reducing radioactive materials in seawater within the harbor・ The analytical result for data such as the density and level of groundwater on

the east (sea) side of the Building identified that contaminated groundwater was leaking into seawater.・ No significant change has been detected in seawater within the harbor for the

past month, nor was any significant change detected in offshore measurement results as of last month.・ To prevent contamination expansion into the sea, the following measures are being implemented:(1) Prevent leakage of contaminated water・Ground improvement behind the bank to prevent the expansion of radioactive materials.

(Between Units 1 and 2: completed on August 9, 2013; between Units 2 and 3: from August 29 and completed on December 12, 2013; between Units 3 and 4: from August 23, 2013 and completed on January 23, 2014)

・ Pumping groundwater in contaminated areas (from August 9, 2013, scheduled to commence sequentially)(2) Isolate water from contamination・ Enclosure by ground improvement on the mountain side

(Between Units 1 and 2: from August 13, 2013 and completed on March 25, 2014;between Units 2 and 3: from October 1, 2013 and completed on February 6, 2014;between Units 3 and 4: from October 19, 2013 and completed on March 5, 2014)

・ To prevent the ingress of rainwater, the ground surface was paved with concrete (commenced on November 25, 2013 and completed on May 2)

(3) Eliminate contamination sources・Removing contaminated water in branch trenches and closing them (completed on September 19, 2013)・Treatment and removal of contaminated water in the main trenchUnit 2: Treatment commenced on November 14, 2013, freezing toward water stoppage commenced

on April 2Unit 3: Treatment commenced on November 15, 2013

Expansion of full-face mask unnecessary areaOperation based on the rules for mask wearing according to radioactive material density in air and decontamination/ ionization rules was defined, and the area is being expanded.In the J tank installation area on the south side of the site, as decontamination was completed, the area will be set as full-face mask unnecessary area (from May 30), where for works not handling contaminated water, wearing disposable dust-protective masks will be deemed sufficient .

Installation of impermeable wallson the sea sideTo prevent contamination expansion into the sea where contaminated water had leaked into groundwater, impermeable walls are being installed (scheduled for completion in September 2014).Installation of steel pipe sheet piles temporarily completed by December 4, 2013 except for 9 pipes.The next stage will involve installing steel pipe sheet piles outside the port, landfilling within the port, and installing a pumping facility to close before the construction completion.

Installation status of impermeable walls on the sea side

Full-face mask unnecessary area

海側遮水壁

地盤改良地下水くみ上げ

約200m

約500m

地下水採取点サブドレン地下水バイパス

海側遮水壁海側遮水壁

地盤改良地下水くみ上げ

約200m

約500m

地下水採取点サブドレン地下水バイパス

地下水採取点サブドレン地下水バイパス

地下水バイパスによるくみ上げ

1~4号機

トレンチからの排水

地表舗装等

山側

海側

地下水の流れ

対策の全体図

凍土方式による陸側遮水壁サブドレンによ

るくみ上げ

Overview of measures

Seaside Seaside impermeable wall Ground improvement Groundwater pumping

Paving on the surface Groundwater sampling point Sub-drain Groundwater bypass

Grou

ndwa

ter flo

w

Mountain side

Drainage from the trench Units 1-4

Approx. 200m

Approx. 500m Pumping through a sub-drain Pumping through a groundwater bypass

Land-side impermeable walls

with frozen soil

Additional area

Full-face mask unnecessary area

 

Disposable dust-protective mask

Full-face mask

Solid waste storage

Main Anti-Earthquake Building

Main gate

Rubble storage area Trimmed trees storage area

Trimmed trees storage area (planned)Rubble storage area (planned)

Sludge storage area

Sludge storage area (before operation)Cesium absorption vessel storage area (before operation)

Cesium absorption vessel storage area

(Landfill status on the Unit 1 intake side)

Transfer to New Administrative Office Building near the fieldTo share information with the field and expedite the response to issues, a New Administrative Office Building is under construction on the site of Fukushima Daiichi Nuclear Power Station. For the portion completed on June 30, approx. 400 staff members, including those of TEPCO’s water treatment related sections who had worked at Fukushima Daini Nuclear Power Station, transferred and started work from July 22.

External and internal appearances of the New Administrative Office Building