o.j cd - ntnufolk.ntnu.no/htorp/doktoravhandlinger_ultralyd/2004_runehansen.pdf · norway....

117
Coj...j 0 0 •1"""1 rr.; 0 0) O.J CD rr.; C'd ;::J rr.; !:3 0) ::s 0 as ;;. •1"""1 roc 0 ::s 0 .2 ['""""'1 rr.; > C'd ...... p- .8 1'1\ .... , , .... -! 8 NTNU Trondheim Norges teknisk-naturvitenskapelige universitet Doktoravhandling 2004:5 Fakultet for informasjonsteknologi, mate- matikk og elektrotelmikk Institutt for teknisk kybernetikk

Upload: others

Post on 15-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Coj...j

0 ~ 0

•1"""1 rr.; ~~ 0 ~ ~ 0) O.J CD Q~ ~~ rr.; ~ C'd

;::J rr.; !:3 ~ 0) ~ ~ ::s 0 as ~u ;;. •1"""1

~ ~ roc ~ ~ ~ ~ 0 ::s ~ ~ 0 .2 ['""""'1 rr.; ~ > C'd ...... p- ~ .8 1'1\ ~ ~ ...., ,....-!

8 2:~ NTNU Trondheim Norges teknisk-naturvitenskapelige universitet

Doktoravhandling 2004:5 Fakultet for informasjonsteknologi, mate­matikk og elektrotelmikk Institutt for teknisk kybernetikk

~ ~ ~ ~

New

Tec

hniq

ues

for

Det

ecti

on o

f U

ltra

soun

d C

ontr

ast A

gent

s

Run

e H

anse

n

Sub

mit

ted

to

The

Nor

weg

ian

Uni

vers

ity

of

Sci

ence

and

Tec

hnol

ogy

in p

arti

al f

ulfi

llm

ent o

f the

req

uire

men

ts

for

the

degr

ee o

f D

octo

r o

f Eng

inee

ring

D

okto

r In

geni

¢r

Nor

weg

ian

Uni

vers

ity

of

Sci

ence

and

Tec

hnol

ogy

Fac

ulty

of

Info

rmat

ion

Tec

hnol

ogy,

M

athe

mat

ics

and

Ele

ctri

cal E

ngin

eeri

ng

Dec

embe

r, 2

003

iii

Abs

trac

t

Thi

s th

esis

ana

lyse

s m

edic

al u

ltra

soun

d pu

lse

echo

det

ecti

on t

echn

ique

s o

f co

ntra

st b

ub­

bles

em

bedd

ed in

sof

t tis

sue

and

thre

e ne

w d

etec

tion

tec

hniq

ues

are

desc

ribe

d.

In a

med

ical

ult

raso

und

imag

ing

situ

atio

n, t

he l

inea

rly

scat

tere

d ti

ssue

sig

nal

is s

tron

g an

d w

ill t

ypic

ally

mas

k th

e li

near

ly s

catt

ered

con

tras

t ag

ent

sign

al.

In c

ontr

ast

agen

t de

­te

ctio

n te

chni

ques

, it i

s th

eref

ore

usua

lly

the

stro

ng lo

cal n

onli

near

bub

ble

resp

onse

whi

ch

is u

tili

zed

for

imag

e re

cons

truc

tion

.

In a

sm

all

tiss

ue v

olum

e el

emen

t un

derg

oing

com

pres

sion

and

exp

ansi

on d

ue t

o tr

ans­

mit

ted

ultr

ason

ic w

aves

, th

ere

will

be

nonl

inea

r ef

fect

s in

trod

uced

due

to

defo

rmat

ion

of

the

volu

me

elem

ent

and

inte

rmol

ecul

ar f

orce

s. F

or ty

pica

l ul

tras

ound

bea

ms,

wit

h ph

ase

fron

ts t

hat a

re n

ot s

tron

gly

curv

ed, t

he d

omin

ant n

onli

near

eff

ects

are

due

to t

he n

onli

near

in

term

olec

ular

forc

es.

The

loca

l eff

ect o

f thi

s no

nlin

eari

ty is

low

but

the

nonl

inea

r di

stor

­ti

on a

ccum

ulat

es in

the

for

war

d pr

opag

atio

n o

f the

wav

e an

d ca

n us

uall

y no

t be

negl

ecte

d in

med

ical

ult

raso

und

wav

e pr

opag

atio

n o

f fre

quen

cies

and

am

plit

udes

typi

call

y ap

plie

d.

Firs

t, th

e ef

fect

of

nonl

inea

r w

ave

prop

agat

ion

on n

onli

near

con

tras

t bub

ble

scat

teri

ng is

st

udie

d. T

he s

econ

d ha

rmon

ic c

ompo

nent

in th

e ul

tras

ound

tran

smit

fiel

d, i

ntro

duce

d du

e to

non

line

ar i

nter

mol

ecul

ar f

orce

s, i

s sh

own

to p

oten

tial

ly r

educ

e th

e no

nlin

ear

seco

nd,

thir

d, a

nd f

ourt

h ha

rmon

ic c

ompo

nent

s sc

atte

red

from

a c

ontr

ast b

ubbl

e. T

he d

imin

ishi

ng

effe

cts

on t

he s

catt

ered

thir

d an

d fo

urth

har

mon

ic c

ompo

nent

s ar

e es

peci

ally

sig

nifi

cant

.

In c

ontr

ast h

arm

onic

det

ecti

on te

chni

ques

, th

e no

ise

sign

al p

rese

nt in

a p

ulse

ech

o im

ag­

ing

syst

em w

ill p

oten

tial

ly m

ask

the

rece

ived

har

mon

ic c

ontr

ast s

igna

l. T

he u

se o

f Bar

ker

code

s, w

hich

are

a ty

pe o

f pul

se c

ompr

essi

on c

odes

fam

ilia

r in

rada

r sy

stem

s an

d co

mm

u­ni

cati

on t

heor

y, i

s st

udie

d an

d th

e po

tent

ial

for

incr

easi

ng t

he C

ontr

ast

to N

oise

Rat

io o

f th

e re

ceiv

ed s

catt

ered

thir

d ha

rmon

ic c

ompo

nent

is i

nves

tiga

ted.

Gen

eral

ly, a

n in

crea

se o

f 6

to 9

dB

was

fou

nd b

oth

num

eric

ally

and

exp

erim

enta

lly

appl

ying

a fo

ur b

it B

arke

r cod

e.

The

Bar

ker

code

was

, ho

wev

er,

foun

d to

be

very

sen

siti

ve to

var

iati

ons

in a

cous

tic

prop

­er

ties

of t

he b

ubbl

e an

d bu

bble

mov

emen

t dur

ing

inso

nifi

cati

on b

y th

e pu

lse

sequ

ence

.

The

Con

tras

t to

Noi

se R

atio

of

the

rece

ived

sca

tter

ed t

hird

or

four

th h

arm

onic

com

po­

nent

s ca

n al

so b

e in

crea

sed

by tr

ansm

itti

ng a

dua

l fr

eque

ncy

band

pul

se w

here

in p

arti

cu­

lar

a fu

ndam

enta

l ba

nd a

nd i

ts s

econ

d ha

rmon

ic c

ompo

nent

are

tra

nsm

itte

d, o

verl

appi

ng

in th

e ti

me

dom

ain.

The

rece

ived

thir

d or

four

th h

arm

onic

con

tras

t sig

nal a

nd ti

ssue

sig

nal

ampl

itud

es a

re t

hen

sign

ific

antl

y in

crea

sed

rela

tive

to

whe

n tr

ansm

itti

ng a

con

vent

iona

l fu

ndam

enta

l fr

eque

ncy

band

pul

se.

The

incr

ease

in

the

rece

ived

thir

d or

four

th h

arm

onic

ti

ssue

sig

nal

ampl

itud

e ca

n be

can

cele

d or

red

uced

by

tran

smit

ting

a s

econ

d du

al f

re­

quen

cy b

and

puls

e, w

ith

inve

rted

pol

arit

y on

the

tra

nsm

itte

d se

cond

har

mon

ic b

and,

and

th

en c

ombi

ning

the

tw

o re

sult

ing

rece

ived

sig

nals

in

a ge

nera

l pu

lse

inve

rsio

n pr

oces

s.

iv

By

inve

rtin

g th

e po

lari

ty o

f th

e tr

ansm

itte

d se

cond

har

mon

ic c

ompo

nent

, on

e is

abl

e to

co

nstr

uct t

wo

asym

met

ric

puls

es w

ith

resp

ect t

o po

siti

ve a

nd n

egat

ive

tran

smit

am

plit

ude,

th

us p

reve

ntin

g th

e re

sult

ing

cont

rast

age

nt s

igna

l fr

om b

eing

sig

nifi

cant

ly r

educ

ed in

the

pu

lse

inve

rsio

n pr

oces

s.

Fin

ally

, a

cont

rast

age

nt d

etec

tion

tec

hniq

ue u

tili

zing

the

tot

al s

catt

ered

con

tras

t bu

b­bl

e si

gnal

is

desc

ribe

d.

Har

mon

ic c

ontr

ast

dete

ctio

n te

chni

ques

typ

ical

ly i

mpo

se s

ome

impo

rtan

t li

mit

atio

ns o

n th

e ra

nge

reso

luti

on a

nd C

ontr

ast

to N

oise

Rat

io o

btai

nabl

e in

th

e fi

nal

ultr

asou

nd i

mag

e.

Als

o, t

he n

onli

near

par

t o

f th

e co

ntra

st s

igna

l sc

atte

red

in

the

forw

ard

prop

agat

ion

dire

ctio

n ad

ds i

n ph

ase

wit

h th

e pr

opag

atin

g tr

ansm

it f

ield

and

m

ay i

ntro

duce

a s

igni

fica

nt p

robl

em w

hen

line

arly

bac

k-sc

atte

red

from

the

tis

sue.

In

the

new

det

ecti

on t

echn

ique

, ec

hoes

fro

m a

tra

nsm

itte

d du

al f

requ

ency

ban

d pu

lse

cons

ist­

ing

of

a lo

w f

requ

ency

"pu

mpi

ng"

puls

e an

d a

high

fre

quen

cy i

mag

ing

puls

e ov

erla

ppin

g in

the

tim

e do

mai

n, a

re s

tore

d in

the

im

agin

g sy

stem

. A

sec

ond

dual

fre

quen

cy b

and

puls

e is

tra

nsm

itte

d, w

here

the

pol

arit

y o

f th

e tr

ansm

itte

d lo

w f

requ

ency

com

pone

nts

are

inve

rted

rel

ativ

e to

the

fir

st t

rans

mit

ted

puls

e, a

nd t

he r

esul

ting

new

ech

oes

are

line

arly

co

mbi

ned

wit

h th

e st

ored

ech

oes.

The

tra

nsm

itte

d lo

w f

requ

ency

pul

se m

anip

ulat

es t

he

acou

stic

sca

tter

ing

prop

erti

es o

f th

e co

ntra

st b

ubbl

es a

t th

e tr

ansm

itte

d hi

gh f

requ

ency

co

mpo

nent

s.

The

res

ulti

ng t

issu

e ec

hoes

wil

l be

can

cele

d in

the

lin

ear

com

bina

tion

of

the

echo

es w

hile

the

con

tras

t ag

ent

echo

es,

and

in p

arti

cula

r th

e li

near

ly s

catt

ered

hig

h fr

eque

ncy

com

pone

nts

of

thes

e, a

re p

rese

rved

and

may

be

used

for

im

age

reco

nstr

ucti

on.

v

Pre

face

Thi

s th

esis

is s

ubm

itte

d to

the

Fac

ulty

of I

nfor

mat

ion

Tec

hnol

ogy,

Mat

hem

atic

s an

d E

lec­

tric

al E

ngin

eeri

ng a

t th

e N

orw

egia

n U

nive

rsit

y o

f S

cien

ce a

nd T

echn

olog

y, N

TN

U,

in

part

ial f

ulfi

llmen

t of

the

requ

irem

ents

for

the

deg

ree

of D

okto

r In

geni

pr.

The

wor

k ha

s be

en c

arri

ed o

ut a

t th

e D

epar

tmen

t of

Cir

cula

tion

and

Med

ical

Im

agin

g at

the

Fac

ulty

of

Med

icin

e w

here

I h

ave

been

em

ploy

ed a

nd w

here

my

supe

rvis

or h

as

been

Pro

fess

or B

j0m

A.

J. A

ngel

sen.

For

mal

ly,

I am

aff

iliat

ed to

the

Dep

artm

ent

of E

n­gi

neer

ing

Cyb

erne

tics

. T

he th

esis

des

crib

es w

ork

done

in t

he p

erio

d fr

om S

prin

g 20

00 to

F

all

2003

reg

ardi

ng c

ontr

ast

agen

t de

tect

ion

tech

niqu

es i

n m

edic

al u

ltra

soun

d im

agin

g.

The

wor

k do

ne i

s m

ainl

y ba

sed

on t

heor

etic

al c

onsi

dera

tion

s an

d nu

mer

ical

sim

ulat

ions

w

here

as e

xper

imen

tal m

easu

rem

ents

are

car

ried

out

onl

y to

a s

mal

l ext

ent.

Fin

anci

ally

, the

wor

k is

sup

port

ed b

y th

e R

esea

rch

Cou

ncil

of N

orw

ay.

Ack

now

led

gmen

ts

Abo

ve a

ll, I

wou

ld l

ike

to t

hank

Pro

fess

or B

jpm

A.

J. A

ngel

sen

for

intr

oduc

ing

me

to t

he

fasc

inat

ing

fiel

ds o

f m

edic

al u

ltra

soun

d im

agin

g an

d ul

tras

ound

con

tras

t ag

ents

, an

d fo

r hi

s co

ntin

uous

sup

port

and

gui

danc

e du

ring

thi

s w

ork.

I w

ould

als

o li

ke t

o th

ank

all

my

othe

r co

llea

gues

at

the

Div

isio

n o

f Med

ical

Im

agin

g an

d at

the

GE

Vin

gmed

Ult

raso

und

grou

p in

Tro

ndhe

im fo

r an

enr

ichi

ng e

nvir

onm

ent b

oth

acad

emic

ally

and

soc

ially

. I w

ould

li

ke t

o gi

ve a

spe

cial

tha

nk to

Ton

ni F

. Joh

anse

n at

the

Div

isio

n of

Med

ical

Im

agin

g fo

r m

any

help

ful

disc

ussi

ons

and

for

read

ing

the

man

uscr

ipt.

Spe

cial

tha

nks

also

to

Sve

in­

Eri

k M

aspy

at

the

Div

isio

n o

f M

edic

al I

mag

ing

and

Tro

nd V

arsl

ot a

t th

e D

epar

tmen

t of

M

athe

mat

ical

Sci

ence

s fo

r nu

mer

ous

frui

tful

dis

cuss

ions

. Fi

nally

, I

am g

rate

ful

to A

nja­

Pat

rice

Auf

lem

, w

ith

who

m I

am

sha

ring

my

life,

for

alw

ays

bein

g so

sup

port

ive

and

cari

ng.

Con

tent

s

Abs

trac

t iii

Pre

face

v

Nom

encl

atur

e ix

1 In

trod

ucti

on

1 lo

l M

edic

al U

ltra

soun

d Im

agin

g 0

0 0

0 0

0 0

0 0

1 lo

2 U

ltras

ound

Con

tras

t Age

nts

0 0

0 0

0 o

o o

o o

3 1.

2.1

Con

tras

t Age

nt D

etec

tion

Tec

hniq

ues

4 1.

3 O

verv

iew

of t

he T

hesi

s 0

0 0

0 0

0 0

o o

o o

o 7

2 R

educ

tion

of N

onlin

ear

Con

tras

t Age

nt S

catt

erin

g du

e to

Non

linea

r In

cide

nt

Wav

e P

ropa

gati

on

11

2ol

Intr

oduc

tion

0 0

0 0

0 0

0 0

0 0

0 0

11

202

The

ory

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 12

20

2.1

Sing

le B

ubbl

e O

scil

lati

on

12

2020

2 Se

cond

Har

mon

ic C

ompo

nent

in T

rans

mit

Fie

ld

14

2.3

Res

ults

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

16

2.

3.1

Sim

ulat

ion

of T

rans

mit

ted

Wav

e F

ield

0 0

0 0

o o

16

20

302

Sim

ulat

ions

of B

ubbl

e O

scil

lati

on

0 0

o 0

o o

o o

16

2030

3 D

rivi

ng th

e B

ubbl

e w

ith th

e S

imul

ated

Tra

nsm

it F

ield

2.

4 C

oncl

usio

ns

0 0

0 20

5 A

know

ledg

emet

s 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

3 U

sing

Bar

ker

Cod

es in

Con

tras

t Har

mon

ic I

mag

ing

301

Intr

oduc

tion

o o

o 3o

2 T

heor

y 0

0 0

0 0

0 0

0 3o

2.1

Ove

rvie

w

0 0

3o2o

2 B

arke

r C

odes

3o

2o3

Bub

ble

Osc

illa

tion

3.

3 N

umer

ical

Res

ults

0 0

0 0

0

3.3o

l N

oise

Fre

e S

eque

nce

wit

hout

Har

mon

ic C

ompo

nent

s o

3.30

2 Pr

esen

ce o

f Sev

eral

Har

mon

ics

in S

igna

l for

Pro

cess

ing

26

29

30

31

31

33

33

34

35

35

35

37

viii

3.3.

3 E

ffec

t of A

cous

tic P

ower

Abs

orpt

ion

3.3.

4 B

ubbl

e Si

gnal

with

Inf

inite

CN

R ...

3.3.

5 T

rans

mit

Puls

e B

andw

idth

.

. .

. .

. 3.

3.6

Var

iabl

e A

cous

tic B

ubbl

e Pa

ram

eter

s 3.

3.7

Bub

ble

Mov

emen

t ...... .

3.

3.8

Eff

ect o

f Hav

ing

a Fi

nite

CN

R .

3.

4 E

xper

imen

tal R

esul

ts

3.5

Con

clus

ions

.

. .

. 3.

6 A

ckno

wle

dgm

ents

.

Con

tent

s

38

40

43

46

48

50

51

55

56

4 A

New

Dua

l Fre

quen

cy B

and

Con

tras

t Age

nt D

etec

tion

Tec

hniq

ue

57

57

59

59

60

61

63

63

67

72

78

79

79

4.1

Intr

oduc

tion ........................ .

4.

2 M

etho

d .......................... .

4.

2.1

Wav

e Pr

opag

atio

n an

d Sc

atte

ring

fro

m S

oft T

issu

e 4.

2.2

Scat

teri

ng f

rom

Con

tras

t Age

nts

. 4.

2.3

A N

ew P

ulse

Inv

ersi

on T

echn

ique

4.

3 N

umer

ical

Sim

ulat

ions

.

. .

. 4.

3.1

The

Tra

nsm

it F

ield

....... .

4.

3.2

Scat

teri

ng f

rom

Tis

sue

. .

. .

. .

4.3.

3 Sc

atte

ring

fro

m a

Con

tras

t Bub

ble

4.4

Con

clus

ions

. .

. .

4.

5 Fu

rthe

r Wor

k .

. .

4.6

Ack

now

ledg

men

ts

5 L

inea

r C

ontr

ast

Age

nt D

etec

tion

thr

ough

Low

Fre

quen

cy M

anip

ulat

ion

of

Hig

h F

requ

ency

Sca

tter

ing

Pro

pert

ies

81

5.1

Intr

oduc

tion

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. 81

5.

2 T

heor

y.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. 83

5.

2.1

Wav

e Pr

opag

atio

n an

d Sc

atte

ring

fro

m S

oft T

issu

e 83

5.

2.2

Con

tras

t Age

nt S

catte

ring

84

5.

3 M

etho

d .

. .

. .

. .

. .

. .

. .

. 87

5.

4 B

ubbl

e O

scill

atio

ns

. .

. .

. .

. .

89

5.5

Prop

agat

ion

of T

rans

mitt

ed P

ulse

s 94

5.

6 C

oncl

usio

ns .

. .

.

98

5.7

Furt

her W

ork

. .

. 98

5.

8 A

ckno

wle

dgm

ents

99

Bib

liogr

aphy

10

1

Nom

encl

atur

e L

atin

lett

ers

a po

siti

ve a

mpl

itud

e fu

ncti

on

a bu

bble

rad

ius

a ra

dius

vel

ocit

y i:i

radi

us a

ccel

erat

ion

A

bulk

mod

ulus

b

dam

ping

fac

tor

of r

eson

ant

syst

em

b po

siti

ve a

mpl

itud

e fu

ncti

on

b bi

nary

Bar

ker

sequ

ence

B

F

ouri

er tr

ansf

orm

of B

arke

r se

quen

ce

B

nonl

inea

rity

par

amet

er

c po

siti

ve a

mpl

itud

e fu

ncti

on

c sp

eed

of s

ound

d

loss

fac

tor

of r

eson

ant

syst

em

e ba

se o

f nat

ural

log

arit

hm

f fr

eque

ncy

Fr

radi

atio

n fo

rce

h ca

usal

low

-pas

s fi

lter

H

tran

sfer

fun

ctio

n im

agin

ary

unit,

i =

A

I in

tens

ity

of w

ave

k w

ave

num

ber

m

iner

tia

of

reso

nant

sys

tem

M

nu

mbe

r o

f ind

ivid

ual s

ubpu

lses

in c

oded

seq

uenc

e n

nois

e si

gnal

N

no

ise

para

met

er

p tr

ansm

itte

d si

gnal

p

acou

stic

pre

ssur

e Pi

in

cide

nt p

ress

ure

P

tota

l pre

ssur

e P

0 am

bien

t pre

ssur

e f

orth

ogon

al c

oord

inat

es f

or 3

-dim

ensi

onal

spa

ce

r le

ngth

off

r

rece

ived

sig

nal

s st

iffn

ess

of r

eson

ant s

yste

m

s sc

atte

red

sign

al

t ti

me

coor

dina

te

X

u ra

dial

vel

ocit

y U

bu

bble

vel

ocit

y du

e to

rad

iati

on f

orce

z

prop

agat

ion

dire

ctio

n fo

r pl

ane

wav

e Z

ac

oust

ical

im

peda

nce

Gre

ek le

tter

s

(3

nonl

inea

rity

par

amet

er

Nom

encl

atur

e

812

ph

ase

angl

e be

twee

n 1

st a

nd 2

nd

har

mon

ic c

ompo

nent

in r

adiu

s os

cill

atio

n "'

com

pres

sibi

lity

>.

wav

e le

ngth

f.lv

vi

scos

ity

1r

rati

o o

f cir

cum

fere

nce

of

a ci

rcle

to i

ts d

iam

eter

p

dens

ity

O'e

ex

tinc

tion

cro

ss s

ecti

on

~

sum

mat

ion

sym

bol

r ti

me

dela

y ¢

phas

e an

gle

<P12

ph

ase

angl

e be

twee

n p

t an

d 2n

d ha

rmon

ic c

ompo

nent

in t

rans

mit

fie

ld

'ljJ

part

icle

dis

plac

emen

t ,(p

pa

rtic

le v

eloc

ity

;j; pa

rtic

le a

ccel

erat

ion

w

angu

lar

freq

uenc

y, w

= 2

n f

n no

rmal

ized

ang

ular

fre

quen

cy

Sub

scri

pts

and

supe

rscr

ipts

* co

mpl

ex c

onju

gate

0

equi

libr

ium

or

ambi

ent s

tate

0

reso

nant

sta

te

c co

ntra

st a

gent

sig

nal

d D

oppl

er s

hift

i

inci

dent

fie

ld

I in

vers

e fi

lter

M

mat

ched

filt

er

n te

rm n

umbe

r n

in P

ower

Ser

ies

expa

nsio

n s

isen

trop

ic s

tate

t

tiss

ue s

igna

l W

W

iene

r fi

lter

Nom

encl

atur

e

Abb

revi

atio

ns

CN

R

Con

tras

t to

Noi

se R

atio

C

TR

C

ontr

ast t

o T

issu

e R

atio

PI

P

ulse

Inv

ersi

on

SN

R

Sig

nal t

o N

oise

Rat

io

Sym

bols

* co

nvol

utio

n op

erat

ion

in th

e ti

me

dom

ain

t

xi

Cha

pter

1

Intr

oduc

tion

1.1

Med

ical

Ult

raso

und

Imag

ing

Ult

raso

und

is s

ound

wav

es w

ith

freq

uenc

y ab

ove

the

audi

ble

rang

e w

hich

is

arou

nd 2

0 kH

z. T

he f

requ

ency

ran

ge u

sed

in m

edic

al u

ltra

soun

d im

agin

g is

typ

ical

ly f

rom

1 to

10

MH

z, g

ivin

g w

ave

leng

ths

from

1.5

to

0.15

mm

in

soft

tis

sue,

alt

houg

h ap

plic

atio

ns o

f hi

gher

freq

uenc

ies

are

inte

rest

ing

whe

n im

agin

g ov

er s

mal

l reg

ions

clo

se to

the

ultr

asou

nd

tran

sduc

er.

Ult

raso

und

tran

sduc

ers

are

usua

lly

mad

e as

a p

late

of

piez

oele

ctri

c m

ater

ial

wit

h m

et­

alli

zed

surf

aces

act

ing

as e

lect

rode

s fo

r ap

plyi

ng e

lect

rica

l vo

ltag

e ac

ross

the

thi

ckne

ss

dire

ctio

n o

f the

pla

te.

The

pie

zoel

ectr

ic p

late

is o

pera

ted

at t

hick

ness

res

onan

ce t

o m

axi­

miz

e th

e di

spla

cem

ent o

f th

e pl

ate

and

the

tran

sduc

er is

thu

s ef

fici

ent o

nly

over

a li

mit

ed

freq

uenc

y ra

nge.

The

thic

knes

s vi

brat

ions

of t

he tr

ansd

ucer

pro

duce

pre

ssur

e w

aves

whe

n pl

aced

in c

onta

ct w

ith

soft

tiss

ue.

The

se p

ress

ure

wav

es p

ropa

gate

wit

h th

e sp

eed

of s

ound

in

the

med

ium

whi

ch is

com

pres

sed

and

deco

mpr

esse

d w

ith

a sp

atia

l pe

riod

equ

al to

the

sp

atia

l wav

e le

ngth

alo

ng t

he p

ropa

gati

on d

irec

tion

of t

he w

ave.

Sof

t ti

ssue

is

in t

he p

rese

nt c

onte

xt c

onsi

dere

d a

hete

roge

neou

s co

ntin

uum

mad

e up

of

com

pone

nts

such

as

mus

cle,

fat

, an

d co

nnec

tive

tis

sue

whi

ch a

gain

, on

a s

mal

ler

scal

e,

are

hete

roge

neou

s. A

cous

tic

para

met

ers

thus

hav

e sp

atia

l va

riat

ions

, al

thou

gh r

elat

ivel

y sm

all,

and

the

vari

atio

ns in

mas

s de

nsit

y an

d co

mpr

essi

bili

ty p

rodu

ce u

ltra

soun

d sc

atte

r­in

g fr

om s

oft t

issu

e [3

, Cha

pter

7].

Due

to v

aria

tion

s in

con

cent

rati

ons

of b

lood

cel

ls, b

lood

is a

lso

a he

tero

gene

ous

med

ium

. T

he h

eter

ogen

eity

is,

how

ever

, le

ss t

han

for

soft

tis

sue

and

ultr

asou

nd s

catt

erin

g fr

om

bloo

d is

muc

h w

eake

r th

an f

rom

sof

t tis

sue

[13,

Tab

le 4

.21-

4.22

].

Med

ical

ult

raso

und

imag

ing

is p

erfo

rmed

by

plac

ing

a tr

ansd

ucer

in c

onta

ct w

ith

the

skin

an

d tr

ansm

itti

ng u

ltra

soun

d w

aves

, us

uall

y in

the

form

of f

ocus

ed b

eam

s, i

nto

the

regi

on

2 In

trod

ucti

on

of

inte

rest

in

the

body

. T

he t

rans

mit

ted

wav

es a

re t

hen,

due

to

inho

mog

enei

ties

in

the

med

ium

, sc

atte

red

in v

ario

us d

irec

tion

s an

d th

e w

aves

bei

ng s

catt

ered

in t

he d

irec

tion

of

the

rece

ivin

g tr

ansd

ucer

are

pic

ked

up a

s de

laye

d ec

hoes

of

the

tran

smit

ted

wav

e.

The

sc

atte

red

wav

es a

re,

due

the

rela

tivel

y sm

all v

aria

tions

in m

ass

dens

ity

and

com

pres

sibi

l­ity

, low

in a

mpl

itud

e re

lativ

e to

the

tra

nsm

itte

d w

aves

.

Aco

usti

c ab

sorp

tion

als

o re

duce

s th

e am

plit

ude

of

the

rece

ived

ult

raso

und

echo

es [

2,

Cha

pter

4.5

]. F

or e

ach

wav

e le

ngth

the

wav

e pr

opag

ates

, a

smal

l am

ount

of

the

me­

chan

ical

ene

rgy

in th

e w

ave

is i

rrev

ersi

bly

conv

erte

d to

hea

t, an

d th

is l

oss

of

ener

gy d

ue

to a

bsor

ptio

n is

thu

s pr

opor

tion

al to

the

num

ber

of

wav

e le

ngth

s tr

avel

ed.

Thi

s ac

oust

ic

abso

rpti

on m

echa

nism

lim

its

the

max

imum

dep

th f

or im

agin

g w

ith

ultr

asou

nd a

t a c

erta

in

freq

uenc

y du

e to

the

the

rmal

and

ele

ctro

nic

nois

e pr

esen

t in

a pu

lse

echo

imag

ing

syst

em.

The

am

plit

ude

of

the

tran

smit

pre

ssur

e pu

lses

dep

ends

on

the

freq

uenc

y ap

plie

d bu

t may

ty

pica

lly

be f

rom

0.1

to

2 M

Pa

in m

edic

al u

ltra

soun

d im

agin

g. D

epen

ding

on

the

tran

s­m

it a

mpl

itude

, th

e re

ceiv

ed e

choe

s ar

e di

stor

ted

rela

tive

to t

he t

rans

mit

ted

puls

es.

Thi

s di

stor

tion

mai

nly

occu

rs d

ue t

o th

e no

nlin

ear

natu

re o

f tis

sue

elas

ticity

. T

he r

elat

ions

hip

betw

een

pres

sure

and

vol

ume

com

pres

sion

is

not

line

ar u

nles

s ve

ry l

ow a

mpl

itud

es,

as

in t

he s

catt

ered

wav

es,

are

cons

ider

ed a

nd t

he d

isto

rtio

n o

f the

wav

e he

nce

occu

rs i

n th

e tr

ansm

it fi

eld

resu

ltin

g in

a fo

rwar

d no

nlin

ear

dist

orti

on o

f the

tra

nsm

it p

ulse

. A

s w

ith

the

acou

stic

abs

orpt

ion,

the

loc

al e

ffec

t o

f no

nlin

eari

ty i

s lo

w b

ut a

ccum

ulat

es a

s th

e w

ave

prop

agat

es.

Thi

s no

nlin

ear

effe

ct h

as g

iven

ris

e to

the

sec

ond

harm

onic

im

agin

g te

ch­

niqu

e [6

] [7

] [3

8] w

hich

toda

y is

wid

ely

in u

se in

med

ical

dia

gnos

tic

ultr

asou

nd im

agin

g.

In t

his

tech

niqu

e, t

he s

econ

d ha

rmon

ic c

ompo

nent

s o

f th

e di

stor

ted

echo

es a

re u

sed

to

crea

te th

e ul

tras

ound

imag

e.

The

spa

tial

var

iatio

ns o

f ac

oust

ic p

aram

eter

s ar

e, a

s in

dica

ted,

res

pons

ible

for

the

sca

t­te

ring

of t

he i

ncid

ent t

rans

mit

ted

wav

es a

nd a

re h

ence

the

bas

is f

or im

age

reco

nstr

ucti

on.

Insi

de o

rgan

s, t

hese

spa

tial

var

iatio

ns a

re u

sual

ly lo

w,

and

the

scat

teri

ng c

an b

e ap

prox

­im

ated

by

a fi

rst

orde

r sc

atte

ring

oft

en c

alle

d th

e B

orn

appr

oxim

atio

n [3

, C

hapt

er 7

]. I

n th

is a

ppro

xim

atio

n, t

he s

catt

ered

fie

ld i

s ca

lcul

ated

bas

ed o

n th

e un

dist

urbe

d ho

mog

e­ne

ous

tran

smit

ted

fiel

d an

d th

e he

tero

gene

ities

. T

he r

esul

ting

sca

tter

ed f

ield

is

low

in

ampl

itud

e re

lativ

e to

the

inc

iden

t fi

eld

and

prop

agat

es a

s if

in a

hom

ogen

eous

med

ium

, i.e

. w

itho

ut b

eing

sca

ttere

d.

Sca

tter

ing

that

can

be

adeq

uate

ly d

escr

ibed

by

this

Bor

n ap

prox

imat

ion

give

s th

e be

st u

ltra

soun

d im

ages

.

In t

he t

wo

or th

ree

firs

t ce

ntim

eter

s be

low

the

ski

n, t

he b

ody

wal

l co

nsis

ts o

f co

mpo

site

m

uscu

lar

tissu

e an

d fa

t. M

uscl

e an

d fa

t ar

e th

e tw

o co

nsti

tuen

ts i

n so

ft t

issu

e w

ith

the

larg

est

diff

eren

ces

in a

cous

tic

para

met

ers.

The

Bor

n ap

prox

imat

ion

is t

hus

not

valid

in

the

body

wal

l an

d m

ulti

ple

scat

teri

ng,

or r

ever

bera

tions

, ar

e pr

oduc

ed.

Dif

fere

nt p

arts

of

the

tran

smit

ted

beam

wil

l ty

pica

lly

trav

erse

une

qual

dis

tanc

es o

f fa

t an

d m

uscl

e an

d sm

ooth

pha

se f

ront

s o

f th

e tr

ansm

itte

d w

ave

are

pote

ntia

lly

dest

roye

d, g

ivin

g di

stor

ted

phas

e fr

onts

of

vary

ing

ampl

itude

. T

his

phas

e fr

ont

aber

ratio

n de

stro

ys t

he f

ocus

of

the

tran

smit

ted

beam

and

hen

ce r

educ

es t

he r

esol

utio

n in

the

im

age

whi

le t

he r

ever

bera

tion

s ap

pear

as

adde

d no

ise

in t

he i

mag

e [3

, C

hapt

er 1

1].

Try

ing

to c

ompe

nsat

e fo

r th

ese

1.2

Ult

raso

un

d C

ontr

ast A

gen

ts

3

phas

e fr

ont

aber

rati

ons

is t

oday

a m

ajor

res

earc

h ar

ea i

n th

e fi

eld

of m

edic

al u

ltra

soun

d im

agin

g [1

7] [

25]

[24]

.

If th

e tr

ansm

itte

d w

ave

is s

catt

ered

fro

m m

ovin

g ti

ssue

or

bloo

d, t

he D

oppl

er e

ffec

t ca

n be

use

d to

mea

sure

the

vel

ocit

y o

f th

e m

ovin

g sc

atte

rer

[14]

. A

cha

nge

in f

requ

ency

of

the

rece

ived

sca

tter

ed s

igna

l can

be

dete

cted

if t

he s

catt

erer

has

a v

eloc

ity

in th

e di

rect

ion

of

the

ultr

asou

nd b

eam

. S

ince

the

vel

ocit

y o

f th

e sc

atte

rer

is m

uch

less

tha

n th

e sp

eed

of

soun

d, t

his

freq

uenc

y sh

ift

wil

l be

sm

all

rela

tive

to

the

tran

smit

ted

freq

uenc

y an

d is

ty

pica

lly

a fe

w k

Hz,

i.e

. in

the

aud

ible

fre

quen

cy r

ange

. D

oppl

er t

echn

ique

s ar

e to

day

wid

ely

in u

se in

dia

gnos

tic

med

ical

ult

raso

und.

1.2

Ult

raso

und

Con

tras

t Age

nts

Ult

raso

und

scat

teri

ng f

rom

blo

od is

, as

men

tion

ed,

muc

h w

eake

r th

an u

ltra

soun

d sc

atte

r­in

g fr

om s

oft

tissu

e, a

nd t

he s

catt

ered

blo

od s

igna

l ca

n th

eref

ore

not

easi

ly b

e se

para

ted

and

visu

aliz

ed in

a m

edic

al u

ltra

soun

d im

age.

Obt

aini

ng in

form

atio

n ab

out b

lood

flow

in

vess

els

and

and

bloo

d flo

w t

hrou

gh v

ario

us o

rgan

s is

fro

m a

med

ical

dia

gnos

tic

poin

t of

view

ver

y he

lpfu

l.

Blo

od f

low

in

larg

er v

esse

ls m

ay b

e de

tect

ed u

sing

Dop

pler

tec

hniq

ues

wit

h hi

ghpa

ss

filte

ring

to

sepa

rate

the

blo

od s

igna

l fr

om t

he t

issu

e si

gnal

. In

sm

all

vess

els,

the

blo

od

velo

city

is

typi

call

y to

o lo

w f

or D

oppl

er t

echn

ique

s to

be

appl

icab

le a

nd c

ontr

ast

agen

ts

are

nece

ssar

y. A

s an

exa

mpl

e, t

he b

lood

vel

ocit

y in

the

cap

illa

ries

is

typi

call

y le

ss t

han

3 m

m/s

[39

]. A

lso,

boa

rder

det

ecti

on o

f th

e he

art

cavi

ties

may

be

impr

oved

app

lyin

g co

ntra

st a

gent

s.

The

sca

tter

ing

from

blo

od c

an b

e si

gnif

ican

tly

incr

ease

d by

add

ing

ultr

asou

nd c

ontr

ast

agen

ts, u

sual

ly m

ade

as s

olut

ions

of s

mal

l gas

bub

bles

in a

liqu

id,

to t

he b

lood

. F

rom

un­

derw

ater

aco

usti

cs, i

t is

know

n th

at g

as b

ubbl

es a

re b

oth

pow

erfu

l and

non

line

ar s

catt

erer

s o

f ul

tras

ound

wav

es.

The

gas

bub

bles

hav

e hi

gh c

ompl

ianc

e re

lati

ve t

o th

e su

rrou

ndin

g w

ater

or b

lood

and

in m

edic

al u

ltra

soun

d, t

he g

as b

ubbl

es a

re m

uch

smal

ler t

han

the

wav

e le

ngth

s of

the

tran

smit

pul

ses.

Con

trar

y to

the

wea

k lo

cal t

issu

e no

nlin

eari

ty, t

he c

ontr

ast

bubb

les

show

str

ong

nonl

inea

r lo

cal

resp

onse

s du

e to

lar

ge r

adiu

s ex

curs

ions

wit

h re

sult

­in

g sh

ear

defo

rmat

ion

of t

he s

urro

undi

ng f

luid

. T

he c

ontr

ast b

ubbl

es m

ainl

y be

have

as

mon

opol

e sc

atte

rers

and

hen

ce s

catt

er e

nerg

y in

al

l di

rect

ions

, in

clud

ing

the

forw

ard

prop

agat

ion

dire

ctio

n. T

he c

ontr

ast

sign

al s

catt

ered

in

the

for

war

d di

rect

ion

adds

in

phas

e w

ith

the

prop

agat

ing

tran

smit

pul

se a

nd i

ntro

duce

s an

add

itio

nal d

isto

rtio

n o

f th

e tr

ansm

it p

ulse

in r

egio

ns t

hat

in r

ange

dir

ecti

on a

re b

eyon

d a

cont

rast

fill

ed a

rea.

Thi

s ad

diti

onal

dis

tort

ion

may

the

n be

lin

earl

y sc

atte

red

from

sof

t ti

ssue

and

int

erpr

eted

as

cont

rast

age

nt.

In c

ontr

ast

imag

ing

of th

e he

art

or la

rge

vess

els,

th

is i

s ty

pica

lly

a pr

oble

m w

hen

the

tran

smit

pul

se h

as tr

avel

ed th

roug

h th

e la

rge

cont

rast

fi

lled

regi

ons.

A

pply

ing

a li

near

con

tras

t ag

ent

dete

ctio

n te

chni

que

is t

he o

nly

way

to

4 In

trod

ucti

on

avoi

d or

red

uce

the

prob

lem

.

Lor

d R

ayle

igh

[33]

stu

died

the

beh

avio

r of

the

liqu

id s

urro

undi

ng a

col

laps

ing

sphe

rica

l ca

vity

in

1917

and

lat

er i

n 19

33,

Min

naer

t [2

7] p

ubli

shed

a m

odel

whe

re t

he b

ubbl

e w

as v

iew

ed a

s a

harm

onic

osc

illa

tor.

In

194

9, P

less

et [

31]

incl

uded

a d

rivi

ng a

cous

tic

pres

sure

, by

lett

ing

the

back

grou

nd p

ress

ure

vary

wit

h tim

e, t

o th

e eq

uati

on b

ased

on

the

wor

k by

Lor

d R

ayle

igh.

The

res

ulti

ng R

ayle

igh-

Ple

sset

equ

atio

n is

the

fou

ndat

ion

for

the

num

eric

al b

ubbl

e si

mul

atio

ns o

n w

hich

the

pres

ent t

hesi

s is

par

tial

ly b

ased

.

The

fir

st c

ontr

ast

agen

ts f

or m

edic

al u

ltra

soun

d w

ere

appr

oved

by

heal

th c

are

auth

orit

ies

in 1

991

and

the

sear

ch f

or g

ood

cont

rast

age

nts

and

cont

rast

age

nt d

etec

tion

tec

hniq

ues

has

been

rel

ativ

ely

inte

nse

duri

ng t

he l

ast

15 t

o 20

yea

rs.

Tw

o si

gnal

pow

er ra

tios

hav

e vi

tal

impo

rtan

ce f

or th

e qu

alit

y o

f per

form

ance

of t

he m

ed­

ical

ult

raso

und

cont

rast

age

nt i

mag

ing

syst

em.

Fir

st,

the

Con

tras

t si

gnal

to T

issu

e si

gnal

R

atio

(C

TR

) w

hich

giv

es t

he r

atio

of t

he s

igna

l pow

er f

rom

the

con

tras

t age

nt in

a r

egio

n to

the

sig

nal

pow

er f

rom

the

tis

sue

in t

hat

regi

on.

Sec

ond,

the

Con

tras

t si

gnal

to

Noi

se

Rat

io (

CN

R)

whi

ch g

ives

the

rati

o o

f the

sig

nal p

ower

from

the

con

tras

t age

nt in

a r

egio

n to

the

noi

se p

ower

in t

hat r

egio

n. T

he C

TR

des

crib

es t

he a

bili

ty t

o di

ffer

enti

ate

cont

rast

si

gnal

and

tis

sue

sign

al i

n an

ult

raso

und

imag

e w

here

as C

NR

des

crib

es t

he e

nhan

cem

ent

of t

he c

ontr

ast s

igna

l abo

ve th

e no

ise

sign

al a

nd d

eter

min

es th

e m

axim

um d

epth

for

imag

­in

g th

e co

ntra

st a

gent

. In

add

itio

n, t

he r

esol

utio

n in

the

imag

e is

of

grea

t im

port

ance

as

in m

ost i

mag

ing

sys­

tem

s. B

ette

r res

olut

ion

typi

call

y de

man

ds a

pply

ing

high

er tr

ansm

it fr

eque

ncie

s, a

nd t

here

is

a tr

ade-

off b

etw

een

imag

e re

solu

tion

and

max

imum

dep

th o

f im

agin

g.

1.2.

1 C

ontr

ast

Age

nt D

etec

tion

Tec

hniq

ues

Spe

cial

tec

hniq

ues

for

dete

ctin

g th

e co

ntra

st a

gent

in

the

bloo

d is

nec

essa

ry b

ecau

se t

he

stro

ng l

inea

rly

scat

tere

d ti

ssue

sig

nal

typi

call

y is

lar

ger

than

or

of th

e sa

me

orde

r as

the

sc

atte

red

cont

rast

age

nt s

igna

l. In

sm

all v

esse

ls, o

nly

a fe

w c

ontr

ast b

ubbl

es w

ill b

e in

side

a

sam

ple

volu

me

and

the

resu

ltin

g ba

ck-s

catt

ered

con

tras

t age

nt s

igna

l is

wea

k co

mpa

red

to t

he s

urro

undi

ng t

issu

e si

gnal

whe

reas

in

the

larg

e bl

ood

fille

d ca

viti

es o

f th

e he

art,

the

num

ber

of c

ontr

ast

bubb

les

wil

l be

lar

ge g

ivin

g a

stro

ng b

ack-

scat

tere

d co

ntra

st a

gent

si

gnal

from

the

cav

ity.

A s

uper

ior

cont

rast

age

nt d

etec

tion

tec

hniq

ue p

rodu

ces

a ba

ck-s

catt

ered

con

tras

t ag

ent

sign

al f

or i

mag

e re

cons

truc

tion

whi

ch i

s ea

sily

and

ade

quat

ely

diff

eren

tiat

ed f

rom

the

sc

atte

red

tiss

ue s

igna

l an

d th

e no

ise

sign

al o

f th

e im

agin

g sy

stem

. In

add

itio

n, t

o ob

tain

hi

gh i

mag

e re

solu

tion

, th

e sc

atte

red

cont

rast

sig

nal

used

for

im

age

reco

nstr

ucti

on s

houl

d ha

ve h

igh

band

wid

th.

Sev

eral

con

tras

t age

nt d

etec

tion

tech

niqu

es h

ave

been

pro

pose

d an

d I

will

her

e gi

ve a

bri

ef

desc

ript

ion

of s

ome

of th

e m

ost

impo

rtan

t tec

hniq

ues.

Com

mon

for

all

thes

e m

etho

ds is

1.2

Ult

raso

un

d C

ontr

ast A

gent

s 5

that

they

are

bas

ed o

n th

e no

nlin

ear a

cous

tic

prop

erti

es o

f the

con

tras

t age

nt.

As

indi

cate

d,

a pr

oble

m w

ith

all

cont

rast

har

mon

ic d

etec

tion

tec

hniq

ues

is a

spr

ead

of c

ontr

ast

sign

al

beyo

nd th

e ac

tual

con

tras

t fill

ed r

egio

n. T

he n

onli

near

par

t of t

he c

ontr

ast s

igna

l sca

tter

ed

in th

e fo

rwar

d pr

opag

atio

n di

rect

ion

wil

l add

in p

hase

wit

h th

e tr

ansm

it fi

eld

and

may

the

n be

line

arly

bac

k-sc

atte

red

from

the

tis

sue.

Non

e o

f th

e pr

opos

ed te

chni

ques

do

fulf

ill t

he

men

tion

ed c

rite

ria

for

the

supe

rior

det

ecti

on t

echn

ique

and

thi

s su

peri

or te

chni

que

mig

ht

turn

out

to b

e im

poss

ible

to d

eriv

e.

The

fir

st g

roup

of

cont

rast

im

agin

g te

chni

ques

con

sist

s o

f th

e ha

rmon

ic i

mag

ing

met

h­od

s. T

hese

met

hods

are

bas

ed o

n tr

ansm

issi

on o

f on

e pu

lse

dow

n ea

ch l

ine

of

sigh

t an

d th

en a

ppli

cati

on o

f va

riou

s ha

rmon

ic f

ilter

s on

the

rec

eive

d ec

hoes

to

obta

in t

he d

esir

ed

harm

onic

com

pone

nts

used

for

im

age

reco

nstr

ucti

on.

Sec

ond

Har

mon

ic I

mag

ing

A p

ulse

cen

tere

d ar

ound

a f

unda

men

tal

freq

uenc

y co

mpo

nent

is t

rans

mit

ted

and

the

re­

sult

ing

rece

ived

ech

os a

re b

andp

ass

filte

red

arou

nd t

wic

e th

is t

rans

mit

fre

quen

cy.

The

re

ceiv

ed e

nerg

y at

this

sec

ond

harm

onic

ban

d is

then

use

d fo

r im

age

reco

nstr

ucti

on.

Thi

s is

the

sim

ples

t and

pos

sibl

y m

ost r

obus

t of

the

nonl

inea

r de

tect

ion

met

hods

. A

lim

itat

ion

is t

hat i

n or

der

to p

reve

nt le

akag

e fr

om th

e fu

ndam

enta

l fr

eque

ncy

band

into

the

pass

band

o

f th

e se

cond

har

mon

ic f

ilter

app

lied,

the

tra

nsm

it p

ulse

mus

t be

suf

fici

entl

y na

rrow

­ba

nded

res

ulti

ng i

n li

mit

ed r

ange

res

olut

ion.

A

lso,

the

rec

eive

d ti

ssue

sig

nal

typi

call

y co

ntai

ns a

sig

nifi

cant

am

ount

of

ener

gy a

t th

e se

cond

har

mon

ic c

ompo

nent

lim

itin

g th

e C

TR

. The

CN

R m

ay a

lso

be in

adeq

uate

, esp

ecia

lly

whe

n im

agin

g at

larg

e de

pths

. S

econ

d ha

rmon

ics

from

con

tras

t age

nts

are

stud

ied

and

repo

rted

in t

he l

iter

atur

e [2

6] [

11]

[12]

.

Hig

her

Har

mon

ic I

mag

ing

The

se te

chni

ques

are

a g

ener

aliz

atio

n o

f the

sec

ond

harm

onic

imag

ing

tech

niqu

e ap

plyi

ng

a di

ffer

ent f

requ

ency

ban

d, f

or e

xam

ple

the

thir

d ha

rmon

ic b

and,

for i

mag

e re

cons

truc

tion

. T

he r

ecei

ved

tiss

ue s

igna

l ty

pica

lly

cont

ains

ver

y li

ttle

ene

rgy

at t

hese

hig

her

harm

onic

co

mpo

nent

s an

d th

e C

TR

is b

ette

r tha

n w

ith

the

seco

nd h

arm

onic

tech

niqu

e. T

he re

ceiv

ed

cont

rast

sig

nal

typi

call

y al

so c

onta

ins

less

ene

rgy

at t

hese

hig

her

harm

onic

com

pone

nts

and

the

CN

R i

s a

bigg

er p

robl

em th

an w

ith

the

seco

nd h

arm

onic

tec

hniq

ue.

Des

ign

and

man

ufac

ture

of

broa

dban

d tr

ansd

ucer

s th

at a

re e

ffic

ient

ove

r se

vera

l fr

eque

ncy

band

s is

to

day

very

cha

llen

ging

lim

itin

g th

e ex

peri

men

tal w

ork

carr

ied

out u

sing

thes

e hi

gher

har

­m

onic

com

pone

nts.

6 In

trod

uct

ion

Su

b H

arm

onic

Im

agin

g

Con

tras

t bu

bble

s ha

ve t

he p

oten

tial

to

scat

ter

ener

gy a

t fr

eque

ncie

s be

low

the

inc

iden

t dr

ivin

g fr

eque

ncy.

Mos

t im

port

ant i

s he

re th

e sc

atte

red

ener

gy a

t hal

f the

dri

ve f

requ

ency

. S

ubha

rmon

ics

typi

call

y re

quir

e lo

ng d

rive

pul

ses

to d

evel

op r

esul

ting

in

degr

aded

ran

ge

reso

luti

on.

Res

ults

fro

m i

mpl

emen

tati

on o

f sub

harm

onic

im

agin

g ar

e re

port

ed [

34]

[15]

.

Non

lin

ear

Fre

quen

cy M

ixin

g

If tw

o se

para

ted

freq

uenc

y ba

nds

are

sim

ulta

neou

sly

tran

smitt

ed,

the

nonl

inea

r re

spon

se

wil

l con

tain

ene

rgy

at th

e su

m a

nd d

iffe

renc

e fr

eque

ncie

s o

f the

two

tran

smit

ted

freq

uenc

y ba

nds.

A

str

ong

nonl

inea

r bu

bble

res

pons

e m

ay,

in t

he s

ame

man

ner

as w

ith

the

othe

r ha

rmon

ic i

mag

ing

tech

niqu

es,

be d

etec

ted

in t

he p

rese

nce

of a

wea

ker

nonl

inea

r ti

ssue

re

spon

se.

The

sec

ond

grou

p o

f con

tras

t im

agin

g te

chni

ques

can

be

grou

ped

into

wha

t may

be

call

ed

mul

tipl

e pu

lse

met

hods

whe

re a

t lea

st tw

o pu

lses

are

tra

nsm

itte

d do

wn

each

line

of s

ight

. T

he i

mag

e re

cons

truc

tion

is

then

bas

ed o

n co

mbi

nati

ons

of

the

resu

ltin

g ec

hoes

alo

ng

each

line

of s

ight

.

Pu

lse

Inve

rsio

n T

echn

ique

s

In i

ts s

impl

est

embo

dim

ent,

the

puls

e in

vers

ion

tech

niqu

e co

nsis

ts o

f tr

ansm

itti

ng t

wo

puls

es,

whe

re t

he s

econ

d pu

lse

is a

rep

lica

of

the

firs

t pu

lse

but

wit

h in

vert

ed p

olar

­ity

, w

ith

a re

lativ

e tim

e de

lay

so t

hat

the

resu

ltin

g tw

o ec

hoes

are

sep

arat

ed.

The

tw

o ec

hoes

are

the

n ad

ded

toge

ther

and

the

im

age

is b

ased

on

this

sum

mat

ion

sign

al.

In t

he

idea

l cas

e, o

dd h

arm

onic

com

pone

nts

in th

e re

sult

ing

sign

al, i

n pa

rtic

ular

the

fund

amen

tal

com

pone

nt,

are

canc

eled

whi

le e

ven

harm

onic

com

pone

nts

pers

ist.

The

pul

se i

nver

sion

te

chni

que

henc

e tu

rns

out

as a

n al

tern

ativ

e w

ay o

f do

ing

seco

nd h

arm

onic

im

agin

g. T

he

mai

n ad

vant

age

rela

tive

to t

he s

impl

e se

cond

har

mon

ic i

mag

ing

tech

niqu

e is

red

ucti

on

of le

akag

e fr

om t

he f

unda

men

tal

band

into

the

sec

ond

harm

onic

ban

d, t

hus

allo

win

g fo

r m

ore

broa

dban

d tr

ansm

it p

ulse

s. T

he m

ain

disa

dvan

tage

is a

rtif

acts

res

ulti

ng f

rom

tis

sue

mot

ion

betw

een

the

two

tran

smit

ted

puls

es.

A c

ombi

ned

puls

e in

vers

ion

and

Dop

pler

te

chni

que

has

been

stu

died

by

Sim

pson

et a

l [3

6].

1.3

Ove

rvie

w o

f the

Th

esis

7

Pow

er M

odu

lati

on T

echn

ique

s

If tw

o tr

ansm

it p

ulse

s w

ith

diff

eren

t am

plit

udes

are

tra

nsm

itte

d, t

he l

inea

r co

mbi

nati

on

of

the

two

resu

ltin

g ec

hoes

can

be

used

for

bub

ble

dete

ctio

n. If

the

tiss

ue r

espo

nse

is

clos

e to

lin

ear,

it c

an b

e st

rong

ly s

uppr

esse

d in

the

lin

ear

com

bina

tion

of t

he t

wo

echo

es

and

mai

nly

the

nonl

inea

r co

ntra

st e

cho

rem

ains

. A

lso,

the

fun

dam

enta

l co

mpo

nent

of

the

cont

rast

ech

o in

this

line

ar c

ombi

nati

on is

, alt

houg

h si

gnif

ican

tly

redu

ced,

usu

ally

not

ca

ncel

ed.

Bu

bb

le D

estr

uct

ion

Met

hods

If su

bjec

t to

high

inte

nsit

y dr

ive

puls

es th

e co

ntra

st b

ubbl

es, u

sual

ly e

ncap

sula

ted

in a

thin

st

abil

izin

g sh

ell,

tend

to

get d

estr

ucte

d du

e to

a r

uptu

re o

f th

e sh

ell.

Thi

s ru

ptur

e re

sult

s in

fra

gmen

tati

on o

f the

bub

ble

into

sm

alle

r bub

bles

and

/or

diff

usio

n o

f the

enc

apsu

lati

ng

gas.

Mec

hani

sms

of c

ontr

ast a

gent

des

truc

tion

are

stu

died

by

Cho

mas

et a

l [9]

. S

uch

bub­

ble

dest

ruct

ion

wil

l al

ter

the

acou

stic

sca

tter

ing

prop

erti

es o

f th

e co

ntra

st a

gent

. P

ower

D

oppl

er t

echn

ique

s us

e pu

lse-

to-p

ulse

dec

orre

lati

on i

n co

ntra

st a

gent

ech

oes,

cau

sed

by

bubb

le d

isru

ptio

n, t

o di

stin

guis

h be

twee

n co

ntra

st a

gent

and

tis

sue

usin

g D

oppl

er p

ro­

cess

ing

tech

niqu

es.

Kir

khom

et a

l [2

2] s

ugge

sted

app

lyin

g a

rele

ase

burs

t to

rupt

ure

the

cont

rast

bub

bles

and

then

usi

ng d

ecor

rela

tion

met

hods

on

cont

rast

sig

nals

bef

ore

and

afte

r th

e re

leas

e bu

rst t

o de

tect

the

cont

rast

age

nt.

1.3

Ove

rvie

w o

f the

The

sis

Thi

s th

esis

is

mad

e up

of

four

sep

arat

e pa

pers

. In

the

fir

st p

aper

, th

e ef

fect

of

the

seco

nd

harm

onic

com

pone

nt,

intr

oduc

ed d

ue to

the

non

line

arit

y o

f ult

raso

und

wav

e pr

opag

atio

n in

sof

t tis

sue,

in

the

wav

e fi

eld

inci

dent

to

the

cont

rast

age

nt,

is i

nves

tigat

ed.

The

sec

­on

d pa

per

inve

stig

ates

a n

ew t

hird

har

mon

ic c

ontr

ast a

gent

det

ecti

on te

chni

que,

app

lyin

g a

puls

e co

mpr

essi

on m

etho

d fa

mil

iar

in r

adar

sys

tem

s an

d co

mm

unic

atio

n th

eory

. T

he

thir

d pa

per

prop

oses

a n

ew t

hird

or

four

th h

arm

onic

con

tras

t ag

ent

dete

ctio

n te

chni

que,

us

ing

dual

fre

quen

cy b

and

tran

smit

pul

ses

and

a ge

nera

l fo

rm o

f pu

lse

inve

rsio

n.

And

fi

nally

, th

e fo

urth

pap

er p

ropo

ses

a ne

w d

etec

tion

tec

hniq

ue u

tili

zing

the

tot

al s

catt

ered

co

ntra

st s

igna

l fo

r im

age

reco

nstr

ucti

on,

henc

e ov

erco

min

g pr

oble

ms

in r

elat

ion

to h

ar­

mon

ic i

mag

ing

met

hods

. T

his

last

met

hod

is m

ainl

y a

line

ar c

ontr

ast

agen

t de

tect

ion

tech

niqu

e.

The

con

tent

of t

he f

our

pape

rs is

sum

mar

ized

bel

ow.

8 In

trod

ucti

on

Pap

er A

Red

ucti

on o

f N

onli

near

Con

tras

t Age

nt

Scat

teri

ng d

ue t

o N

onli

near

Inc

iden

t W

ave

Pro

paga

tion

Ult

raso

und

wav

e pr

opag

atio

n in

tis

sue

and

scat

teri

ng f

rom

ult

raso

und

cont

rast

age

nts

are

both

kno

wn

to b

e no

nlin

ear

proc

esse

s at

typ

ical

fre

quen

cies

and

am

plit

udes

use

d in

med

­ic

al u

ltra

soun

d im

agin

g. T

he n

onli

near

ity

of w

ave

prop

agat

ion

man

ifes

ts i

tsel

f mai

nly

as

a se

cond

har

mon

ic c

ompo

nent

whi

ch,

due

to d

iffr

acti

on,

wil

l hav

e a

vary

ing

phas

e an

gle

rela

tive

to t

he l

inea

r fu

ndam

enta

l com

pone

nt in

a f

ocus

ed b

eam

com

mon

ly u

sed

in m

edi­

cal u

ltra

soun

d im

agin

g. B

ased

on

num

eric

al s

imul

atio

ns, t

his

pape

r sho

ws

that

, dep

endi

ng

on t

he r

elat

ive

phas

e an

gle

betw

een

the

fund

amen

tal

and

seco

nd h

arm

onic

com

pone

nt o

f th

e w

ave

fiel

d in

cide

nt to

the

con

tras

t ag

ent,

nonl

inea

r co

ntra

st a

gent

sca

tter

ing

may

be

sign

ific

antl

y di

min

ishe

d du

e to

the

inci

dent

pul

se d

isto

rtio

n ca

used

by

the

nonl

inea

rity

of

wav

e pr

opag

atio

n.

Pap

erB

Usi

ng

Bar

ker

Cod

es in

Con

tras

t Har

mon

ic I

mag

ing

Ult

raso

und

wav

e pr

opag

atio

n is

gen

eral

ly a

wea

k no

nlin

ear p

roce

ss r

elat

ive

to t

he n

onli

n­ea

rity

of u

ltra

soun

d sc

atte

ring

from

con

tras

t age

nts.

Thi

s di

ffer

ence

in d

egre

e o

f non

line

ar

resp

onse

mak

es h

ighe

r ha

rmon

ic i

mag

ing

tech

niqu

es i

nter

esti

ng.

A n

onli

near

gen

erat

ed

harm

onic

ban

d o

f the

fun

dam

enta

l tra

nsm

itte

d ba

nd is

the

n us

ed f

or d

etec

ting

the

cont

rast

ag

ent s

igna

l an

d di

ffer

enti

atin

g it

fro

m t

he t

issu

e si

gnal

. R

ecei

ved

harm

onic

com

pone

nts

typi

call

y co

ntai

n le

ss e

nerg

y th

an t

he l

inea

rly

rece

ived

fun

dam

enta

l co

mpo

nent

and

, in

co

ntra

st h

arm

onic

imag

ing

tech

niqu

es, t

he li

mit

ing

fact

or i

s of

ten

the

nois

e si

gnal

alw

ays

pres

ent

in a

pul

se e

cho

imag

ing

syst

em a

nd n

ot th

e m

aski

ng o

f the

con

tras

t si

gnal

by

the

tiss

ue s

igna

l. P

ulse

com

pres

sion

tec

hniq

ues,

fam

ilia

r in

rad

ar s

yste

ms

and

com

mun

ica­

tion

theo

ry,

are

tech

niqu

es f

or i

ncre

asin

g th

e si

gnal

leve

l re

lati

ve to

the

noi

se le

vel o

f th

e pu

lse

echo

im

agin

g sy

stem

whi

ch is

ass

umed

to b

e ev

enly

dis

trib

uted

ove

r al

l fre

quen

cies

o

f in

tere

st.

The

sig

nal

leve

l is

inc

reas

ed b

y tr

ansm

itti

ng a

n el

onga

ted

puls

e an

d no

t by

in

crea

sing

the

tra

nsm

it a

mpl

itud

e. T

he r

esul

ting

ech

oes

mus

t th

en b

e co

mpr

esse

d to

re­

stor

e ra

nge

reso

luti

on.

Thi

s pa

per

inve

stig

ates

the

use

of

Bar

ker

code

s, w

hich

are

a t

ype

of p

ulse

com

pres

sion

cod

es,

and

thei

r pot

enti

al to

inc

reas

e th

e si

gnal

leve

l of t

he r

ecei

ved

thir

d ha

rmon

ic c

ompo

nent

from

con

tras

t bub

bles

rel

ativ

e to

the

con

stan

t noi

se le

vel.

1.3

Ove

rvie

w o

f the

The

sis

9

Pap

er C

A N

ew D

ual F

requ

ency

Ban

d C

on

tras

t Age

nt D

etec

tion

Tec

hniq

ue

The

fac

t th

at th

e co

ntra

st a

gent

s re

spon

d m

uch

mor

e no

nlin

earl

y th

an s

oft

tiss

ue to

ultr

a­so

und

puls

es h

as g

iven

rise

to t

he c

ontr

ast h

arm

onic

imag

ing

tech

niqu

es w

here

a h

arm

onic

co

mpo

nent

of t

he to

tal s

catt

ered

sig

nal,

typi

call

y th

e se

cond

har

mon

ic c

ompo

nent

, is

used

fo

r im

age

reco

nstr

ucti

on.

In a

med

ical

ult

raso

und

imag

ing

situ

atio

n, b

oth

the

harm

onic

sc

atte

red

tissu

e si

gnal

acc

umul

atin

g in

the

for

war

d pr

opag

atio

n di

rect

ion

and

the

unco

r­re

late

d th

erm

al a

nd e

lect

roni

c no

ise

sign

al w

ill p

oten

tial

ly m

ask

the

scat

tere

d co

ntra

st

harm

onic

sig

nal.

The

pre

sent

pap

er d

eals

wit

h a

new

thi

rd a

nd f

ourt

h ha

rmon

ic c

ontr

ast

agen

t im

agin

g te

chni

que,

des

igne

d to

inc

reas

e th

e co

ntra

st h

arm

onic

sig

nal

rela

tive

to

both

the

noi

se s

igna

l as

wel

l as

the

har

mon

ic t

issu

e si

gnal

. In

ord

er to

ach

ieve

thi

s, t

he

new

met

hod

mak

es u

se o

f du

al f

requ

ency

ban

d tr

ansm

it p

ulse

s, t

oget

her

wit

h a

gene

ral

puls

e in

vers

ion

tech

niqu

e.

Pap

erD

Lin

ear

Co

ntr

ast

Age

nt D

etec

tion

thr

ough

Low

Fre

quen

cy M

anip

ulat

ion

of

Hig

h F

requ

ency

Sca

tter

ing

Pro

pert

ies

In m

edic

al u

ltra

soun

d co

ntra

st h

arm

onic

det

ecti

on t

echn

ique

s, o

nly

a co

mpo

nent

of

the

tota

l sc

atte

red

cont

rast

sig

nal,

typi

call

y th

e se

cond

har

mon

ic c

ompo

nent

, is

uti

lize

d fo

r im

age

reco

nstr

ucti

on.

The

se h

arm

onic

det

ecti

on t

echn

ique

s m

ake

it p

ossi

ble

to d

iffe

ren­

tiate

con

tras

t si

gnal

and

tis

sue

sign

al s

catt

ered

fro

m t

he p

art

of

the

body

bei

ng i

mag

ed,

and

as h

ighe

r ha

rmon

ic c

ompo

nent

s ar

e ut

ilize

d, t

his

diff

eren

tiat

ion

typi

call

y be

com

es

bette

r. A

ll pu

lse

echo

im

agin

g sy

stem

s ar

e, h

owev

er,

infe

sted

by

unw

ante

d th

erm

al a

nd

elec

tron

ic n

oise

whi

ch u

sual

ly c

an b

e co

nsid

ered

uni

form

ly d

istr

ibut

ed o

ver t

he f

requ

ency

ra

nge

of

inte

rest

. R

ecei

ved

harm

onic

com

pone

nts

are

typi

call

y re

duce

d in

am

plit

ude

as

high

er c

ompo

nent

s ar

e co

nsid

ered

, an

d al

thou

gh th

e di

ffer

enti

atio

n o

f con

tras

t sig

nal a

nd

tiss

ue s

igna

l m

ight

be

exce

llen

t app

lyin

g th

ese

high

er h

arm

onic

s, t

he c

ontr

ast s

igna

l w

ill

be m

aske

d by

the

noi

se s

igna

l. H

arm

onic

im

agin

g te

chni

ques

als

o re

quir

e ap

plic

atio

n of

re

lativ

ely

narr

ow b

ande

d tr

ansm

it p

ulse

s th

us d

egra

ding

ran

ge r

esol

utio

n in

the

ult

raso

und

imag

e.

Ano

ther

pro

blem

wit

h al

l co

ntra

st h

arm

onic

det

ecti

on t

echn

ique

s is

a s

prea

d of

co

ntra

st s

igna

l be

yond

the

act

ual

cont

rast

fill

ed r

egio

n.

The

non

line

ar p

art

of

the

con­

tras

t sig

nal s

catt

ered

in th

e fo

rwar

d pr

opag

atio

n di

rect

ion

adds

in

phas

e w

ith

the

tran

smit

pu

lse

and

may

the

n be

lin

earl

y ba

ck-s

catt

ered

fro

m t

he t

issu

e.

The

pre

sent

pap

er p

ro­

pose

s a

met

hod

appl

ying

the

tota

l sca

tter

ed c

ontr

ast s

igna

l for

im

age

reco

nstr

ucti

on,

thus

la

rgel

y ov

erco

min

g th

e pr

oble

ms

enco

unte

red

in h

arm

onic

im

agin

g te

chni

ques

. In

the

ne

w m

etho

d, t

he c

ontr

ast

sign

al a

nd t

issu

e si

gnal

are

dif

fere

ntia

ted

appl

ying

a s

impl

e pu

lse

subt

ract

ion

tech

niqu

e w

hich

can

cels

or

sign

ific

antly

red

uces

the

sca

tter

ed t

issu

e si

gnal

. T

he s

catt

ered

con

tras

t ag

ent

sign

al i

s, h

owev

er,

pres

erve

d in

thi

s pr

oces

s du

e to

10

Intr

odu

ctio

n

tran

smit

ted

low

fre

quen

cy p

ulse

s al

teri

ng th

e ac

oust

ic s

catt

erin

g pr

oper

ties

of t

he c

ontr

ast

agen

t in

a h

igh

freq

uenc

y ra

nge

used

for

im

age

reco

nstr

ucti

on.

The

mai

n m

echa

nism

th

roug

h w

hich

thi

s im

agin

g te

chni

que

sele

cts

the

cont

rast

age

nt s

igna

l is

the

lin

ear

reso

­na

nt p

rope

rtie

s of

the

cont

rast

bub

ble.

Ch

apte

r 2

Red

uct

ion

of N

onli

nea

r C

ontr

ast

Age

nt

Sca

tter

ing

du

e to

Non

lin

ear

Inci

den

t W

ave

Pro

pag

atio

n

Abs

trac

t

Ult

raso

und

wav

e pr

opag

atio

n in

tis

sue

and

scat

teri

ng f

rom

ult

raso

und

cont

rast

age

nts

are

both

kno

wn

to b

e no

nlin

ear

proc

esse

s at

typ

ical

fre

quen

cies

and

am

plit

udes

use

d in

med

­ic

al u

ltra

soun

d im

agin

g. T

he n

onli

near

ity

of

wav

e pr

opag

atio

n m

anif

ests

its

elf m

ainl

y as

a

seco

nd h

arm

onic

com

pone

nt w

hich

, du

e to

dif

frac

tion

, w

ill h

ave

a va

ryin

g ph

ase

an­

gle

rela

tive

to

the

line

ar f

unda

men

tal

com

pone

nt i

n a

focu

sed

tran

smit

bea

m c

omm

only

us

ed i

n m

edic

al u

ltra

soun

d im

agin

g. B

ased

on

num

eric

al s

imul

atio

ns,

this

pap

er s

how

s th

at, d

epen

ding

on

the

rela

tive

pha

se a

ngle

bet

wee

n th

e fu

ndam

enta

l and

sec

ond

harm

onic

co

mpo

nent

of t

he w

ave

fiel

d in

cide

nt to

the

con

tras

t age

nt,

nonl

inea

r co

ntra

st a

gent

sca

t­te

ring

may

be

sign

ific

antl

y di

min

ishe

d du

e to

the

inc

iden

t pu

lse

dist

orti

on c

ause

d by

the

no

nlin

eari

ty o

f wav

e pr

opag

atio

n.

2.1

Intr

oduc

tion

Wav

e pr

opag

atio

n in

tis

sue

is u

sual

ly a

wea

k no

nlin

ear

proc

ess

at f

requ

enci

es a

nd a

plit

udes

typ

ical

ly u

sed

in m

edic

al u

ltra

soun

d im

agin

g, a

nd t

he t

rans

mit

pul

se i

s sl

ight

ly

dist

orte

d as

it

prop

agat

es t

hrou

gh t

he m

ediu

m.

Alt

houg

h th

e lo

cal

effe

ct o

f no

nlin

eari

ty

is s

mal

l, th

e cu

mul

ativ

e ef

fect

whe

n th

e w

ave

has

prop

agat

ed s

ever

al w

avel

engt

hs i

s no

t ne

glig

ible

. If

the

wav

e tr

ansm

itte

d fr

om a

n ul

tras

ound

tra

nsdu

cer

has

its e

nerg

y co

ncen

­tr

ated

in

som

e fu

ndam

enta

l fr

eque

ncy

band

, th

e no

nlin

eari

ty o

f w

ave

prop

agat

ion

give

s ri

se to

har

mon

ics

of th

is f

unda

men

tal b

and

[3, C

hapt

er 1

2] [

30, C

hapt

er 1

1].

Lev

els

of r

e-

12

Pap

er A

ceiv

ed s

econ

d ha

rmon

ic f

rom

tis

sue

is t

ypic

ally

fou

nd to

be

arou

nd 2

0 dB

bel

ow th

e le

vel

of th

e re

ceiv

ed f

unda

men

tal

com

pone

nt b

ut th

is l

evel

dep

ends

on

acou

stic

par

amet

ers

in

addi

tion

to i

mag

ing

para

met

ers

such

as

freq

uenc

y, a

mpl

itud

e, a

nd d

epth

of i

mag

ing.

The

se

cond

har

mon

ic c

ompo

nent

acc

umul

ates

gra

dual

ly a

s th

e w

ave

prop

agat

es a

nd w

ill,

due

to d

iffr

acti

on,

have

a v

aryi

ng p

hase

ang

le r

elat

ive

to t

he f

unda

men

tal

com

pone

nt in

a f

o­cu

sed

tran

smit

ted

ultr

asou

nd b

eam

. T

his

phas

e an

gle

wil

l be

a re

lativ

ely

com

plex

func

tion

o

f bo

th a

xial

and

lat

eral

pos

itio

n re

lati

ve t

o th

e ul

tras

ound

bea

m a

xis

[3,

Cha

pter

12.

6].

Alt

houg

h m

uch

wea

ker t

han

the

seco

nd h

arm

onic

com

pone

nt, h

ighe

r ha

rmon

ics

may

als

o ex

ist i

n th

e tr

ansm

it fi

eld.

Med

ical

ult

raso

und

cont

rast

age

nts

are

typi

call

y m

ade

as s

olut

ions

of

smal

l ga

s bu

bble

s (d

iam

rv 3

/-lm

) in

a f

luid

and

sca

tter

ing

from

suc

h ga

s bu

bble

s is

typ

ical

ly a

str

ong

non­

line

ar p

roce

ss [

23]

[11]

[12

]. A

s in

dica

ted,

the

wav

e fi

eld

inci

dent

to t

he c

ontr

ast

agen

t co

ntai

ns e

nerg

y in

a s

econ

d ha

rmon

ic b

and

of

the

fund

amen

tal

band

tra

nsm

itte

d fr

om

the

ultr

asou

nd tr

ansd

ucer

due

to t

he n

onli

near

tiss

ue e

last

icity

. D

epen

ding

on

the

rela

tive

ph

ase

angl

e be

twee

n th

e in

cide

nt f

unda

men

tal

and

seco

nd h

arm

onic

ban

d, t

he p

rese

nce

of

this

sec

ond

harm

onic

ban

d is

in

the

pres

ent

pape

r sh

own

to p

oten

tial

ly h

ave

a m

ajor

di

min

ishi

ng e

ffec

t on

the

nonl

inea

r res

pons

e fr

om a

con

tras

t bub

ble.

2.2

The

ory

2.2.

1 Si

ngle

Bub

ble

Osc

illat

ion

The

con

tras

t age

nt is

ass

umed

to b

e sp

heri

cal g

as b

ubbl

es e

ncap

sula

ted

in a

thin

she

ll.

The

di

amet

er o

f the

bub

ble

is m

uch

less

than

the

wav

elen

gth

of th

e in

com

ing

wav

e fi

eld

and

the

bubb

le th

us e

xper

ienc

es a

n ap

prox

imat

ely

unif

orm

spa

tial

fie

ld a

nd t

he b

ubbl

e os

cill

atio

n is

ass

umed

to b

e pu

rely

sph

eric

al.

Sim

ulat

ions

for

bubb

le r

adiu

s os

cill

atio

ns a

nd a

cous

tic

scat

teri

ng a

re d

one

usin

g th

e nu

mer

ical

mod

el d

evel

oped

by

Ang

else

n et

al

[4].

Thi

s m

odel

inc

lude

s an

equ

atio

n fo

r th

e re

lati

on b

etw

een

pres

sure

and

rad

ial

stra

in i

n a

thin

sh

ell

enca

psul

atin

g a

gas

bubb

le.

The

mod

el a

llow

s fo

r a

fini

te s

peed

of

soun

d in

the

m

ediu

m s

urro

undi

ng th

e bu

bble

, thu

s ta

king

radi

atio

n lo

sses

from

the

bubb

le in

to a

ccou

nt.

Oth

erw

ise

it is

com

para

ble

to t

he w

ell k

now

n R

ayle

igh-

Ple

sset

equ

atio

n [3

3] [

31]

and

the

two

mod

els

give

sim

ilar

resu

lts

for

inci

dent

pre

ssur

e pu

lses

and

bub

ble

para

met

ers

stud

ied

in th

is p

aper

.

The

Ray

leig

h-P

less

et e

quat

ion

is a

sec

ond

orde

r non

line

ar d

iffe

rent

ial e

quat

ion.

For

sm

all

ampl

itud

es o

f th

e in

cide

nt d

rive

pre

ssur

e, t

he b

ubbl

e os

cill

atio

n ca

n be

ass

umed

to

be

appr

oxim

atel

y li

near

and

we

have

the

fol

low

ing

seco

nd o

rder

line

ar d

iffe

rent

ial

equa

tion

fo

r th

e ra

dial

dis

plac

emen

t, '1/J

, aro

und

an e

quil

ibri

um ra

dius

a

(2.1

)

Her

e, m

is

the

iner

tia

of

the

syst

em,

b is

the

dam

ping

fac

tor

of th

e sy

stem

, an

d s

is t

he

2.2

The

ory

13

20

I

\

10

i:Q ~

0

-10

0 0.

2 0.

4 0.

6 0.

8 1

1.2

1.4

1.6

1.8

2 [Q

]

4 3

12

\

\ .!

::, 0

----

--0

0.2

0.4

0.6

0.8

1 1.

2 1.

4 1.

6 1.

8 2

[Q]

Fig

ure

2.1:

Tra

nsfe

r fu

nctio

n fr

om d

rive

pre

ssur

e to

rad

ial

disp

lace

men

t in

Eq.

2.5

. T

he

para

met

er d

in E

q. 2

.3 i

s se

t to

0.5

and

0.1

giv

ing

the

soli

d lin

e an

d da

shed

line

, re

spec

­tiv

ely.

U

pper

pan

el:

Abs

olut

e va

lue

of

tran

sfer

fun

ctio

n.

Low

er p

anel

: P

hase

ang

le o

f tr

ansf

er fu

nctio

n.

stif

fnes

s o

f the

gas

and

enc

apsu

lati

ng b

ubbl

e sh

ell.

Eq.

2.1

typ

ical

ly d

escr

ibes

the

for

ced

line

ar o

scil

lati

on o

f a

syst

em c

onsi

stin

g of

a m

ass

m a

ttac

hed

on a

spr

ing

wit

h st

iffn

ess

s w

here

as b

acc

ount

s fo

r th

e da

mpi

ng i

n th

e sy

stem

. B

y ta

king

the

Fou

rier

Tra

nsfo

rm o

f E

q. 2

.1 w

e ob

tain

whe

re

d=

-b

-2

s W

o =

-,

m

Wom

Rea

rran

ging

Eq.

2.2

we

obta

in

47ra

2

1/J(

w) =

-H

(rl)

p;(

w)

s

whe

re t

he tr

ansf

er f

unct

ion

from

dri

ve p

ress

ure

to r

adia

l dis

plac

emen

t is

1 H

(rl)

=

rl2

-1

-ir

ld

(2.2

)

(2.3

)

(2.4

)

(2.5

)

and

whe

re t

he a

bsol

ute

valu

e an

d ph

ase

angl

e o

f H

(rl)

are

sho

wn

in F

ig.

2.1.

In

the

lo

wer

pan

el o

f th

is f

igur

e, w

e se

e th

at f

or d

rive

fre

quen

cies

wel

l be

low

res

onan

ce t

he

14

Pap

er A

disp

lace

men

t is

1r

out

of p

hase

with

the

dri

ving

pre

ssur

e. T

his

mea

ns t

hat

the

bubb

le i

s ex

pand

ed a

nd i

ncre

ased

in

size

dur

ing

the

nega

tive

pre

ssur

e cy

cle

whi

le c

ompr

esse

d an

d re

duce

d in

siz

e du

ring

the

pos

itiv

e pr

essu

re c

ycle

. F

or f

requ

enci

es w

ell

abov

e re

sona

nce

the

bubb

le r

espo

nds

diff

eren

tly to

the

driv

e pr

essu

re.

The

dis

plac

emen

t and

dri

ve p

ress

ure

are

now

in

phas

e so

tha

t the

bub

ble

is i

ncre

ased

in s

ize

duri

ng th

e po

sitiv

e pr

essu

re c

ycle

an

d vi

ce v

ersa

. A

roun

d re

sona

nce

the

disp

lace

men

t is

appr

oxim

atel

y ~

out o

f pha

se w

ith

the

driv

e pr

essu

re.

The

abs

olut

e va

lue

of t

he a

mpl

itud

e o

f the

tra

nsfe

r fu

ncti

on i

s se

en i

n th

e up

per p

anel

of t

he fi

gure

. G

oing

fro

m f

requ

enci

es b

elow

res

onan

ce to

war

ds r

eson

ance

th

e am

plit

ude

incr

ease

s gr

adua

lly c

ulm

inat

ing

wit

h a

prom

inen

t pe

ak a

roun

d re

sona

nce

for

the

situ

atio

n w

ith

low

dam

ping

(d

=

0.1)

and

a c

onsi

dera

ble

smal

ler

peak

for

the

si

tuat

ion

wit

h hi

gher

dam

ping

(d

=

0.5)

. In

bot

h ca

ses,

the

am

plitu

de is

see

n to

dec

reas

e ra

pidl

y ab

ove

reso

nanc

e.

2.2.

2 Se

cond

Har

mon

ic C

ompo

nent

in T

rans

mit

Fie

ld

Wav

e pr

opag

atio

n fr

om a

foc

used

ult

raso

und

tran

sduc

er to

the

con

tras

t-fi

lled

reg

ion

be­

ing

imag

ed i

s no

nlin

ear

beca

use

the

tiss

ue e

last

icit

y re

spon

ds s

ligh

tly

nonl

inea

rly

whe

n su

bjec

t to

an

osci

llat

ing

tran

smit

pul

se.

The

wav

e in

cide

nt t

o th

e co

ntra

st a

gent

wil

l th

eref

ore

cont

ain

seco

nd a

nd p

ossi

bly

high

er h

arm

onic

com

pone

nts.

In

this

con

text

the

re

lativ

e ph

ase

angl

e be

twee

n th

e in

cide

nt f

unda

men

tal

and

seco

nd h

arm

onic

com

pone

nt

is o

f sp

ecia

l im

port

ance

. T

his

phas

e an

gle

is i

n th

e pr

esen

t pa

per

give

n as

a f

ract

ion

of

the

tem

pora

l pe

riod

of

the

seco

nd h

arm

onic

com

pone

nt.

Whe

n tr

ying

to

dete

rmin

e th

e re

lativ

e ph

ase

angl

e be

twee

n th

e fu

ndam

enta

l an

d se

cond

har

mon

ic c

ompo

nent

, w

e w

ill

here

mai

nly

be c

once

rned

with

pul

ses

whe

re t

he l

evel

of

the

seco

nd h

arm

onic

is

arou

nd

20 d

B b

elow

the

fund

amen

tal c

ompo

nent

and

whe

re le

vels

of h

ighe

r har

mon

ics

are

so lo

w

that

the

se c

an b

e ne

glec

ted.

The

men

tion

ed p

hase

ang

le i

s th

en f

ound

app

roxi

mat

ely

by

visu

al i

nspe

ctio

n of

the

puls

es i

n th

e ti

me

dom

ain.

We

defi

ne t

he i

ndic

ated

pha

se a

ngle

to

zero

whe

n th

e ze

ro-c

ross

ings

of

the

fund

amen

tal

pres

sure

com

pone

nt c

oinc

ide

wit

h ev

ery

seco

nd z

ero-

cros

sing

of

the

seco

nd h

arm

onic

pr

essu

re c

ompo

nent

. W

ith t

his

defi

nitio

n, z

ero

phas

e an

gle

give

s a

saw

-too

th s

hape

d pu

lse

as s

how

n in

the

upp

er p

anel

of F

ig.

2.2

whe

re t

he c

ompr

essi

on p

erio

d, g

oing

fro

m

posi

tive

to n

egat

ive

valu

es,

is l

ess

stee

p th

an t

he e

xpan

sion

per

iod,

goi

ng f

rom

neg

ativ

e to

pos

itiv

e va

lues

. A

pha

se a

ngle

of-~, s

how

n in

the

low

er p

anel

of

Fig.

2.2

, gi

ves

a pu

lse

wit

h sh

arpe

ned

cres

ts a

nd r

ound

ed t

roug

hs w

here

mag

nitu

des

of c

rest

s ar

e la

rger

th

an m

agni

tude

s o

f tr

ough

s. T

he a

ctua

l ph

ase

angl

e in

the

tra

nsm

it fi

eld

from

a f

ocus

ed

med

ical

ult

raso

und

tran

sduc

er is

a r

esul

t of w

ave

diff

ract

ion.

Dep

endi

ng o

n th

e ax

ial

and

late

ral

posi

tion

rel

ativ

e to

the

ult

raso

und

beam

axi

s, t

his

phas

e an

gle

is u

sual

ly f

ound

to

be s

omew

here

bet

wee

n th

e tw

o in

dica

ted

case

s in

Fig

. 2.

2 [3

, C

hapt

er 1

2.6]

. W

e w

ill

in

the

pres

ent p

aper

fro

m n

ow o

n re

fer

to t

his

phas

e an

gle

as <

P 12

2.2

Th

eory

0.5 0

1-----

-0.5

1.5

0.5 0

1-------

-0.5

1.5

2 2.

5 3

2

3.5

[J.ts

] 4

4.5

5 5

15

5.5

6

5.5

6

Fig

ure

2.2:

D

efin

ition

of

phas

e an

gle,

<P 1

2,

betw

een

inci

dent

fun

dam

enta

l an

d se

cond

ha

rmon

ic c

ompo

nent

. T

he s

um o

f a

fund

amen

tal

and

a se

cond

har

mon

ic c

ompo

nent

is

depi

cted

. U

pper

pan

el:

Phas

e an

gle,

<P 1

2,

betw

een

fund

amen

tal

and

seco

nd h

arm

onic

co

mpo

nent

is

zero

. L

ower

pan

el:

Phas

e an

gle,

<P 1

2,

betw

een

fund

amen

tal

and

seco

nd

harm

onic

com

pone

nt is

-i.

16

Pap

er A

2.3

Res

ults

2.3.

1 Si

mul

atio

n of

Tra

nsm

itte

d W

ave

Fie

ld

A n

onli

near

sim

ulat

ion

prog

ram

for

wav

e pr

opag

atio

n de

velo

ped

in o

ur g

roup

[41

], i

s us

ed t

o ca

lcul

ate

the

acou

stic

tra

nsm

it f

ield

. T

his

prog

ram

is

capa

ble

of

mak

ing

a 3-

dim

ensi

onal

sim

ulat

ion

of

the

acou

stic

tra

nsm

it f

ield

fro

m a

n an

nula

r tr

ansd

ucer

tak

ing

nonl

inea

r el

astic

ity, f

requ

ency

dep

ende

nt a

bsor

ptio

n, a

nd d

iffr

acti

on in

to a

ccou

nt.

The

sim

ulat

ed f

unda

men

tal

and

seco

nd h

arm

onic

tra

nsm

it f

ield

fro

m a

n an

nula

r tr

ans­

duce

r is

dis

play

ed in

dec

ibel

sca

le in

the

left

and

rig

ht p

anel

of F

ig. 2

.3, r

espe

ctiv

ely.

The

ve

rtic

al a

xis

in t

he f

igur

e is

ran

ge d

irec

tion

whi

le t

he h

oriz

onta

l ax

is i

s th

e la

tera

l di

rec­

tion.

T

he r

adiu

s of

the

annu

lar

tran

sduc

er is

1 e

m a

nd t

he g

eom

etri

cal

focu

s w

as s

et a

t 7

em w

hile

the

fun

dam

enta

l tr

ansm

it f

requ

ency

was

set

to 1

MH

z. A

cous

tic

para

met

ers

for

mus

cle

foun

d in

the

lite

ratu

re [

13]

wer

e us

ed i

n th

e si

mul

atio

n. F

rom

the

fund

amen

tal

fiel

d, s

how

n in

the

lef

t pan

el in

the

fig

ure,

it i

s se

en t

hat m

ost o

f th

e en

ergy

em

itte

d fr

om

the

tran

sduc

er f

ollo

ws

a ge

omet

rica

l con

e in

wha

t is

usu

ally

ref

erre

d to

as

the

near

-fie

ld.

The

aco

usti

c fi

eld

in th

is n

ear-

fiel

d is

, due

to i

nter

fere

nce

from

dif

fere

nt p

arts

of t

he tr

ans­

duce

r, s

omew

hat i

rreg

ular

, as

can

be s

een

from

the

inte

nsit

y va

riat

ions

. In

the

regi

on f

rom

ab

out 4

em

to 8

em

, th

e en

ergy

is

conc

entr

ated

in a

nar

row

er r

egio

n an

d th

en s

low

ly d

i­ve

rges

in

the

far-

fiel

d. A

cous

tic

abso

rpti

on m

akes

the

am

plit

ude

in t

he f

ar-f

ield

fal

l m

ore

rapi

dly

than

the

rela

tive

ly w

eak

dive

rgin

g ef

fect

of t

he f

ield

wou

ld s

ugge

st.

Fro

m th

e ri

ght

pane

l in

the

figu

re,

the

seco

nd h

arm

onic

com

pone

nt is

see

n to

be

negl

igib

le d

own

to a

bout

2

em.

The

gen

erat

ed s

econ

d ha

rmon

ic c

ompo

nent

is s

omew

hat b

ette

r foc

used

in

the

foca

l re

gion

and

als

o m

ore

coll

imat

ed i

n th

e fa

r-fi

eld

rela

tive

to

the

fund

amen

tal

com

pone

nt.

The

se r

esul

ts a

re i

n go

od a

gree

men

t wit

h an

alyt

ical

con

side

rati

ons

[3,

Cha

pter

12.

6].

2.3.

2 Si

mul

atio

ns o

f Bub

ble

Osc

illat

ion

Num

eric

al s

imul

atio

ns o

f bub

ble

osci

llat

ions

are

don

e us

ing

a si

ngle

bub

ble

wit

h ac

oust

ic

prop

erti

es c

ompa

rabl

e to

the

con

tras

t ag

ent

Sona

zoid

[19

]. T

his

agen

t co

nsis

ts o

f bu

b­bl

es c

onta

inin

g pe

rflu

orca

rbon

gas

enc

apsu

late

d in

a th

in s

urfa

ctan

t mem

bran

e. T

he b

ulk

mod

ulus

of

a ty

pica

l bu

bble

is a

roun

d 60

0 kP

a w

hich

is a

bout

6 t

imes

the

sti

ffne

ss o

f a

free

gas

bub

ble

[19]

. T

he r

eson

ance

fre

quen

cy o

f th

e bu

bble

use

d in

num

eric

al s

imul

a­ti

ons

is a

roun

d 4

MH

z. S

imul

atio

ns f

or b

ubbl

e ra

dius

osc

illa

tion

s an

d ac

oust

ic s

catt

erin

g ar

e do

ne u

sing

the

num

eric

al m

odel

dev

elop

ed b

y A

ngel

sen

et a

l [4

]. A

s m

enti

oned

, th

is

mod

el a

nd t

he w

ell

know

n R

ayle

igh-

Ple

sset

equ

atio

n [3

3] [

31]

give

sim

ilar

res

ults

for

dr

ive

pres

sure

s an

d bu

bble

par

amet

ers

stud

ied

in t

he p

rese

nt p

aper

.

Firs

t, th

e bu

bble

is d

rive

n in

to s

mal

l ra

dius

osc

illa

tion

s so

tha

t a

clos

e to

lin

ear

resp

onse

ca

n be

ass

umed

. Fi

g. 2

.4(a

) de

pict

s th

e ra

dius

res

pons

e fr

om t

he b

ubbl

e (l

ower

pan

el)

whe

n dr

iven

wel

l be

low

res

onan

ce b

y a

0.5

MH

z pr

essu

re p

ulse

(up

per

pane

l).

We

see

2.3

Res

ults

17

-20

-5

-25

-10

-30

I -1

5 !

-35

-20

-40

-25

-45

-30

-50

-1

0 -1

0

(em

] (e

m]

Figu

re 2

.3:

Sim

ulat

ed t

rans

mit

fie

ld i

n de

cibe

l sc

ale

from

an

annu

lar

tran

sduc

er w

ith

radi

us e

qual

to

1 em

and

geo

met

ric

focu

s at

7 e

m.

Aco

ustic

pro

pert

ies

foun

d in

the

li

tera

ture

for

mus

cle

is u

sed

[13]

. L

eft

pane

l: F

unda

men

tal

tran

smit

fie

ld.

Rig

ht p

anel

: S

econ

d ha

rmon

ic t

rans

mit

fie

ld.

18

Pap

er A

that

the

bubb

le r

adiu

s is

1r ou

t of p

hase

wit

h th

e dr

ive

pres

sure

whi

ch is

in

agre

emen

t wit

h ou

r li

near

con

side

rati

ons

that

led

to F

ig.

2.1.

By

chan

ging

the

fre

quen

cy o

f ou

r dr

ive

pres

sure

to

4 M

Hz

we

driv

e th

e bu

bble

at

res­

onan

ce a

nd t

he r

adiu

s re

spon

se a

nd d

rive

pre

ssur

e ar

e di

spla

yed

in t

he l

ower

and

upp

er

pane

l of

Fig

. 2.

4(b)

, re

spec

tivel

y.

The

pha

se o

f th

e ra

dius

res

pons

e re

lativ

e to

the

dri

ve

pres

sure

has

now

cha

nged

to ~

as

expe

cted

fro

m F

ig.

2.1.

We

also

not

ice

that

the

bubb

le

"rin

gs"

for

a sh

ort

peri

od o

f ti

me

afte

r th

e dr

ive

pres

sure

pul

se h

as e

nded

whe

n dr

iven

at

res

onan

ce.

Fina

lly,

in F

ig.

2.4(

c),

the

radi

us r

espo

nse

whe

n dr

ivin

g th

e bu

bble

wel

l ab

ove

reso

nanc

e by

a 1

0 M

Hz

pres

sure

pul

se c

an b

e se

en.

The

rad

ius

osci

llat

ion

is n

ow

alm

ost

in p

hase

with

the

dri

ve p

ress

ure

mea

ning

tha

t th

e bu

bble

is

expa

nded

dur

ing

the

posi

tive

pre

ssur

e cy

cle

and

com

pres

sed

duri

ng t

he n

egat

ive

pres

sure

cyc

le.

Aga

in,

this

is

in a

gree

men

t w

ith

the

line

ar r

esul

ts f

rom

Fig

. 2.

1.

Sim

ilar

sim

ulat

ion

are

then

per

form

ed w

ith

high

er a

mpl

itud

es o

f th

e in

cide

nt d

rive

pre

s­su

re s

o th

at th

e bu

bble

in e

ach

case

is

driv

en in

to n

onli

near

osc

illa

tion

s. I

n al

l ca

ses,

the

se

cond

har

mon

ic c

ompo

nent

in th

e ra

dius

res

pons

e is

abo

ut 2

0 dB

bel

ow th

e fu

ndam

enta

l co

mpo

nent

whe

reas

hig

her

harm

onic

com

pone

nts

are

negl

igib

le.

The

pha

se a

ngle

be­

twee

n th

e fu

ndam

enta

l an

d se

cond

har

mon

ic c

ompo

nent

in th

e ra

dius

osc

illa

tion

is f

rom

no

w o

n re

fen·

ed to

as

812

and

the

sam

e de

fini

tions

as

for

<P 12

in

Fig.

2.2

are

use

d.

Fig.

2.5

(a)

show

s th

e si

tuat

ion

whe

n th

e bu

bble

is d

rive

n in

to n

onli

near

osc

illa

tion

s w

ell

belo

w r

eson

ance

. T

he f

unda

men

tal

com

pone

nt i

n th

e ra

dius

res

pons

e is

sti

ll a

ppro

xi­

mat

ely

7r o

ut o

f pha

se w

ith

the

driv

e pr

essu

re.

By

com

pari

ng th

e lo

wer

pan

el o

f Fig

. 2.5

(a)

wit

h Fi

g. 2

.2,

the

rela

tive

phas

e an

gle

betw

een

the

fund

amen

tal

and

seco

nd h

arm

onic

co

mpo

nent

in t

he r

adiu

s re

spon

se,

812

, is

fou

nd t

o be

aro

und

-~.

The

bub

ble

is t

hen

driv

en i

nto

nonl

inea

r os

cill

atio

ns a

t re

sona

nce

and

the

radi

us r

espo

nse

and

driv

e pr

essu

re a

re s

how

n in

Fig

. 2.

5(b)

. A

s in

the

lin

ear

situ

atio

n, t

he f

unda

men

tal

com

pone

nt o

f th

e ra

dius

osc

illa

tion

is

appr

oxim

atel

y ~

out

of p

hase

with

the

dri

ve p

res­

sure

. W

e se

e th

at,

due

to t

he s

econ

d ha

rmon

ic c

ompo

nent

in

the

radi

us o

scil

lati

on,

the

mag

nitu

des

of c

rest

s ar

e no

w l

ower

tha

n m

agni

tude

s of

trou

ghs

and

the

cres

ts h

ave

be­

com

e ro

unde

d w

hile

the

tro

ughs

are

sha

rpen

ed.

Thi

s is

the

opp

osit

e of

wha

t fou

nd i

n th

e lo

wer

pan

el o

f Fi

g. 2

.5(a

).

The

rea

son

is t

hat

812

ha

s ch

ange

d fr

om -

~ to

-3 ;.

The

to

tal

phas

e sh

ift

on 8

12 is

thu

s -1

r w

hen

chan

ging

the

dri

ve f

requ

ency

fro

m w

ell

belo

w

reso

nanc

e to

res

onan

ce.

The

res

ult w

hen

the

bubb

le is

dri

ven

wel

l ab

ove

reso

nanc

e is

dep

icte

d in

Fig

. 2.

5(c)

. W

e se

e fr

om t

he u

pper

pan

el t

hat

a ve

ry h

igh

pres

sure

am

plit

ude

(rv3

MPa

) m

ust b

e us

ed i

n or

der

to d

rive

the

bub

ble

into

non

line

ar o

scil

lati

ons

whi

ch a

gree

s w

ith

the

uppe

r pa

nel

in F

ig.

2.1

indi

cati

ng t

hat

the

ampl

itud

e of

the

tran

sfer

fun

ctio

n fr

om d

rive

pre

ssur

e to

ra

dius

osc

illa

tion

falls

rap

idly

abo

ve r

eson

ance

. T

he fu

ndam

enta

l com

pone

nt o

f the

rad

ius

osci

llat

ion

is,

as i

n th

e li

near

sit

uati

on, i

n ph

ase

wit

h th

e dr

ive

pres

sure

. T

he p

hase

ang

le

812

is,

how

ever

, aga

in a

ppro

achi

ng a

val

ue c

lose

to -

3 ;.

2.3

Res

ults

(t!\

/\[j

~ 1!\/

\f ; ;

I 1

2 3

4 5

6 7

8 9

2 2.

2 2.

4 2.

6 2.

8 3.

2 3.

4 ~

~

·J?\/\1

\d ·~

61\/E

12

3

4 5

6

7 8

9 2

2.2

2.4

2.6

2.8

3

3.2

3.4

~

~

(a)

Bub

ble

driv

en w

ell

belo

w r

eson

ance

. (b

) B

ubbl

e dr

iven

at r

eson

ance

.

(c)

Bub

ble

driv

en w

ell

abov

e re

sona

nce.

Figu

re 2

.4:

Bub

ble

driv

en i

n cl

ose

to l

inea

r os

cilla

tions

. U

pper

pan

el in

sub

­fi

gure

s:

Dri

ve p

ress

ure

puls

es.

Low

er p

anel

in

sub-

figu

res:

B

ubbl

e ra

dius

re

spon

ses.

19

20

Pap

er A

<M

/0 i~F

1/\f:

. : I

l 2

3 4

5 6

7 8

9 2

2.2

2.4

2.6

2.8

3.2

3.4

~

~

,l~\1\d ·JE

J\/6

1

2

3 4

56

7

8 9

2 2

.2

2.4

2.6

2.8

3

3.2

3.4

~

~

(a)

Bub

ble

driv

en w

ell

belo

w r

eson

ance

.

(c)

Bub

ble

driv

en w

ell

abov

e re

sona

nce.

(b)

Bub

ble

driv

en a

t res

onan

ce.

(d)

Bub

ble

driv

en a

t a

norm

aliz

ed f

requ

ency

, n,

equa

l to

0.5

.

Fig

ure

2.5:

Bub

ble

driv

en in

to n

onli

near

osc

illa

tion

s. S

econ

d ha

rmon

ic in

ra­

dius

osc

illa

tion

is a

roun

d 20

dB

bel

ow f

unda

men

tal

com

pone

nt.

Upp

er p

anel

in

sub

-fig

ures

: D

rive

pre

ssur

e pu

lses

. L

ower

pan

el i

n su

b-fi

gure

s:

Bub

ble

radi

us r

espo

nses

.

2.3

Res

ults

,:LV\

/!\1 ~P

\/Sfl

2 2.

5 3

3.5

4 4.

5 5

5.5

6 1.

5 2

2.5

3 3.

5 4

4.5

5 5.

5 6

~

~

·jtlh

: .• j ·J

/~

0 0.

5 1

1.5

2 2.

5 3

3.5

4.5

5 0

0.5

1 1.

5 2

2.5

3 3.

5 4

4.5

5 [1

1Hz]

[M

Hz]

(a)

Rad

ius

osci

llat

ion

and

ampl

itud

e o

f its

fre

­qu

ency

spe

ctru

m.

(b)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its

freq

uenc

y sp

ectr

um.

Fig

ure

2.6:

Bub

ble

driv

en b

y no

n-di

stor

ted

pres

sure

pul

se a

t n =

0.2

5.

21

Fig.

2.5

(d)

show

s th

e bu

bble

res

pons

e w

hen

the

bubb

le i

s dr

iven

at

a no

rmal

ized

fre

­qu

ency

, n,

equ

al t

o 0.

5.

In t

his

case

812

is

clo

se t

o -Jr a

nd m

agni

tude

s of

cre

sts

are

appr

oxim

atel

y eq

ual

to m

agni

tude

s o

f the

tro

ughs

.

Whe

n va

ryin

g th

e dr

ive

freq

uenc

y fr

om w

ell

belo

w r

eson

ance

to

wel

l ab

ove

reso

nanc

e th

e ph

ase

on th

e fu

ndam

enta

l co

mpo

nent

of t

he r

adiu

s re

spon

se r

elat

ive

to t

he d

rive

pre

s­su

re c

hang

es f

rom

bei

ng 1

r ou

t o

f ph

ase

to b

eing

in

phas

e, r

espe

ctiv

ely.

Thi

s re

sult

was

ob

tain

ed b

oth

whe

n dr

ivin

g th

e bu

bble

in

clos

e to

lin

ear

osci

llat

ions

and

whe

n dr

ivin

g it

int

o no

nlin

ear

osci

llat

ions

and

Fig

. 2.

1 is

the

refo

re a

lso

a go

od a

ppro

xim

atio

n o

f th

e ph

ase

of t

he f

unda

men

tal

radi

us o

scil

lati

on r

elat

ive

to t

he d

rive

pre

ssur

e fo

r th

e no

nlin

ear

bubb

le.

The

rad

ius

phas

e an

gle

812

is

, ho

wev

er,

chan

ging

mor

e ra

pidl

y w

hen

vary

ing

the

driv

e fr

eque

ncy

from

-~

wel

l be

low

res

onan

ce t

o ap

prox

imat

ely

-3 ;

at r

eson

ance

. A

bove

res

onan

ce,

812

fi

rst

decr

ease

s to

war

ds -

Jr a

nd t

hen

incr

ease

s ag

ain

appr

oach

ing

-3 ;

wel

l ab

ove

reso

nanc

e.

The

upp

er p

anel

of F

ig.

2.6(

a) s

how

s th

e ra

dius

osc

illa

tion

in th

e tim

e do

mai

n o

f the

sam

e bu

bble

whe

n dr

iven

by

a 1

MH

z in

cide

nt p

ress

ure

puls

e. T

he a

mpl

itude

of

the

inci

dent

pu

lse

is a

ppro

xim

atel

y 25

0 kP

a.

In t

he l

ower

pan

el o

f Fi

g. 2

.6(a

) th

e ab

solu

te v

alue

of

the

Fou

rier

Tra

nsfo

rm o

f the

rad

ius

osci

llat

ion

is s

how

n an

d w

e cl

earl

y se

e th

at th

e ra

dius

os

cill

atio

n is

non

line

ar a

nd t

hat

it m

ainl

y ha

s a

seco

nd h

arm

onic

com

pone

nt in

add

itio

n to

the

line

ar fu

ndam

enta

l com

pone

nt.

The

bub

ble

is d

rive

n be

low

res

onan

ce,

at n

= 0.

25,

and

we

see

that

the

pha

se a

ngle

812

in

the

rad

ius

osci

llat

ion

is c

lose

to

-~.

A

lso,

the

fu

ndam

enta

l co

mpo

nent

of t

he r

adiu

s os

cill

atio

n is

clo

se to

1r ou

t of p

hase

wit

h th

e dr

ive

pres

sure

.

The

far

-fie

ld c

ompo

nent

of

the

scat

tere

d pr

essu

re f

rom

the

sam

e bu

bble

is

show

n in

22

Pap

er A

,F37\J

&j ~ESE

1.5

2 2.

5 3

3.5

4 4.

5 5

5.5

6 1.

5 2

2.5

3 3.

5 4

4.5

5 5.

5 6

~

~

+zv;

;:: 1-~1 1~

0 0.

5 I

1.5

2 2.

5 3

3.5

4 4.

5 5

0 0.

5 I

l.5

2 2.

5 3

3.5

4 4.

5 5

[Ml:l

z]

[MH

z]

(a)

Rad

ius

osci

llat

ion

and

ampl

itud

e o

f its

fre

­qu

ency

spe

ctru

m.

(b)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its

freq

uenc

y sp

ectr

um.

Fig

ure

2.7:

Bub

ble

driv

en b

y di

stor

ted

pres

sure

pul

se a

t n

= 0

.25.

S

econ

d ha

rmon

ic c

ompo

nent

in d

rive

pre

ssur

e is

23

dB b

elow

fun

dam

enta

l co

mpo

­ne

nt,

whi

le <

I>12

= 0.

Fig.

2.6

(b).

T

his

is t

he p

ress

ure

com

pone

nt s

ever

al w

avel

engt

hs a

way

fro

m t

he b

ubbl

e w

hich

we

may

pic

k up

wit

h an

ult

raso

und

tran

sduc

er.

The

pre

ssur

e pu

lse

show

n ha

s no

t be

en m

odif

ied

by a

cous

tic

abso

rpti

on d

ue t

o w

ave

prop

agat

ion

and

we

see

that

it

has

resp

onde

d no

nlin

earl

y w

ith

sign

ific

ant

amou

nts

of

ener

gy a

t ha

rmon

ic c

ompo

nent

s no

t pr

esen

t in

the

driv

e pr

essu

re p

ulse

.

We

now

dri

ve th

e sa

me

bubb

le w

ith

a di

stor

ted

inci

dent

pre

ssur

e pu

lse

whi

ch h

as th

e sa

me

fund

amen

tal c

ompo

nent

as

the

pres

sure

dri

ve p

ulse

use

d in

Fig

. 2.6

but

now

als

o co

ntai

ns

a se

cond

har

mon

ic c

ompo

nent

whi

ch i

s 23

dB

bel

ow t

he f

unda

men

tal

com

pone

nt.

The

se

cond

har

mon

ic c

ompo

nent

in

the

driv

e pr

essu

re h

as a

pha

se a

ngle

<I>

12,

as d

efin

ed i

n F

ig. 2

.2, e

qual

to z

ero.

The

res

ulti

ng r

adiu

s re

spon

se a

nd s

catt

ered

pre

ssur

e ar

e di

spla

yed

in F

ig.

2.7(

a) a

nd 2

.7(b

), r

espe

ctiv

ely.

A

ddin

g th

e se

cond

har

mon

ic c

ompo

nent

in

the

driv

e pr

essu

re h

as s

ligh

tly

incr

ease

d th

e se

cond

and

thi

rd h

arm

onic

com

pone

nts

in t

he

radi

us r

espo

nse

of th

e bu

bble

as

can

be s

een

by c

ompa

ring

Fig

. 2.7

(a)

and

2.6(

a).

A s

mal

l fo

urth

har

mon

ic c

ompo

nent

is n

ow a

lso

visi

ble.

The

eff

ect o

n th

e sc

atte

red

pres

sure

pul

se

from

the

bub

ble

is s

imila

r, a

sm

all i

ncre

ase

in a

ll of

the

scat

tere

d ha

rmon

ic c

ompo

nent

s is

fo

und

by c

ompa

ring

Fig

. 2.7

(b)

and

2.6(

b).

The

bub

ble

is t

hen

exci

ted

wit

h a

dist

orte

d in

cide

nt p

ress

ure

puls

e si

mil

ar to

the

one

ap­

plie

d in

Fig

. 2. 7

, the

onl

y di

ffer

ence

bei

ng th

at th

e ph

ase

angl

e <I>

12

in th

e in

cide

nt p

ress

ure

puls

e ha

s ch

ange

d fr

om z

ero to-~. T

he u

pper

pan

el o

f Fig

. 2.8

(a)

show

s th

e ra

dius

osc

il­

lati

on o

f the

bub

ble

in th

e ti

me

dom

ain

whe

n dr

iven

by

this

new

dis

tort

ed p

ress

ure

puls

e.

In t

he l

ower

pan

el,

the

abso

lute

val

ue o

f th

e F

ouri

er T

rans

form

of

the

radi

us o

scil

lati

on

is d

epic

ted

and

we

see

that

the

sec

ond

harm

onic

com

pone

nt o

f th

e ra

dius

osc

illa

tion

is

2.3

Res

ults

£;Fi/\/

SCJ ~

E!\1\t?

1.5

2 2.

5 3

3.5

4 4.

5 5

5.5

6 1.

5 2

2.5

3 3.

5 4

4.5

5 5.

5 6

~

~

·ll\~

: hJ lE

d

0 0

5

l 1

5

2 2

5

3 3

5

4 4

5

5 0

OS

l 1

5

2 2

5

3 3

5

4 4

5

5 [M

Hz]

[M

Hz]

(a)

Rad

ius

osci

llat

ion

and

ampl

itud

e o

f its

fre

­qu

ency

spe

ctru

m.

(b)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its f

requ

ency

spe

ctru

m.

Fig

ure

2.8:

Bub

ble

driv

en b

y di

stor

ted

pres

sure

pul

se a

t n

=

0.25

. S

econ

d ha

rmon

ic c

ompo

nent

in d

rive

pre

ssur

e is

23

dB b

elow

fun

dam

enta

l co

mpo

­ne

nt,

whi

le <

P12 =

-~.

redu

ced

com

pare

d to

the

low

er p

anel

of F

ig.

2.6(

a).

23

The

fun

dam

enta

l co

mpo

nent

of

the

radi

us o

scil

lati

on is

app

roxi

mat

ely

1r o

ut o

f pha

se

wit

h th

e fu

ndam

enta

l co

mpo

nent

of

the

driv

ing

pres

sure

. F

rom

our

line

ar c

onsi

dera

tion

s re

sult

ing

in F

ig.

2.1,

we

may

con

clud

e th

at t

he l

inea

r ra

dius

res

pons

e to

the

sec

ond

har­

mon

ic c

ompo

nent

in t

he d

rive

pre

ssur

e, a

t n

=

0.5

in t

his

case

, is

als

o cl

ose

to 1

r ou

t of

ph

ase.

It

was

see

n in

the

upp

er p

anel

of

Fig.

2.6

(a)

that

812

in

the

radi

us o

scil

lati

on w

as

clos

e to

-~

whe

n dr

iven

by

a no

n-di

stor

ted

driv

e pr

essu

re.

Whe

n th

e bu

bble

then

is d

rive

n by

a d

isto

rted

pre

ssur

e pu

lse

cont

aini

ng a

sec

ond

harm

onic

com

pone

nt w

ith

phas

e an

gle

clos

e to

-~

rela

tive

to t

he f

unda

men

tal

com

pone

nt, t

his

dist

orti

on w

ill h

ave

the

pote

ntia

l to

lin

earl

y ca

ncel

out

or

redu

ce t

he s

econ

d ha

rmon

ic c

ompo

nent

in t

he r

adiu

s os

cill

atio

n ob

tain

ed w

hen

driv

ing

the

bubb

le w

ith

the

non-

dist

orte

d pr

essu

re p

ulse

as

show

n in

the

lo

wer

pan

el o

f Fig

. 2.

6(a)

. A

lso

impo

rtan

t, is

tha

t the

thir

d ha

rmon

ic c

ompo

nent

inhe

rent

in th

e ra

dius

osc

illa

tion

in

the

low

er p

anel

of

Fig.

2.6

(a),

obt

aine

d by

usi

ng t

he n

on-d

isto

rted

dri

ve p

ress

ure,

is

canc

eled

or

sign

ific

antl

y re

duce

d w

hen

usin

g th

is n

ew d

isto

rted

dri

ve p

ress

ure

as s

een

from

the

low

er p

anel

in F

ig. 2

.8(a

). T

his

is a

non

line

ar e

ffec

t res

ulti

ng f

rom

the

mix

ing

of

the

fund

amen

tal

and

seco

nd h

arm

onic

com

pone

nt in

the

dis

tort

ed d

rive

pre

ssur

e pu

lse.

Fi

g. 2

.8(b

) di

spla

ys th

e sc

atte

red

pres

sure

fro

m t

he b

ubbl

e dr

iven

by

the

new

dis

tort

ed

pres

sure

pul

se.

We

obse

rve

that

the

leve

ls o

f bot

h th

e se

cond

, th

ird,

and

fou

rth

harm

onic

co

mpo

nent

s ar

e si

gnif

ican

tly

redu

ced

com

pare

d to

wha

t w

e fo

und

in t

he l

ower

pan

el o

f Fi

g. 2

.6(b

) us

ing

a no

n-di

stor

ted

driv

ing

pres

sure

pul

se.

The

dim

inis

hing

eff

ects

on

the

thir

d an

d fo

urth

har

mon

ic c

ompo

nent

s in

the

sca

tter

ed p

ress

ure

puls

e ar

e no

nlin

ear.

24

Pap

er A

;f!\T

\f3 S

b!\)

8 u

2 u

3 ~

4 u

5 ~

6 ~.

2 u

3 ~

4 u

5 ~

6 ~

~

-~r r~1 -~r

fkC

;J

0 0.

5 l

1.5

2 2.

5 3

3.5

4 4.

5 5

0 0.

5 l

1.5

2 2.

5 3

3.5

4 4.

5 5

[MH

z]

[MH

z]

(a)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its

freq

uenc

y sp

ectr

um.

(b)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its

freq

uenc

y sp

ectr

um.

Fig

ure

2.9:

Bub

ble

driv

en b

y di

stor

ted

pres

sure

pul

se a

t n

=

0.25

. S

econ

d ha

rmon

ic c

ompo

nent

in d

rive

pre

ssur

e is

25

dB a

nd 2

1 dB

bel

ow f

unda

men

tal

com

pone

nt, l

eft a

nd r

ight

pan

el, r

espe

ctiv

ely,

whi

le <

!> 12

= -

~.

The

res

ulti

ng s

catt

ered

pre

ssur

e pu

lse

from

the

bub

ble

whe

n re

duci

ng t

he le

vel o

f sec

ond

harm

onic

in

the

dist

orte

d dr

ive

pres

sure

fro

m 2

3 dB

to

25 d

B b

elow

the

fun

dam

enta

l co

mpo

nent

, w

hile

kee

ping

<!>

12 e

qual

to -~,is s

een

in F

ig.

2.9(

a).

Com

pari

ng t

he l

ower

pa

nel o

f thi

s fi

gure

wit

h th

e lo

wer

pan

el o

f Fig

. 2.

8(b)

we

see

that

ther

e is

now

a s

tron

ger

redu

ctio

n of

the

scat

tere

d th

ird

and

four

th h

arm

onic

com

pone

nts

whe

reas

the

sca

tter

ed

seco

nd h

arm

onic

com

pone

nt is

som

ewha

t les

s re

duce

d.

Incr

easi

ng t

he l

evel

of

seco

nd h

arm

onic

in

the

dist

orte

d dr

ive

pres

sure

to

21 d

B b

elow

th

e fu

ndam

enta

l co

mpo

nent

, an

d st

ill

not

chan

ging

<!> 1

2, w

e ob

tain

the

resu

lts

depi

cted

in

Fig.

2.9

(b)

for

the

scat

tere

d pr

essu

re p

ulse

fro

m t

he b

ubbl

e. I

n th

is c

ase,

by

com

pari

son

wit

h th

e lo

wer

pan

el i

n Fi

g. 2

.8(b

), th

e re

duct

ion

of

the

scat

tere

d se

cond

har

mon

ic c

om­

pone

nt is

str

onge

r w

hile

the

thir

d an

d fo

urth

har

mon

ic c

ompo

nent

s ar

e le

ss d

imin

ishe

d.

We

now

inc

reas

e ou

r dr

ive

freq

uenc

y to

2 M

Hz

so t

hat n

= 0

.5 f

or t

he f

unda

men

tal

com

pone

nt i

n th

e dr

ive

pres

sure

. T

he a

mpl

itud

e o

f th

e dr

ive

pres

sure

is

now

180

kPa

. E

xpos

ing

the

sam

e bu

bble

to t

his

new

dri

ve p

ress

ure

cont

aini

ng o

nly

a fu

ndam

enta

l co

pone

nt w

e ob

tain

the

res

ults

sho

wn

in t

he u

pper

and

low

er p

art

of F

ig.

2.10

(a)

for

the

radi

us o

scil

lati

on i

n th

e tim

e do

mai

n an

d th

e ab

solu

te v

alue

of

the

Fou

rier

Tra

nsfo

rm

of

the

radi

us o

scil

lati

on,

resp

ectiv

ely.

B

y co

mpa

ring

the

upp

er p

anel

of

this

fig

ure

wit

h Fi

g. 2

.2 w

e ca

n co

nclu

de th

at 8

12 i

n th

e ra

dius

osc

illa

tion

is s

imil

ar to

the

sit

uati

on in

the

uppe

r pa

nel

of F

ig.

2.2

whe

re <

!>12

is

equa

l to

zer

o. T

he d

iffe

renc

e is

, ho

wev

er,

that

wit

h ou

r de

fini

tion,

zer

o ph

ase

angl

e re

sult

s in

a s

aw-t

ooth

sha

ped

puls

e w

here

the

com

pres

­si

on p

erio

d fr

om h

igh

to l

ow v

alue

is

less

ste

ep t

han

the

expa

nsio

n pe

riod

fro

m l

ow t

o

2.3

Res

ults

-~~h

r:K~

: l·~[ :c

vs;; I

0

12

3

4 5

6

7 8

01

2

3 4

56

7

8 [M

Hz]

[M

Hz]

(a)

Rad

ius

osci

llat

ion

and

ampl

itud

e o

f its

fre

­qu

ency

spe

ctru

m.

(b)

Sca

tter

ed p

ress

ure

puls

e an

d am

plit

ude

of

its

freq

uenc

y sp

ectr

um.

Fig

ure

2.10

: B

ubbl

e dr

iven

by

non-

dist

orte

d pr

essu

re p

ulse

at n

= 0

.5.

25

high

val

ue.

The

rad

ius

resp

onse

in F

ig. 2

.10(

a) is

a k

ind

of s

aw-t

ooth

sha

ped

puls

e w

here

th

e co

mpr

essi

on p

art i

s st

eepe

r th

an th

e ex

pans

ion

part

whi

ch re

sult

s in

a p

hase

ang

le 8

12

in t

he r

adiu

s re

spon

se t

hat i

s cl

ose

to -

1r

wit

h ou

r de

fini

tion

s.

Fig

. 2.

10(b

) di

spla

ys t

he s

catt

ered

pre

ssur

e pu

lse

from

the

bub

ble

whe

n dr

iven

by

the

non-

dist

orte

d dr

ive

pres

sure

whi

ch is

see

n to

be

nonl

inea

r.

Fro

m F

ig.

2.1

the

line

ar r

adiu

s re

spon

se w

hen

driv

ing

the

bubb

le a

t n

= 0

.5 i

s cl

ose

to 1

r

out o

f pha

se w

ith

the

driv

e pr

essu

re.

A s

econ

d ha

rmon

ic c

ompo

nent

in t

he d

rive

pre

ssur

e is

now

at

reso

nanc

e an

d fo

r th

is c

ase

the

line

ar r

adiu

s re

spon

se i

s ~

out

of

phas

e w

ith

the

driv

e pr

essu

re a

ccor

ding

to

Fig.

2.1

. G

oing

fro

m d

rive

pre

ssur

e to

rad

ius

osci

llat

ion,

th

e fu

ndam

enta

l co

mpo

nent

in t

he d

rive

pre

ssur

e, a

t n =

0.5

, is

shi

fted

app

roxi

mat

ely

7r,

the

seco

nd h

arm

onic

com

pone

nt in

the

dri

ve p

ress

ure,

at n

=

1, i

s sh

ifte

d ~.

whi

le t

he

phas

e re

lati

on b

etw

een

the

fund

amen

tal

and

the

seco

nd h

arm

onic

com

pone

nt o

f the

radi

us

osci

llat

ion,

81

2.

is c

lose

to -

1r

acco

rdin

g to

the

upp

er p

anel

of F

ig.

2.10

(a).

Set

ting

<!> 1

2

in t

he d

isto

rted

dri

ve p

ress

ure

equa

l to

-~

will

thu

s po

tent

iall

y ca

ncel

out

or

redu

ce t

he

inhe

rent

sec

ond

harm

onic

com

pone

nt in

the

low

er p

anel

of F

ig.

2.10

(a).

The

bub

ble

resp

onse

is n

ow c

alcu

late

d us

ing

the

sam

e fu

ndam

enta

l com

pone

nt in

the

driv

e pr

essu

re a

s in

Fig

. 2.

10 b

ut a

ddin

g a

seco

nd h

arm

onic

com

pone

nt w

hich

is 2

3 dB

bel

ow

the

fund

amen

tal

com

pone

nt a

nd w

here

<I> 1

2 is

equ

al to

-~.

R

adiu

s os

cill

atio

ns r

esul

ting

fr

om d

rivi

ng th

e bu

bble

wit

h su

ch a

dis

tort

ed p

ress

ure

puls

e is

sho

wn

in F

ig.

2.11

(a).

By

com

pari

ng w

ith

Fig.

2.1

0(a)

we

noti

ce t

hat

the

nonl

inea

rity

of

the

radi

us r

espo

nse

has

been

sig

nifi

cant

ly r

educ

ed w

hen

driv

en b

y th

e di

stor

ted

pres

sure

pul

se r

elat

ive

to w

hen

driv

en b

y th

e no

n-di

stor

ted

pres

sure

pul

se.

26

Pap

er A

'::bl\&

:J ;5

6/\/\

3 1.

8 2

2.2

2.4

2.6

2.8

3 3.

2 3.

4 3.

6 3.

8 1.

8 2

2.2

2.4

2.6

2.8

3 3.

2 3.

4 3.

6 3.

8 ~

~

·~tl

\~ ••

1 ·J .T

b :•

I 0

12

3

4 5

8 0

I 2

3 4

56

7

8 [W

lz)

[MI-

Iz]

(a)

Rad

ius

osci

llat

ion

and

ampl

itud

e o

f its

fre­

quen

cy s

pect

rum

. (b

) S

catt

ered

pre

ssur

e pu

lse

and

ampl

itud

e o

f its

fre

quen

cy s

pect

rum

.

Fig

ure

2.11

: B

ubbl

e dr

iven

by

dist

orte

d pr

essu

re p

ulse

at

D =

0.5

. S

econ

d ha

rmon

ic c

ompo

nent

in

driv

e pr

essu

re i

s 23

dB

bel

ow f

unda

men

tal

com

po­

nent

, w

hile

<!>

12 =

-~.

The

sca

tter

ed p

ress

ure

from

the

bubb

le is

dis

play

ed in

Fig

. 2.

11(b

) an

d by

com

pari

ng w

ith

Fig

. 2.

1 O

(b)

we

can

conc

lude

that

the

bubb

le re

spon

se is

muc

h le

ss n

onli

near

whe

n dr

iven

by

the

dis

tort

ed p

ress

ure

puls

e.

2.3.

3 D

rivi

ng t

he B

ubbl

e w

ith

the

Sim

ulat

ed T

rans

mit

Fie

ld

The

pre

viou

s se

ctio

n sh

owed

that

the

pres

ence

of

a sm

all s

econ

d ha

rmon

ic c

ompo

nent

in

the

pres

sure

pul

se d

rivi

ng th

e bu

bble

into

osc

illa

tion

s po

tent

iall

y ha

s a

maj

or d

imin

ishi

ng

effe

ct o

n th

e no

nlin

ear

scat

teri

ng p

rope

rtie

s o

f th

e bu

bble

. It

was

als

o se

en t

hat t

he p

hase

re

lati

on b

etw

een

the

fund

amen

tal

and

seco

nd h

arm

onic

com

pone

nt in

the

dri

ve p

ress

ure

was

of c

ruci

al i

mpo

rtan

ce.

The

obv

ious

que

stio

n is

the

refo

re i

f th

e ph

ase

rela

tion

s fo

und

in a

ctua

l tr

ansm

it f

ield

s ar

e su

ch th

at a

red

ucti

on o

f no

nlin

ear

scat

teri

ng f

rom

the

bub

ble

wil

l oc

cur

rela

tive

to

wha

t w

ould

be

obta

ined

if

the

seco

nd h

arm

onic

com

pone

nt i

n th

e tr

ansm

it f

ield

was

rem

oved

. In

our

inv

esti

gati

ons

here

we

are

goin

g to

use

the

aco

usti

c tr

ansm

it f

ield

obt

aine

d fr

om n

umer

ical

sim

ulat

ions

wit

h ou

r si

mul

atio

n pr

ogra

m f

or n

on­

line

ar w

ave

prop

agat

ion

[41]

, sh

own

in F

ig.

2.3,

to d

rive

the

con

tras

t bub

ble.

The

leve

l of

the

seco

nd h

arm

onic

com

pone

nt, s

how

n in

the

righ

t pan

el o

f the

figu

re,

is i

n th

e ne

ar-f

ield

to

o lo

w t

o ha

ve a

ny e

ffec

t on

the

sca

tter

ing

from

the

con

tras

t bub

ble

and

the

near

-fie

ld i

s he

nce

not i

nter

esti

ng in

the

pre

sent

con

text

.

The

cal

cula

ted

pres

sure

pul

se a

t 10

em

on

the

sym

met

ry a

xis

of t

he tr

ansm

it fi

eld

is s

how

n in

Fig

. 2.

12(a

). T

he s

olid

line

is t

he d

isto

rted

pre

ssur

e pu

lse

obta

ined

fro

m t

he s

imul

atio

n

2.3

Res

ults

<~:I

1 1.

5 2

2.5

3 3.

5 4

4.5

5 5

5

6 [J.

ts]

·1ll~

I 0

0.5

I 1.

5 2

2.5

3 3.

5 4

[Mllz

]

(a)

Dri

ve p

ress

ure

puls

es a

nd a

mpl

itud

e o

f th

eir

freq

uenc

y sp

ectr

a.

0.2

0.1

-0.1

-0.2

I

20

10

~ 0

-10

-200

1.5

2.5

3.5

[f.ls]

4.

5 5.

5

(b)

Sca

tter

ed p

ress

ure

puls

es a

nd a

mpl

itud

e o

f th

eir

freq

uenc

y sp

ectr

a.

Fig

ure

2.12

: S

olid

lin

es:

Cal

cula

ted

tran

smit

pre

ssur

e pu

lse

at 1

0 em

on

the

sym

met

ry a

xis

in F

ig.

2.3

(lef

t pa

nel)

and

res

ulti

ng s

catt

ered

pre

ssur

e pu

lse

(rig

ht p

anel

). D

ashe

d lin

es:

Fun

dam

enta

l com

pone

nt o

nly

of c

alcu

late

d tr

ans­

mit

pre

ssur

e pu

lse

at 1

0 em

on

sym

met

ry a

xis

in F

ig.

2.3

(lef

t pa

nel)

and

re

sult

ing

scat

tere

d pr

essu

re p

ulse

(ri

ght p

anel

).

27

prog

ram

whe

reas

the

das

hed

line

rep

rese

nts

the

fund

amen

tal

com

pone

nt o

nly

of

the

ob­

tain

ed d

isto

rted

pre

ssur

e pu

lse.

In

the

tim

e do

mai

n, i

n th

e up

per

pane

l o

f th

e fi

gure

, w

e se

e th

ere

is a

rat

her

smal

l di

ffer

ence

bet

wee

n th

e or

igin

al a

nd f

ilter

ed p

ulse

, w

here

as i

n th

e fr

eque

ncy

dom

ain,

in

the

low

er p

anel

, th

e gr

aphs

are

plo

tted

in

deci

bel

scal

e an

d th

e di

ffer

ence

is m

ore

clea

rly

seen

. In

Fig

. 2.

12(b

), t

he s

catt

ered

pre

ssur

e pu

lse

from

the

bub

ble

whe

n dr

iven

by

the

dis­

tort

ed a

nd th

e fi

ltere

d pu

lse

in F

ig. 2

.12(

a) is

dis

play

ed, s

olid

and

das

hed

line

, res

pect

ivel

y.

The

leve

l of

the

scat

tere

d fu

ndam

enta

l co

mpo

nent

is s

imil

ar f

or t

he t

wo

scat

tere

d pu

lses

w

hich

is n

atur

al s

ince

the

fun

dam

enta

l co

mpo

nent

in t

he t

wo

driv

e pu

lses

are

ide

ntic

al.

The

sec

ond

harm

onic

com

pone

nt s

catt

ered

fro

m t

he b

ubbl

e is

, ho

wev

er,

redu

ced

by a

p­pr

oxim

atel

y 3

dB w

hen

driv

en b

y th

e di

stor

ted

puls

e co

mpa

red

to w

hen

driv

en b

y th

e pu

lse

cont

aini

ng t

he f

unda

men

tal

com

pone

nt o

nly.

Loo

king

at

the

thir

d ha

rmon

ic c

om­

pone

nt s

catt

ered

fro

m t

he b

ubbl

e, w

e se

e th

at t

he r

educ

tion

in

scat

teri

ng i

s so

mew

hat

stro

nger

, th

e re

duct

ion

now

bei

ng a

roun

d 7

dB w

hen

driv

en b

y th

e to

tal d

isto

rted

pre

ssur

e pu

lse

rela

tive

to

whe

n dr

iven

by

the

fund

amen

tal

com

pone

nt o

nly.

The

sca

tter

ed f

ourt

h ha

rmon

ic c

ompo

nent

is

even

sli

ghtl

y m

ore

redu

ced

due

to t

he d

isto

rtio

n o

f th

e in

cide

nt

driv

e pu

lse

wit

h a

redu

ctio

n o

f abo

ut 9

dB

.

We

then

take

out

the

sim

ulat

ed p

ress

ure

puls

e at

12

em b

ut 8

mm

to th

e si

de o

f the

sym

me­

try

axis

of t

he tr

ansm

it fi

eld

and

this

pre

ssur

e pu

lse

is d

ispl

ayed

in F

ig. 2

.13(

a).

Aga

in, t

he

soli

d li

ne is

the

tota

l dis

tort

ed p

ress

ure

puls

e ob

tain

ed w

hile

the

dash

ed li

ne r

epre

sent

s th

e

28

Pap

er A

0.1

0.01

~ 0 0.2~

-0.1

--

0.01

--0.\~-:"1.5:---:-2 --

--;2:

'::-.5

-----:

Jo---

---:",

,:---c

-, -,:'::-

,,-,=--

-::,,:--

, _j6

[j.

!S]

·Jib

::: I

0 Q

5 1

1.5

2 25

3

5

4.5

5 [M

Hz]

(a)

Dri

ve p

ress

ure

puls

es a

nd a

mpl

itud

e o

f th

eir

freq

uenc

y sp

ectr

a.

~ -to

-20

-30

4.5

(b) S

catt

ered

pre

ssur

e pu

lses

and

am

plit

ude

of

thei

r fr

eque

ncy

spec

tra.

Fig

ure

2.13

: S

olid

lin

es:

Cal

cula

ted

tran

smit

pre

ssur

e pu

lse

at 1

2 em

but

8

mm

off

the

sym

met

ry a

xis

in F

ig.

2.3

(lef

t pa

nel)

and

res

ulti

ng s

catt

ered

pr

essu

re p

ulse

(ri

ght

pane

l).

Das

hed

lines

: F

unda

men

tal

com

pone

nt o

nly

of

calc

ulat

ed t

rans

mit

pre

ssur

e pu

lse

at 1

2 em

and

8 m

m o

ff s

ymm

etry

axi

s in

Fi

g. 2

.3 (

left

pan

el)

and

resu

ltin

g sc

atte

red

pres

sure

pul

se (

righ

t pan

el).

fund

amen

tal

com

pone

nt o

nly

of

the

calc

ulat

ed p

ress

ure.

In

the

tim

e do

mai

n, i

n th

e up

per

pane

l of t

he f

igur

e, t

he o

rigi

nal a

nd f

ilter

ed p

ulse

are

now

alm

ost i

ndis

ting

uish

able

due

to

the

low

lev

el o

f se

cond

har

mon

ic i

n th

e di

stor

ted

puls

e at

thi

s lo

catio

n. T

he d

iffe

renc

e in

sc

atte

red

pres

sure

fro

m t

he b

ubbl

e w

hen

driv

ing

it w

ith

the

dist

orte

d ve

rsus

the

filt

ered

pr

essu

re p

ulse

is, h

owev

er,

sign

ific

ant

as s

how

n in

Fig

. 2.

13(b

). A

s se

en f

rom

the

fig

ure,

th

e se

cond

har

mon

ic c

ompo

nent

is

now

hea

vily

red

uced

by

appr

oxim

atel

y 10

dB

whe

n ap

plyi

ng th

e di

stor

ted

driv

e pr

essu

re r

elat

ive

to a

pply

ing

the

fund

amen

tal c

ompo

nent

onl

y w

here

as t

he e

ffec

t on

the

scat

tere

d th

ird

harm

onic

com

pone

nt is

les

s si

gnif

ican

t.

In T

able

2.1

the

res

ults

obt

aine

d by

tak

ing

out

the

sim

ulat

ed t

rans

mit

pre

ssur

e pu

lse

at

vari

ous

loca

tion

s in

the

tran

smit

fiel

d in

Fig

. 2.

3 an

d ap

plyi

ng it

on

the

sam

e co

ntra

st b

ub­

ble

are

sum

mar

ized

. U

nles

s ot

herw

ise

note

d, p

ress

ure

driv

e pu

lses

fro

m t

he s

ymm

etry

ax

is a

re u

sed.

Thi

s ta

ble

show

s th

e re

duct

ion

of

nonl

inea

rly

scat

tere

d ha

rmon

ic c

ompo

­ne

nts

from

the

bub

ble

whe

n dr

iven

by

the

dist

orte

d tr

ansm

it p

ress

ure

puls

e re

lati

ve to

the

fu

ndam

enta

l com

pone

nt o

nly

of t

he tr

ansm

it p

ress

ure

puls

e. F

or th

e co

mbi

nati

on o

f tra

ns­

mit

fie

ld a

nd c

ontr

ast b

ubbl

e us

ed i

n th

e pr

esen

t pap

er,

redu

ctio

n o

f no

nlin

ear

scat

teri

ng

from

the

bub

ble

usin

g th

e di

stor

ted

driv

e pu

lse

vers

us f

unda

men

tal

com

pone

nt o

nly,

was

fo

und

to b

e in

sign

ific

ant u

sing

tra

nsm

it d

rive

pre

ssur

e pu

lses

in t

he l

ocat

ion

betw

een

the

tran

sduc

er a

nd d

own

to a

bout

6 e

m in

Fig

. 2.

3. D

own

to a

bout

2 o

r 3

em,

the

leve

l of

the

seco

nd h

arm

onic

com

pone

nt in

the

tra

nsm

it f

ield

is

too

low

to h

ave

any

sign

ific

ant e

ffec

t on

the

sca

tter

ing

from

the

con

tras

t bub

ble.

Bet

wee

n 3

and

6 em

, a

sign

ific

ant a

mou

nt o

f

2.4

Con

clus

ions

29

seco

nd h

arm

onic

bui

lds

up i

n th

e tr

ansm

it fi

eld,

as

seen

in th

e ri

ght p

anel

of

Fig.

2.3

, bu

t th

e ph

ase

angl

e <1>

12 be

twee

n th

e fu

ndam

enta

l an

d se

cond

har

mon

ic c

ompo

nent

is

such

th

at a

red

ucti

on o

f non

line

ar s

catt

erin

g fr

om t

he c

ontr

ast b

ubbl

e do

es n

ot o

ccur

. B

elow

6

em t

he e

ffec

t of

the

puls

e di

stor

tion

in

the

tran

smit

fie

ld i

s, h

owev

er,

sign

ific

ant

as s

een

from

Tab

le 2

.1.

At t

he s

ymm

etry

axi

s, t

he d

imin

ishi

ng e

ffec

t due

to t

he d

isto

rted

inc

iden

t dr

ive

puls

e on

the

non

line

ar s

catt

erin

g fr

om t

he b

ubbl

e is

mos

t se

vere

on

the

scat

tere

d th

ird

and

four

th h

arm

onic

com

pone

nts

whe

reas

the

sca

tter

ed s

econ

d ha

rmon

ic c

ompo

­ne

nt i

s re

duce

d by

2 o

r 3

dB.

Usi

ng d

rive

pul

ses

off

the

sym

met

ry a

xis,

we

see

that

the

di

min

ishi

ng e

ffec

t on

the

scat

tere

d se

cond

har

mon

ic c

ompo

nent

is s

tron

ger.

Tab

le 2

.1:

Red

uctio

n o

f sc

atte

red

cont

rast

har

mon

ic

com

pone

nts

due

to i

ncid

ent p

ulse

dis

tort

ion

2na

harm

onic

6

cm

2d

B

Scm

3

dB

lOcm

3

dB

1

2cm

2

dB

1

4cm

2

dB

8

em a

3 dB

1

0cm

a 4

dB

1

2cm

a 3

dB

14 e

m a

2d

B

lOcm

b

8d

B

12

cm b

10dB

14

em

b

6d

B

a 4

mm

off

sym

met

ry a

xis

b 8

mm

off

sym

met

ry a

xis

2.4

Con

clus

ions

3ra

harm

onic

4t

h ha

rmon

ic

3 dB

3

dB

5 dB

5

dB

7 dB

9

dB

8

dB

15

dB

4

dB

6

dB

4

dB

4

dB

8

dB

8

dB

12dB

7

dB

2d

B

3d

B

2d

B

Thi

s pa

per

has,

bas

ed o

n nu

mer

ical

sim

ulat

ions

, in

vest

igat

ed b

ubbl

e ra

dius

osc

illa

tion

s an

d sc

atte

red

pres

sure

pul

ses

from

a c

ontr

ast b

ubbl

e dr

iven

by

vari

ous

inci

dent

pre

ssur

e pu

lses

. R

esul

ts f

rom

usi

ng s

ever

al d

isto

rted

inc

iden

t pr

essu

re p

ulse

s ar

e co

mpa

red

wit

h th

e re

sult

s fr

om u

sing

the

fun

dam

enta

l co

mpo

nent

onl

y o

f th

e di

stor

ted

inci

dent

dri

ve

pres

sure

pul

ses.

The

dis

tort

ion

of th

e pr

essu

re p

ulse

inc

iden

t to

the

con

tras

t bu

bble

oc­

curs

due

the

the

nonl

inea

r na

ture

of

tissu

e el

asti

city

and

the

rel

ativ

e ph

ase

angl

e be

twee

n th

e fu

ndam

enta

l an

d se

cond

har

mon

ic c

ompo

nent

in t

he t

rans

mit

fie

ld i

s a

resu

lt o

f w

ave

diff

ract

ion.

A

cal

cula

ted

tran

smit

fie

ld f

rom

an

annu

lar

ultr

asou

nd t

rans

duce

r w

as o

b­ta

ined

usi

ng a

non

line

ar n

umer

ical

sim

ulat

ion

tool

dev

elop

ed i

n ou

r gr

oup.

D

rivi

ng a

30

Pap

er A

cont

rast

bub

ble

wit

h th

e di

stor

ted

tran

smit

fie

ld o

btai

ned

from

thi

s si

mul

atio

n pr

ogra

m

and

com

pari

ng t

he r

esul

ting

sca

tter

ing

wit

h th

e sc

atte

ring

obt

aine

d by

dri

ving

the

sam

e bu

bble

wit

h th

e fu

ndam

enta

l co

mpo

nent

onl

y o

f th

e ca

lcul

ated

tra

nsm

it f

ield

cle

arly

in­

dica

tes

that

the

rela

tive

ly s

mal

l di

stor

tion

int

rodu

ced

due

to n

onli

near

wav

e pr

opag

atio

n ha

s a

pote

ntia

lly

stro

ng d

imin

ishi

ng e

ffec

t on

the

non

line

ar s

catt

erin

g fr

om t

he c

ontr

ast

bubb

le.

In t

he t

rans

mit

nea

r-fi

eld,

the

pul

se d

isto

rtio

n is

typ

ical

ly v

ery

low

and

its

eff

ect

on t

he n

onli

near

sca

tter

ing

from

the

bub

ble

is f

ound

to

be n

egli

gibl

e.

How

ever

, in

the

fo

cal

regi

on a

nd e

spec

iall

y in

the

far

-fie

ld o

f th

e tr

ansm

it f

ield

, th

e di

stor

tion

of

the

pres

­su

re p

ulse

inc

iden

t to

the

bub

ble

is f

ound

to

have

a s

igni

fica

nt d

imin

ishi

ng e

ffec

t on

its

no

nlin

ear

scat

teri

ng p

rope

rtie

s.

The

dim

inis

hing

eff

ect,

due

to p

ulse

dis

tort

ion

caus

ed b

y no

nlin

ear

wav

e pr

opag

atio

n, o

n th

e sc

atte

red

seco

nd h

arm

onic

com

pone

nt f

rom

the

con

tras

t bu

bble

can

to

a la

rge

exte

nt

be e

xpla

ined

as

a li

near

pro

cess

, i.e

. se

para

tely

dri

ving

the

bub

ble

wit

h th

e fu

ndam

enta

l an

d se

cond

har

mon

ic c

ompo

nent

s o

f th

e di

stor

ted

inci

dent

dri

ve p

ulse

and

then

sum

min

g th

e tw

o sc

atte

red

cont

ribu

tion

s to

geth

er.

The

dim

inis

hing

eff

ects

on

the

scat

tere

d th

ird

and

four

th h

arm

onic

com

pone

nts

from

the

con

tras

t bub

ble

are,

how

ever

, no

nlin

ear.

2.5

Akn

owle

dgem

ets

Thi

s w

ork

was

sup

port

ed b

y th

e R

esea

rch

Cou

ncil

of N

orw

ay.

Ch

apte

r 3

Usi

ng

Bar

ker

Cod

es in

Con

tras

t H

arm

onic

Im

agin

g

Abs

trac

t

Rec

eive

d sc

atte

red

harm

onic

com

pone

nts

typi

call

y co

ntai

n le

ss e

nerg

y th

an t

he l

inea

rly

rece

ived

fun

dam

enta

l co

mpo

nent

and

, in

con

tras

t har

mon

ic i

mag

ing

tech

niqu

es,

the

lim

­it

ing

fact

or i

s of

ten

the

nois

e si

gnal

alw

ays

pres

ent

in a

pul

se e

cho

imag

ing

syst

em a

nd

not t

he m

aski

ng o

f the

con

tras

t sig

nal b

y th

e tis

sue

sign

al.

Puls

e co

mpr

essi

on te

chni

ques

, fa

mil

iar

from

rad

ar s

yste

ms

and

com

mun

icat

ion

theo

ry,

are

tech

niqu

es f

or i

ncre

asin

g th

e si

gnal

leve

l rel

ativ

e to

the

noi

se le

vel o

f the

pul

se e

cho

imag

ing

syst

em w

hich

is a

ssum

ed

to b

e co

nsta

nt a

nd e

venl

y di

stri

bute

d ov

er a

ll fr

eque

ncie

s o

f in

tere

st.

The

tra

nsm

itte

d si

gnal

lev

el i

s in

crea

sed

by t

rans

mit

ting

an

elon

gate

d pu

lse

and

not

by i

ncre

asin

g th

e tr

ansm

it a

mpl

itud

e. T

o re

stor

e ra

nge

reso

lutio

n, t

he r

esul

ting

rec

eive

d si

gnal

s m

ust

then

be

com

pres

sed.

Thi

s pa

per

inve

stig

ates

the

use

of B

arke

r cod

es, w

hich

are

a ty

pe o

f pul

se

com

pres

sion

cod

es,

and

thei

r po

tent

ial

to i

ncre

ase

the

sign

al l

evel

of

the

scat

tere

d th

ird

harm

onic

com

pone

nt fr

om c

ontr

ast b

ubbl

es r

elat

ive

to t

he c

onst

ant n

oise

leve

l.

3.1

Intr

oduc

tion

Med

ical

ult

raso

und

cont

rast

age

nts

are

used

to

enha

nce

the

ultr

asou

nd s

igna

l sc

atte

red

from

blo

od s

ince

ult

raso

und

scat

teri

ng f

rom

blo

od is

muc

h w

eake

r th

an s

catt

erin

g fr

om

soft

tis

sue.

T

he c

ontr

ast

agen

ts a

re t

ypic

ally

mad

e as

sol

utio

ns o

f sm

all

gas

bubb

les

in a

flu

id a

nd s

catt

erin

g fr

om s

uch

gas

bubb

les

is p

oten

tial

ly a

hig

hly

nonl

inea

r pr

o­ce

ss [

23]

[11]

[12

].

Ult

raso

und

wav

e pr

opag

atio

n is

als

o kn

own

to b

e a

nonl

inea

r pr

oces

s at

fre

quen

cies

and

32

Pap

erB

ampl

itud

es c

omm

only

use

d in

med

ical

ult

raso

und

imag

ing.

The

non

line

arit

y o

f th

e w

ave

prop

agat

ion

is,

how

ever

, si

gnif

ican

tly

wea

ker

than

for

the

sca

tter

ing

proc

ess

from

the

co

ntra

st b

ubbl

es,

and

cont

rast

har

mon

ic i

mag

ing

is t

hus

an i

nter

esti

ng i

mag

ing

tech

niqu

e si

nce

scat

teri

ng f

rom

tis

sue

is a

ssum

ed to

be

a li

near

pro

cess

.

In c

ontr

ast

harm

onic

im

agin

g, a

har

mon

ic b

and

of

the

fund

amen

tal

tran

smit

ted

band

is

used

for

bub

ble

dete

ctio

n. T

he s

catt

ered

con

tras

t si

gnal

is

mor

e di

stor

ted

than

the

sca

t­te

red

tiss

ue s

igna

l an

d by

usi

ng h

ighe

r ha

rmon

ic c

ompo

nent

s o

f th

e re

ceiv

ed s

igna

l fo

r im

age

reco

nstr

ucti

on,

one

wou

ld p

resu

mab

ly a

chie

ve b

ette

r di

ffer

enti

atio

n be

twee

n tis

­su

e si

gnal

and

con

tras

t si

gnal

. T

he a

mpl

itud

e o

f th

e re

ceiv

ed t

issu

e ha

rmon

ics

are

sig­

nifi

cant

ly l

ower

than

for

the

line

arly

rec

eive

d fu

ndam

enta

l co

mpo

nent

and

as

high

er h

ar­

mon

ics

are

cons

ider

ed,

this

am

plit

ude

drop

s st

eepl

y. T

he a

mpl

itud

e of

the

rece

ived

con

­tr

ast h

arm

onic

s ar

e al

so t

ypic

ally

low

er th

an f

or th

e re

ceiv

ed f

unda

men

tal c

ompo

nent

. A

s hi

gher

con

tras

t har

mon

ics

are

cons

ider

ed, t

he le

vel o

f the

am

plit

ude

usua

lly

falls

alt

houg

h no

t as

fast

as

for

the

tiss

ue h

arm

onic

s.

The

ult

raso

und

med

ical

im

agin

g sy

stem

is

a pu

lse

echo

im

agin

g sy

stem

suf

feri

ng f

rom

th

erm

al a

nd e

lect

roni

c no

ise

and,

as

high

er s

igna

l ha

rmon

ics

are

used

for

im

age

reco

n­st

ruct

ion,

the

leve

l of t

hese

har

mon

ics

wil

l be

com

para

ble

to t

he n

oise

leve

l of t

he s

yste

m

resu

ltin

g in

im

age

degr

adat

ion.

App

lica

tion

of

high

er h

arm

onic

com

pone

nts

impl

ies

re­

duce

d pe

netr

atio

n de

pth

due

to t

he f

requ

ency

dep

ende

nt a

bsor

ptio

n in

tis

sue

and

a re

duc­

tion

of t

he r

ecei

ved

harm

onic

sig

nal

ampl

itud

e fr

om t

he c

ontr

ast a

gent

.

If th

e no

ise

leve

l in

a pu

lse

echo

im

agin

g sy

stem

is a

ssum

ed to

be

cons

tant

, th

e on

ly w

ay

to i

ncre

ase

the

Sig

nal

to N

oise

Rat

io (

SNR

) is

by

incr

easi

ng t

he s

igna

l le

vel.

In m

edic

al

ultr

asou

nd i

mag

ing

the

tran

smit

ted

acou

stic

am

plit

ude

cann

ot b

e ar

bitr

aril

y hi

gh d

ue t

o pa

tien

t sa

fety

[8]

[5]

. A

lso,

the

bub

bles

ten

d to

get

des

troy

ed e

ven

duri

ng i

mag

ing

at

rela

tive

ly lo

w i

nten

siti

es s

o th

at th

e in

tens

ity

in th

e tr

ansm

it f

ield

mus

t be

kept

rel

ativ

ely

low

if b

ubbl

e de

stru

ctio

n is

unw

ante

d.

Pul

se c

ompr

essi

on te

chni

ques

, kno

wn

from

rad

ar s

yste

ms

and

com

mun

icat

ion

theo

ry,

have

the

abi

lity

to

impr

ove

the

SN

R w

itho

ut i

ncre

asin

g th

e pe

ak a

mpl

itud

e le

vels

tra

ns­

mitt

ed.

A p

ulse

of l

ong

dura

tion

com

pare

d to

a c

onve

ntio

nal t

rans

mit

pul

se is

tra

nsm

itte

d an

d th

e re

ceiv

ed e

cho

sign

al i

s pr

oces

sed

wit

h a

mat

ched

filt

er [

21,

Cha

pter

4.8

] [ 4

0,

Cha

pter

5.4

] to

ach

ieve

suf

fici

ent

rang

e re

solu

tion

. T

hese

tec

hniq

ues

intr

oduc

e ra

nge

side

lobe

art

ifac

ts w

hich

typ

ical

ly a

re i

nade

quat

e fo

r m

edic

al u

ltra

soun

d im

agin

g.

The

ra

nge

side

lobe

s ca

n, h

owev

er, b

e fu

rthe

r re

duce

d w

ith

deco

nvol

utio

n ty

pe f

ilter

s.

Bar

ker c

odes

[21

, C

hapt

er 6

.9]

are

a ty

pe o

f pul

se c

ompr

essi

on c

odes

whe

re a

long

pul

se

is m

ade

up o

f M

sub

puls

es w

hich

are

pha

se c

oded

and

whe

re t

he p

hase

of

the

subp

ulse

s is

eit

her

0 or

1r.

The

se c

odes

are

seq

uenc

es f

or w

hich

the

sid

elob

es o

f the

aut

ocor

rela

tion

fu

ncti

on d

o no

t exc

eed

1/ M

. O

nly

nine

suc

h co

des

exis

t, th

e lo

nges

t one

bei

ng o

f len

gth

M=

13.

Con

tras

t ha

rmon

ic i

mag

ing

usin

g th

e th

ird

harm

onic

com

pone

nt w

ill

typi

call

y gi

ve s

u­pe

rior

Con

tras

t to

Tis

sue

Rat

io (

CT

R)

but

infe

rior

Con

tras

t to

Noi

se R

atio

(C

NR

) w

hen

3.2

The

ory

33

com

pare

d to

sec

ond

harm

onic

con

tras

t im

agin

g. T

he C

TR

is b

ette

r du

e to

the

hig

h no

n­li

near

ity

of t

he s

catt

erin

g fr

om t

he c

ontr

ast b

ubbl

es c

ompa

red

to t

he w

eake

r no

nlin

eari

ty

of t

he w

ave

prop

agat

ion

in s

oft

tissu

e. C

NR

wil

l ge

nera

lly

be lo

wer

due

to

the

rela

tivel

y lo

wer

lev

el o

f re

ceiv

ed t

hird

har

mon

ics

from

the

bub

ble

assu

min

g th

e no

ise

leve

l to

be

cons

tant

ove

r th

e fr

eque

ncy

rang

e o

f int

eres

t. B

y us

ing

Bar

ker

code

s to

inc

reas

e th

e C

NR

at

the

rec

eive

d th

ird

harm

onic

com

pone

nt,

it m

ay b

e po

ssib

le t

o ac

hiev

e ad

equa

te C

NR

an

d C

TR

wit

h th

ird

harm

onic

con

tras

t age

nt i

mag

ing.

The

con

tras

t bub

bles

add

ed t

o th

e bl

ood

flow

will

, co

ntra

ry t

o th

e si

tuat

ion

in r

adar

sys

­te

ms

and

com

mun

icat

ion

theo

ry,

repr

esen

t a

nonl

inea

r, r

eson

ant,

and

unst

able

med

ium

fo

r sc

atte

ring

of

the

inci

dent

wav

es.

The

non

line

ar r

espo

nse

from

the

con

tras

t bu

bble

s,

util

ized

in c

ontr

ast h

arm

onic

imag

ing,

dep

ends

str

ongl

y on

the

ampl

itude

, fre

quen

cy,

and

enve

lope

of

the

inci

dent

pul

se.

Con

tras

t bub

bles

are

typ

ical

ly e

ncap

sula

ted

in a

thin

sta

­bi

lizi

ng s

hell

wit

h ac

oust

ic p

rope

rtie

s th

at m

ay b

e al

tere

d du

ring

ins

onif

icat

ion

by u

l­tr

asou

nd.

Due

to

the

pum

ping

of

the

hear

t m

uscl

e, t

he b

ubbl

es w

ill

have

tim

e va

ryin

g ve

loci

ties.

In

add

ition

, th

ere

may

be

inte

ract

ions

bet

wee

n th

e bu

bble

s an

d th

e in

cide

nt

wav

e fi

eld

wil

l im

pose

a r

adia

tion

for

ce o

n th

e bu

bble

s w

ith a

res

ulti

ng t

ime

vary

ing

ve­

loci

ty i

n th

e pr

opag

atio

n di

rect

ion

of

the

field

. T

he p

rese

nt p

aper

wil

l tr

y to

inv

estig

ate

som

e of

thes

e in

dica

ted

effe

cts

in r

elat

ion

to t

he a

ppli

cati

on o

f B

arke

r co

des

in c

ontr

ast

harm

onic

imag

ing.

3.2

The

ory

3.2.

1 O

verv

iew

The

mot

ivat

ion

for

intr

oduc

ing

puls

e co

mpr

essi

on te

chni

ques

in

cont

rast

har

mon

ic im

ag­

ing

is a

nee

d to

inc

reas

e th

e C

NR

, esp

ecia

lly

at th

e th

ird

or h

ighe

r ha

rmon

ic c

ompo

nent

s.

Dec

onvo

luti

on o

f th

e re

ceiv

ed s

igna

l ca

n be

don

e us

ing

a m

odif

ied

inve

rse

filte

r w

here

th

e de

conv

olut

ion

kern

el f

or e

xam

ple

is b

ased

sol

ely

on a

bin

ary

Bar

ker

sequ

ence

. T

his

deco

nvol

utio

n op

erat

ion

on th

e re

ceiv

ed s

igna

l is

nece

ssar

y to

res

tore

the

rang

e re

solu

tion

w

hich

is

lost

whe

n tr

ansm

itti

ng a

n el

onga

ted

puls

e. T

he i

dea

behi

nd p

ulse

com

pres

sion

te

chni

ques

is t

o in

crea

se th

e S

NR

by

incr

easi

ng th

e si

gnal

leve

l tra

nsm

itte

d an

d as

sum

ing

the

nois

e le

vel

to b

e co

nsta

nt.

The

tra

nsm

itte

d si

gnal

lev

el i

s in

crea

sed

by t

rans

mit

ting

an

elo

ngat

ed p

ulse

and

not

by

incr

easi

ng t

he a

mpl

itud

e le

vel

tran

smit

ted.

Wit

h no

ise

we

here

mea

n no

ise

unco

rrel

ated

wit

h th

e tr

ansm

itte

d si

gnal

suc

h as

the

rmal

and

ele

ctro

nic

nois

e.

34

~t I :

:1

1· j

-1,'---~, --~10---cl'o-5 --

'---=

-,,--

--"c

,,---

---_

__J,,

[).

1.5]

"FBB

EE

0.1

~ 0

-11.

1

..-{),2 o

5 10

15

20

25

30

(J.

I.SJ

Pap

erB

Fig

ure

3.1:

Upp

er p

anel

: F

our b

it b

inar

y B

arke

r seq

uenc

e. L

ower

pan

el:

Tra

nsm

itte

d fo

ur

bit B

arke

r se

quen

ce.

3.2.

2 B

arke

r C

odes

The

Bar

ker

code

s ar

e pu

lse

com

pres

sion

cod

es,

mad

e up

of

M c

onti

guou

s su

bpul

ses,

w

hich

are

mod

ulat

ed i

n ph

ase.

T

he p

hase

mod

ulat

ion

is e

ithe

r 0

or 1

r an

d th

e co

de i

s a

bina

ry s

eque

nce

taki

ng v

alue

s 1

and

-1.

The

upp

er p

anel

of F

ig.

3.1

show

s an

exa

mpl

e of

a

four

bit

Bar

ker c

ode

whe

re th

e th

ird

bit h

as a

pha

se s

hift

of 1

r re

lati

ve to

the

othe

rs.

In t

he

low

er p

anel

, an

exam

ple

of a

tran

smit

ted

four

bit

Bar

ker c

ode

is s

how

n, a

nd th

e bi

nary

fou

r bi

t cod

e ha

s th

en b

een

conv

olve

d w

ith

a co

nven

tion

al tr

ansm

it p

ulse

. A

s ca

n be

see

n, t

he

indi

vidu

al s

ubpu

lses

in

the

Bar

ker

sequ

ence

hav

e be

en s

omew

hat s

epar

ated

in t

ime.

Thi

s is

don

e to

ade

quat

ely

sepa

rate

the

con

tras

t ech

os f

rom

eac

h su

bpul

se s

ince

the

sca

tter

ing

from

con

tras

t bu

bble

s is

a h

ighl

y no

nlin

ear

proc

ess

and

the

prin

cipl

e o

f su

perp

osit

ion

is

ther

efor

e no

t val

id. If

the

rece

ived

sig

nal,

obta

ined

usi

ng th

e co

nven

tion

al tr

ansm

it p

ulse

, is

def

ined

as

r 1(t

) =

s(t

) +

n(t)

(3

.1)

whe

re s

(t)

is t

he s

um o

f th

e ti

ssue

sig

nal

and

cont

rast

sig

nal

and

n(t

) is

the

noi

se s

igna

l du

e to

the

rmal

and

ele

ctro

nic

nois

e, t

he s

igna

l re

ceiv

ed w

hen

tran

smit

ting

the

elo

ngat

ed

Bar

ker c

ode,

is

r 2(t

) =

b(t)

* s(

t) +

n(t)

(3

.2)

whe

re b

( t) i

s th

e bi

nary

Bar

ker c

ode.

Her

e, t

he a

ster

isk

deno

tes

the

conv

olut

ion

oper

atio

n.

The

rec

eive

d si

gnal

r2(t

) m

ust

be p

roce

ssed

wit

h a

deco

nvol

utio

n fi

lter

to r

esto

re r

ange

re

solu

tion

. In

the

nois

e fr

ee c

ase,

app

lyin

g th

e in

vers

e fi

lter

1 H

r(f)

= B

(f)

(3.3

)

whe

re B

(f)

is t

he F

ouri

er T

rans

form

of

b(t),

wou

ld p

rodu

ce th

e sa

me

sign

al a

s ob

tain

ed

usin

g th

e co

nven

tion

al t

rans

mit

pul

se.

In a

rea

l si

tuat

ion

whe

re n

oise

is

a pa

rt o

f th

e

3.3

Num

eric

al R

esul

ts

35

rece

ived

sig

nal,

this

inve

rse

filte

r w

ould

, ho

wev

er,

caus

e a

larg

e am

plif

icat

ion

of t

he n

oise

si

gnal

at

freq

uenc

ies

whe

re j

B(f

)j i

s lo

w.

To c

ompe

nsat

e fo

r th

is u

nwan

ted

effe

ct w

e m

ay u

se a

sta

bili

zed

inve

rse

filte

r in

stea

d. T

his

deco

nvol

utio

n fi

lter

take

s th

e fo

rm

H

-B

*(f)

w

(f)

-jB

(f)j

2 +

maxJ~

(J)J2

(3.4

)

whe

re B

*(f)

is

the

com

plex

con

juga

te o

f B

(f),

and

N i

s a

nois

e pa

ram

eter

, w

hile

the

te

rm m

axJ~

(J)J

2

can

be t

houg

ht o

f as

the

inv

erse

of

the

SN

R o

f th

e sy

stem

. T

his

filte

r is

si

mil

ar to

the

opti

mal

Wie

ner

filte

r [1

, Cha

pter

8.1

] [3

2, C

hapt

er 8

.5]

obta

ined

per

form

ing

a le

ast-

squa

res

deri

vatio

n. W

e se

e th

at i

f N i

s la

rge

com

pare

d to

jB

(f) I

the

filte

r is

sim

ilar

to

the

inv

erse

filt

er i

n E

q. 3

.3.

On

the

othe

r ha

nd,

as N

is

redu

ced

the

filte

r w

ill

appr

oach

B*(

f)

HM

(f)

= N

ma

xjB

(f)j

2

(3.5

)

whi

ch is

the

mat

ched

filt

er c

omm

only

use

d in

rad

ar im

agin

g [2

1, C

hapt

er 4

.8]

[40,

Cha

p­te

r5.4

].

3.2.

3 B

ubbl

e O

scill

atio

n

The

con

tras

t bu

bble

is

assu

med

to

be a

sph

eric

al b

ubbl

e of

gas

enc

apsu

late

d in

a t

hin

shel

l. T

he d

iam

eter

of

the

bubb

le i

s m

uch

less

tha

n th

e w

avel

engt

h o

f th

e in

com

ing

wav

e fi

eld

and

the

bubb

le t

hus

expe

rien

ces

an a

ppro

xim

atel

y sp

atia

l un

ifor

m f

ield

and

th

e bu

bble

osc

illa

tion

is

assu

med

to

be p

urel

y sp

heri

cal.

Sim

ulat

ions

for

bub

ble

radi

us

osci

llat

ions

and

aco

usti

c sc

atte

ring

are

don

e us

ing

the

num

eric

al m

odel

dev

elop

ed b

y A

ngel

sen

et a

l [4

]. T

his

mod

el i

nclu

des

an e

quat

ion

for

the

rela

tion

bet

wee

n pr

essu

re

and

radi

al s

trai

n in

a th

in s

hell

enc

apsu

lati

ng a

gas

bub

ble.

The

mod

el a

llow

s fo

r a

fini

te

spee

d o

f so

und

in t

he m

ediu

m s

urro

undi

ng t

he b

ubbl

e, t

hus

taki

ng r

adia

tion

los

ses

from

th

e bu

bble

int

o ac

coun

t. O

ther

wis

e it

is

com

para

ble

to t

he w

ell

know

n R

ayle

igh-

Ple

sset

eq

uati

on [3

3] [

31]

and

the

two

mod

els

give

sim

ilar

resu

lts

for

inci

dent

pre

ssur

e am

plit

udes

an

d bu

bble

par

amet

ers

stud

ied

in t

his

pape

r.

3.3

Num

eric

al R

esul

ts

3.3.

1 N

oise

Fre

e Se

quen

ce w

itho

ut H

arm

onic

Com

pone

nts

If a

nois

e fr

ee B

arke

r se

quen

ce,

as s

how

n in

the

low

er p

anel

of F

ig. 3

.1, i

s pr

oces

sed

wit

h th

e st

abil

ized

inve

rse

filte

r in

Eq.

3.4

, the

rang

e si

delo

be le

vel o

f the

com

pres

sed

sequ

ence

ca

n be

set

arb

itra

rily

by

choo

sing

the

para

met

er N

. A

low

ran

ge s

idel

obe

leve

l is

esse

ntia

l in

med

ical

ult

raso

und

imag

ing

whe

re t

he d

ispl

ayed

dyn

amic

ran

ge i

s la

rge

to e

nsur

e th

e

36 (a

) Si

delo

bes

afte

r pu

lse

com

pres

sion

.

Pap

erB

(b)

Wid

th o

f m

ainl

obe

afte

r pu

lse

com

pres

­si

on.

Fig

ure

3.2:

Lef

t pa

nel:

Exa

mpl

e o

f a

nois

e fr

ee c

ompr

esse

d se

quen

ce w

here

B

(f)

is n

orm

aliz

ed to

1 a

nd N

in

Eq.

3.4

is s

et to

103

. R

ight

pan

el:

Abs

olut

e va

lue

of o

ne o

f the

sub

puls

es in

the

Bar

ker

sequ

ence

sho

wn

in th

e lo

wer

pan

el

in F

ig.

3.1

(sol

id l

ine)

. R

ange

mai

nlob

e af

ter

deco

nvol

utio

n o

f th

e B

arke

r se

quen

ce i

n th

e lo

wer

pan

el i

n F

ig.

3.1

wit

h th

e st

abil

ized

inv

erse

filt

er i

n E

q. 3

.4 (

dash

ed li

ne).

abil

ity

to s

epar

ate

stro

ng a

nd w

eak

scat

tere

rs.

Fig.

3.2

(a)

show

s an

exa

mpl

e w

here

B(f

) is

nor

mal

ized

to

1 an

d th

e pa

ram

eter

N h

as b

een

set

to 1

03 an

d th

e ra

nge

side

lobe

lev

el

in t

he c

ompr

esse

d no

ise

free

seq

uenc

e is

thu

s do

wn

at 6

0 dB

.

The

wid

th o

f th

e ra

nge

mai

nlob

e in

the

com

pres

sed

sequ

ence

is a

lso

an i

mpo

rtan

t par

am­

eter

and

sho

uld

be a

s sm

all

as p

ossi

ble

to e

nsur

e go

od r

ange

res

olut

ion

in t

he u

ltra

soun

d im

age.

T

he w

idth

of

the

mai

nlob

e is

giv

en b

y th

e le

ngth

of

the

indi

vidu

al s

ubpu

lses

in

the

tran

smit

ted

Bar

ker

sequ

ence

as

show

n in

Fig

. 3.

2(b)

. H

ere,

the

sol

id l

ine

is t

he a

b­so

lute

val

ue o

f one

of

the

subp

ulse

s in

the

low

er p

anel

of F

ig.

3.1,

whi

le t

he d

ashe

d li

ne

depi

cts

the

rang

e m

ainl

obe

obta

ined

aft

er d

econ

volu

tion

wit

h th

e st

abil

ized

inve

rse

filte

r in

Eq.

3.4

. W

e ob

serv

e th

at t

he m

ainl

obe

of

the

com

pres

sed

sequ

ence

is

equa

l to

the

en

velo

pe o

f the

sub

puls

es p

roce

ssed

by

the

stab

iliz

ed in

vers

e fil

ter.

In a

typi

cal

med

ical

ult

raso

und

cont

rast

imag

ing

situ

atio

n th

ere

are

seve

ral

effe

cts

whi

ch

pote

ntia

lly

wil

l inc

reas

e th

e ra

nge

side

lobe

leve

l sho

wn

in F

ig.

3.2(

a).

We

wil

l now

try

to

inve

stig

ate

som

e of

the

pres

umab

ly m

ost i

mpo

rtan

t eff

ects

.

3.3

Nu

mer

ical

Res

ults

37

3.3.

2 P

rese

nce

of S

ever

al H

arm

onic

s in

Sig

nal f

or P

roce

ssin

g

Ult

raso

und

scat

teri

ng f

rom

the

con

tras

t bub

bles

is h

ighl

y no

nlin

ear

and

the

rece

ived

con

­tr

ast

agen

t si

gnal

wil

l co

ntai

n en

ergy

in

seve

ral

harm

onic

ban

ds.

Alt

houg

h it

is p

ossi

ble

to u

se t

he i

ndic

ated

pul

se c

ompr

essi

on t

echn

ique

wit

hout

ban

dpas

s fi

lteri

ng,

i.e.

on t

he

tota

l re

ceiv

ed s

igna

l, th

is i

s no

t at

trac

tive

in

cont

rast

age

nt i

mag

ing

sinc

e th

e st

rong

fun

­da

men

tal

com

pone

nt s

catt

ered

fro

m t

he t

issu

e w

ould

mas

k th

e si

gnal

sca

tter

ed f

rom

the

co

ntra

st a

gent

. U

sing

thi

s fo

rm o

f ph

ase

codi

ng o

n th

e re

ceiv

ed s

econ

d ha

rmon

ic c

ompo

nent

wou

ld

not y

ield

goo

d re

sult

s as

can

be

seen

fro

m t

he f

ollo

win

g eq

uati

on

00

s(t)

= L

::>

n(t)

pn(t

-T)

(3

.6)

n=

l

whe

re a

n(t)

are

posi

tive

am

plit

ude

func

tion

s an

d w

here

the

rece

ived

sig

nal,

s(t)

, is

mod

­el

ed b

y a

sim

ple

pow

er e

xpan

sion

of

the

tran

smit

ted

puls

e, p

(t),

wit

h a

tim

e de

lay

T.

We

obse

rve

that

the

sec

ond

harm

onic

com

pone

nt is

a q

uadr

atic

eff

ect o

f th

e tr

ansm

itte

d si

gnal

and

pha

se c

odin

g w

ith

Bar

ker

sequ

ence

s, w

here

the

tra

nsm

itte

d se

quen

ce is

pha

se

code

d w

ith

1r, ut

iliz

ing

the

seco

nd o

r an

y ot

her

even

har

mon

ic c

ompo

nent

of t

he r

ecei

ved

sign

al i

s no

t fr

uitf

ul.

Usi

ng t

his

puls

e co

mpr

essi

on t

echn

ique

on

the

rece

ived

thi

rd h

ar­

mon

ic c

ompo

nent

is,

how

ever

, in

tere

stin

g. T

he th

ird

harm

onic

com

pone

nt f

rom

tis

sue

is,

as p

revi

ousl

y in

dica

ted,

low

whe

n im

agin

g w

ith

rela

tive

ly l

ow i

nten

sity

, w

hile

the

thi

rd

harm

onic

com

pone

nt fr

om t

he c

ontr

ast a

gent

is c

onsi

dera

ble

due

to t

he h

igh

nonl

inea

rity

o

f th

e ul

tras

ound

sca

tter

ing

from

gas

bub

bles

.

Usi

ng t

he s

catt

ered

thir

d ha

rmon

ic c

ompo

nent

mea

ns t

hat

a th

ird

harm

onic

ban

dpas

s fil

­te

r m

ust

be a

ppli

ed o

n th

e re

ceiv

ed s

igna

l in

add

itio

n to

the

sta

bili

zed

inve

rse

filte

r in

E

q. 3

.4.

The

upp

er p

anel

of F

ig.

3.3

show

s an

exa

mpl

e of

a f

our

bit B

arke

r co

de c

onsi

st­

ing

of

thre

e ha

rmon

ic c

ompo

nent

s ac

cord

ing

to E

q. 3

.6,

and

in t

he l

ower

pan

el w

e se

e th

e ab

solu

te v

alue

of

the

Fou

rier

tran

sfor

m o

f th

e ti

me

sequ

ence

in

the

uppe

r pa

nel.

The

sp

ecia

l ap

pear

ance

of

the

thre

e ha

rmon

ic c

ompo

nent

s in

fre

quen

cy d

omai

n is

a r

esul

t o

f th

e co

mbi

ng e

ffec

t int

rodu

ced

by t

he B

arke

r se

quen

ce.

The

thir

d ha

rmon

ic c

ompo

nent

of t

he s

eque

nce

is o

btai

ned

wit

h a

thir

d ha

rmon

ic b

andp

ass

filte

r an

d th

e st

abil

ized

inv

erse

filt

er i

s th

en a

ppli

ed t

o co

mpr

ess

the

code

. R

esul

ts u

sing

tw

o di

ffer

ent b

andw

idth

s in

the

thi

rd h

arm

onic

ban

dpas

s fi

lter

are

show

n in

Fig

. 3.

4. T

he

soli

d li

ne i

s th

e id

eal

com

pres

sed

code

obt

aine

d fo

r an

im

agin

ed c

ase

whe

n th

ere

is n

o fu

ndam

enta

l or

sec

ond

harm

onic

com

pone

nt p

rese

nt in

the

rece

ived

sig

nal,

i.e.

only

a3(t

) is

dif

fere

nt f

rom

zer

o in

Eq.

3.6

. T

he d

otte

d li

ne i

s ob

tain

ed u

sing

a t

hird

har

mon

ic

Gau

ssia

n fi

lter

wit

h a

-6 d

B b

andw

idth

equ

al t

o 0.

4 M

Hz

(nar

row

band

) on

the

sig

nal

in

Fig

. 3.

3, w

hile

the

das

hed

line

is

obta

ined

usi

ng a

sim

ilar

filt

er w

ith

a -6

dB

ban

dwid

th

equa

l to

0.85

MH

z (b

road

band

) on

the

sam

e si

gnal

. F

or th

e da

shed

line

, the

ran

ge s

ide l

obe

leve

l has

incr

ease

d si

gnif

ican

tly

com

pare

d to

the

idea

l sit

uati

on w

hen

ther

e is

onl

y a

thir

d ha

rmon

ic c

ompo

nent

pre

sent

in th

e to

tal

sign

al.

The

reas

on is

an

over

lap

from

the

sec

ond

38

"'H

llj

0.2

0.1 0

-0.1

-o.2 o

5 10

15

20

25

30

[J

.ls]

·!.l :U~

M~~.~:

I 0

0.5

1 1.

5 2

2.5

3 3.

5 4

{MH

z]

Pap

erB

Fig

ure

3.3:

U

pper

pan

el:

Fou

r bi

t B

arke

r se

quen

ce c

onsi

stin

g o

f th

ree

harm

onic

com

­po

nent

s ac

cord

ing

to E

q. 3

.6.

Low

er p

anel

: A

bsol

ute

valu

e of

Fou

rier

tra

nsfo

rm o

f th

e se

quen

ce in

the

uppe

r pa

nel.

harm

onic

com

pone

nt i

nto

the

thir

d ha

rmon

ic b

and

proc

esse

d by

the

sta

bili

zed

inve

rse

filte

r. Thi

s ov

erla

p in

fre

quen

cy i

s se

en i

n Fi

g. 3

.5 w

hich

dis

play

s th

e ab

solu

te v

alue

of

the

Fou

rier

Tra

nsfo

rm o

f on

e o

f th

e su

bpul

ses

in t

he u

pper

pan

el o

f Fi

g. 3

.3.

Whe

n us

ing

the

broa

dban

d th

ird

harm

onic

ban

dpas

s fi

lter

(dot

ted

line

wit

h ci

rcle

s) t

he l

evel

of

seco

nd h

arm

onic

(da

shed

line

) in

the

pass

band

of t

he f

ilter

is m

uch

high

er th

an w

hen

the

narr

owba

nd t

hird

har

mon

ic b

andp

ass

filte

r (d

otte

d lin

e w

ith

diam

onds

) is

app

lied.

T

he

pres

ence

of

a se

cond

har

mon

ic c

ompo

nent

in t

he s

igna

l fed

to

the

stab

iliz

ed in

vers

e fi

lter

easi

ly in

crea

ses

the

rang

e si

delo

bes,

as

seen

fro

m F

ig.

3.4,

due

to th

e fa

ct t

hat t

his

seco

nd

harm

onic

com

pone

nt is

not

pha

se c

oded

as

prev

ious

ly e

xpla

ined

. W

hen

the

narr

owba

nd

filte

r is

use

d w

e se

e fr

om F

ig.

3.4

that

the

inc

reas

e in

ran

ge s

idel

obes

is

not

so d

rast

ic.

App

lyin

g th

e na

rrow

band

filt

er t

here

is,

how

ever

, a

sign

ific

ant

incr

ease

in

the

wid

th o

f th

e m

ainl

obe

whi

ch w

ill d

egra

de r

ange

res

olut

ion

and

henc

e th

e ab

ility

to s

epar

ate

targ

ets

whi

ch a

re c

lose

.

3.3.

3 E

ffec

t of A

cous

tic

Pow

er A

bsor

ptio

n

Bot

h th

e fo

rwar

d pr

opag

atin

g tr

ansm

it p

ulse

and

the

sca

tter

ed p

ulse

s fr

om t

he c

ontr

ast

bubb

les

prop

agat

ing

back

to

the

ultr

asou

nd t

rans

duce

r w

ill b

e m

odif

ied

by a

fre

quen

cy

depe

nden

t ab

sorp

tion

in t

he t

issu

e. T

his

freq

uenc

y de

pend

ent

abso

rptio

n w

ill,

depe

ndin

g o

f nu

mbe

r of

wav

e le

ngth

s pr

opag

ated

, sh

ift

the

scat

tere

d pu

lses

som

ewha

t dow

n in

fre

­qu

ency

. In

the

low

er p

anel

of

Fig.

3.6

, it

is

show

n ho

w t

he n

orm

aliz

ed t

hird

har

mon

ic

com

pone

nt o

f a

subp

ulse

aff

ecte

d by

an

abso

rpti

on o

f 10

dB

/MH

z (d

ashe

d li

ne)

may

ap­

pear

com

pare

d to

one

not

aff

ecte

d by

abs

orpt

ion

(sol

id li

ne).

The

upp

er p

anel

of F

ig.

3.6

3.3

Nu

mer

ical

Res

ult

s

-10

-20

-30

~._-4(

1 ' I I

\ I

I \

I I

-50

I I I

-<0

I' \

I I I

I I

I I I

{I"]

('\

/\

I I

: I

I I I I I I

~··.,

!'"J

I'

I'

I I I I I ,!

39

Fig

ure

3.4:

Eff

ect

of b

andw

idth

in t

he t

hird

har

mon

ic b

andp

ass

filte

r on

ran

ge s

idel

obe

leve

ls a

nd w

idth

of

mai

nlob

e.

Sol

id l

ine

is t

he r

esul

ts a

fter

pul

se c

ompr

essi

on f

or t

he

idea

l ca

se w

itho

ut a

fun

dam

enta

l or

sec

ond

harm

onic

com

pone

nt p

rese

nt i

n th

e or

igin

al

sequ

ence

. T

he d

ashe

d li

ne is

obt

aine

d us

ing

the

broa

dban

d th

ird

harm

onic

Gau

ssia

n fi

lter

on t

he s

eque

nce

in F

ig.

3.3

whi

le t

he d

otte

d li

ne i

s ob

tain

ed u

sing

the

nar

row

band

thi

rd

harm

onic

Gau

ssia

n fi

lter

on th

e sa

me

sequ

ence

.

w,--.---r~-o---.---.--~~.o=·bro=,d~~~.,~~~~

35

25

20

~ 15

10

-5

' '

' \

I \

I \

I I

I \ I

·~·narrowband

filter

Fig

ure

3.5:

Pul

se c

onsi

stin

g of

thre

e ha

rmon

ic b

ands

, se

cond

har

mon

ic b

and

disp

laye

d as

das

hed

line.

Thi

rd h

arm

onic

Gau

ssia

n fi

lters

, br

oadb

and

and

narr

owba

nd,

dott

ed l

ine

wit

h ci

rcle

s an

d do

tted

line

wit

h di

amon

ds, r

espe

ctiv

ely.

40

Pap

erB

~:~

-I U

7 ~

I U

9

~

W

=

""'

Fig

ure

3.6:

Upp

er p

anel

: N

orm

aliz

ed a

bsol

ute

valu

e o

f F

ouri

er t

rans

form

of

Bar

ker

se­

quen

ce n

ot a

ffec

ted

by a

bsor

ptio

n (s

olid

line

) an

d af

fect

ed b

y an

abs

orpt

ion

of

10 d

B/M

Hz

(das

hed

line)

. L

ower

pan

el:

Nor

mal

ized

thi

rd h

arm

onic

com

pone

nt o

f on

e o

f th

e su

b­pu

lses

in a

Bar

ker

sequ

ence

not

aff

ecte

d by

abs

orpt

ion

(sol

id li

ne)

and

one

affe

cted

by

an

abso

rpti

on o

f 10

dB

/MH

z (d

ashe

d li

ne).

depi

cts

the

abso

lute

val

ue o

f the

Fou

rier

tran

sfor

m o

f the

Bar

ker s

eque

nces

bef

ore

the

thir

d ha

rmon

ic f

ilter

is

appl

ied

whe

re t

he s

olid

line

is t

he o

rigi

nal s

eque

nce

and

the

dash

ed li

ne

is t

he s

eque

nce

affe

cted

by

abso

rpti

on.

The

tw

o se

quen

ces

have

bee

n no

rmal

ized

to t

he

sam

e m

axim

um v

alue

.

In F

ig.

3.7

the

resu

lts

afte

r ap

plyi

ng t

he s

tabi

lize

d in

vers

e fi

lter

on t

he o

rigi

nal

sequ

ence

no

t af

fect

ed b

y ab

sorp

tion

and

on

the

one

affe

cted

by

an a

bsor

ptio

n o

f 10

dB

/MH

z ar

e sh

own.

The

upp

er p

anel

is f

or th

e ca

se w

hen

the

broa

dban

d th

ird

harm

onic

Gau

ssia

n fi

lter

is u

sed

whi

le th

e lo

wer

pan

el s

how

s re

sult

s ob

tain

ed u

sing

the

narr

owba

nd th

ird

harm

onic

ba

ndpa

ss f

ilter

. W

e se

e th

at w

hen

appl

ying

the

narr

owba

nd a

nd b

road

band

thir

d ha

rmon

ic

band

pass

filt

er,

the

freq

uenc

y de

pend

ent

abso

rpti

on i

ncre

ases

the

ran

ge s

idel

obe

leve

l by

ar

ound

3 a

nd 8

dB

, re

spec

tivel

y.

3.3.

4 B

ubbl

e Si

gnal

with

Inf

init

e C

NR

The

upp

er p

anel

of

Fig.

3.8

sho

ws

the

scat

tere

d pr

essu

re p

ulse

fro

m a

bub

ble

wit

h re

so­

nanc

e fr

eque

ncy

arou

nd 4

MH

z w

hen

driv

en b

y th

e ac

oust

ic p

ress

ure

puls

e in

the

low

er

pane

l of F

ig.

3.1

whi

ch h

as a

cen

ter

freq

uenc

y o

f 1

MH

z.

In t

he l

ower

pan

el o

f Fig

. 3.

8,

the

abso

lute

val

ue o

f th

e F

ouri

er T

rans

form

of

the

sequ

ence

in

uppe

r pa

nel

is d

ispl

ayed

an

d th

e sc

atte

red

pres

sure

pul

se i

s cl

earl

y se

en t

o co

ntai

n en

ergy

at

seve

ral

harm

onic

ba

nds.

The

thi

rd h

arm

onic

com

pone

nt o

f th

e sc

atte

red

pres

sure

pul

se i

s ob

tain

ed u

sing

th

e tw

o ha

rmon

ic G

auss

ian

filte

rs f

rom

Fig

. 3.

5 an

d th

e fi

ltere

d se

quen

ces

are

proc

esse

d

3.3

Num

eric

al R

esul

ts

41

Fig

ure

3.7:

E

ffec

t o

f ab

sorp

tion

on

rang

e si

delo

be l

evel

. S

olid

lin

e is

obt

aine

d fr

om

the

orig

inal

seq

uenc

e w

hile

the

das

hed

line

is o

btai

ned

from

the

seq

uenc

e af

fect

ed b

y an

abs

orpt

ion

of 1

0 dB

/MH

z.

Upp

er p

anel

: T

he b

road

band

Gau

ssia

n th

ird

harm

onic

ba

ndpa

ss f

ilter

has

bee

n ap

plie

d. L

ower

pan

el:

The

nar

row

band

thir

d ha

rmon

ic G

auss

ian

filte

r ha

s be

en a

pplie

d. O.

Q2tt±

ffi

O.o

! 0

--0.

01

-0.0

2

-0.0

3

-0.0

40,._

__._

----

-'c-, --~10'-------':-15 -

'----":,,---'-:,~-----:',.

'"''

·J ~~~

M~.~J.

1 0

0.5

I 1.

5 2

2.5

3 3.

5 4

4.5

5 IM

HzJ

Fig

ure

3.8:

U

pper

pan

el:

Sca

tter

ed p

ress

ure

puls

e fr

om a

4 J

-lm b

ubbl

e w

ith

reso

nanc

e fr

eque

ncy

arou

nd 4

MH

z w

hen

driv

en b

y th

e ac

oust

ic p

ulse

in th

e lo

wer

pan

el o

f Fig

. 3 .

1.

Low

er p

anel

: A

bsol

ute

valu

e o

f th

e F

ouri

er T

rans

form

of

the

tim

e se

quen

ce i

n th

e up

per

pane

l.

42

Pap

erB

Fig

ure

3.9:

Res

ults

aft

er a

pply

ing

the

stab

iliz

ed in

vers

e fi

lter

on th

e th

ird

harm

onic

com

­po

nent

of t

he s

catt

ered

pre

ssur

e pu

lse

show

n in

Fig

. 3.

8. S

olid

lin

e is

obt

aine

d us

ing

the

narr

owba

nd t

hird

har

mon

ic f

ilter

whi

le t

he d

ashe

d lin

e is

obt

aine

d us

ing

the

broa

dban

d th

ird

harm

onic

ban

dpas

s fil

ter.

wit

h th

e st

abil

ized

inve

rse

filte

r fr

om E

q. 3

.4.

Res

ults

aft

er d

econ

volu

tion

are

dep

icte

d in

Fig

. 3.

9 w

here

the

sol

id a

nd d

ashe

d lin

es a

re

obta

ined

usi

ng t

he n

arro

wba

nd a

nd b

road

band

thi

rd h

arm

onic

ban

dpas

s fil

ter,

resp

ec­

tivel

y.

Aft

er d

econ

volu

tion,

the

sid

elob

e le

vel

is a

ppro

xim

atel

y do

wn

at 4

0 an

d 20

dB

us

ing

the

narr

owba

nd a

nd b

road

band

ban

dpas

s fil

ter,

resp

ectiv

ely.

The

se r

esul

ts a

re o

b­ta

ined

on

sequ

ence

s fo

r w

hich

unc

orre

late

d no

ise

stil

l has

not

bee

n ad

ded

and

the

side

lobe

le

vel

in t

he c

ompr

esse

d pu

lse

is m

ainl

y du

e to

the

pre

senc

e of

sec

ond

(and

fou

rth)

har

­m

onic

sig

nal c

ompo

nent

s in

the

filt

ered

sig

nals

pro

cess

ed b

y th

e st

abil

ized

inve

rse

filte

r. Fr

om F

ig. 3

.4 it

was

see

n th

at th

e pr

esen

ce o

f a s

econ

d ha

rmon

ic c

ompo

nent

in t

he s

igna

l fe

d to

the

sta

bili

zed

inve

rse

filte

r si

gnif

ican

tly i

ncre

ased

the

ran

ge s

idel

obe

leve

l in

the

co

mpr

esse

d si

gnal

rel

ativ

e to

the

im

agin

ed s

itua

tion

hav

ing

only

the

thi

rd h

arm

onic

sig

­na

l co

mpo

nent

. A

lso,

as

seen

fro

m t

he l

ower

pan

el o

f Fi

g. 3

.8,

the

harm

onic

com

pone

nts

scat

tere

d be

low

res

onan

ce a

re s

omew

hat s

hift

ed u

p in

fre

quen

cy r

elat

ive

to h

arm

onic

s o

f th

e dr

ive

freq

uenc

y w

hich

is c

ente

red

arou

nd 1

MH

z. T

he u

pwar

d fr

eque

ncy

shif

t of t

he s

catt

ered

th

ird

harm

onic

com

pone

nt is

opp

osit

e to

the

dow

nwar

d fr

eque

ncy

shif

t dis

play

ed i

n th

e up

per

pane

l of

Fig

. 3.

6 ob

tain

ed d

ue t

o ab

sorp

tion.

T

his

freq

uenc

y sh

ift

wil

l th

us a

lso

cont

ribu

te s

omew

hat

to t

he s

idel

obe

leve

l obt

aine

d in

Fig

. 3.

9 in

a s

imil

ar m

anne

r as

the

ab

sorp

tion

inc

reas

ed th

e si

delo

bes

in F

ig.

3.7.

In

add

ition

, as

dis

cuss

ed i

n th

e ne

xt s

ectio

n, t

he r

espo

nse

from

the

non

linea

r, r

es­

onan

t bu

bble

wil

l de

pend

on

the

band

wid

th o

f th

e in

cide

nt d

rive

pul

se a

nd t

he b

ubbl

e m

ay r

espo

nd d

iffe

rent

ly o

n th

e th

ird

subp

ulse

whe

re th

e po

lari

ty is

inv

erte

d re

lativ

e to

the

thre

e ot

her

subp

ulse

s. T

he in

cide

nt d

rive

pul

se in

the

low

er p

anel

of F

ig.

3.1

is,

how

ever

,

3.3

Num

eric

al R

esul

ts ~TEB

3 1

-O.l

o

5 lO

15

20

25

{l

.l.s]

lEff

il

-O.l

o

5 10

15

2

0

25

[I.J.s

]

43

Fig

ure

3.10

: U

pper

pan

el: B

road

band

inc

iden

t Bar

ker

sequ

ence

. L

ower

pan

el:

Res

ulti

ng

scat

tere

d pr

essu

re p

ulse

fro

m a

4 J

.Lm b

ubbl

e.

suff

icie

ntly

nar

row

ban

ded

for

this

eff

ect t

o be

mar

gina

l.

3.3.

5 T

rans

mit

Pul

se B

andw

idth

The

con

tras

t bub

ble

repr

esen

ts a

hig

hly

nonl

inea

r an

d re

sona

nt m

ediu

m f

or s

catt

erin

g o

f th

e in

cide

nt tr

ansm

it p

ulse

. F

or a

wid

e ba

ndw

idth

inci

dent

pul

se c

onsi

stin

g o

f on

ly a

few

ha

lf p

erio

ds, t

he b

ubbl

e m

ay r

espo

nd d

iffe

rent

ly w

hen

the

inci

dent

osc

illa

tion

beg

ins

wit

h a

rare

fact

ion

peri

od ra

ther

than

a c

ompr

essi

on p

erio

d [2

9] [

28].

In

addi

tion

, pro

blem

s w

ith

the

pres

ence

of

seco

nd (

and

four

th)

harm

onic

sig

nal

com

pone

nts

in t

he p

assb

and

of

the

thir

d ha

rmon

ic b

andp

ass

filte

r di

scus

sed

in S

ec.

3.3.

2 w

ill

be b

igge

r ap

plyi

ng b

road

band

tr

ansm

it p

ulse

s.

Fig

. 3.1

0 di

spla

ys a

n ex

ampl

e o

f a b

road

band

tran

smit

Bar

ker

sequ

ence

, up

per

pane

l, an

d th

e re

sult

ing

scat

tere

d pr

essu

re p

ulse

fro

m t

he b

ubbl

e, l

ower

pan

el.

In t

he u

pper

pan

el o

f Fig

. 3.

11 w

e se

e th

e th

ird

harm

onic

env

elop

e, o

btai

ned

wit

h th

e na

rrow

band

ban

dpas

s fi

lter,

of

the

scat

tere

d pu

lse

from

the

low

er p

anel

of F

ig.

3.10

as

the

soli

d lin

e. T

he d

ashe

d li

ne s

how

s th

e re

sult

ing

thir

d ha

rmon

ic e

nvel

ope

obta

ined

by

usin

g a

driv

e pu

lse

sim

ilar

to t

he o

ne in

the

upp

er p

anel

of F

ig.

3.10

but

wit

hout

the

phas

e sh

ift

on th

e th

ird

subp

ulse

, i.e

. co

nsis

ting

of

four

ide

ntic

al s

ubpu

lses

. T

he n

onli

near

res

pons

e fr

om t

he b

ubbl

e w

hen

driv

en b

y th

e br

oadb

and

subp

ulse

wit

h in

vert

ed p

olar

ity

is c

lear

ly

seen

to b

e di

ffer

ent

from

res

ults

obt

aine

d w

ith

the

thre

e ot

her

subp

ulse

s. W

e no

tice

tha

t th

e th

ird

harm

onic

env

elop

e fr

om t

he t

hird

sub

puls

e in

the

sca

tter

ed B

arke

r se

quen

ce i

s so

mew

hat t

ime

dela

yed

and

has

low

er a

mpl

itud

e re

lati

ve to

the

oth

er s

catt

ered

sub

puls

es.

In t

he l

ower

pan

el o

f Fig

. 3.

11,

the

resu

lt a

fter

pul

se c

ompr

essi

on is

dep

icte

d an

d w

e se

e th

at t

he s

idel

obe

leve

l is

ver

y hi

gh c

ompa

red

to F

ig.

3.9

obta

ined

by

usin

g th

e m

ore

44

·li~AhJ

--4~

00

310

320

330

340

350

360

370

380

390

400

(IJ.S

]

Pap

erB

Fig

ure

3.11

: U

pper

pan

el:

Thi

rd h

arm

onic

env

elop

e o

f sc

atte

red

sign

al f

rom

low

er p

anel

o

f Fig

. 3.

1 0,

sol

id li

ne.

Das

hed

line

rep

rese

nts

thir

d ha

rmon

ic e

nvel

ope

obta

ined

by

driv

­in

g th

e bu

bble

wit

h fo

ur i

dent

ical

sub

puls

es.

Low

er p

anel

: R

esul

t aft

er p

ulse

com

pres

sion

of

scat

tere

d br

oadb

and

Bar

ker

sequ

ence

.

narr

owba

nded

inc

iden

t dri

ve p

ulse

fro

m t

he l

ower

pan

el o

f Fig

. 3.

1.

A n

ew b

road

band

Bar

ker

sequ

ence

, si

mil

ar to

the

one

in t

he u

pper

pan

el o

f Fig

. 3.

10 b

ut

wit

h hi

gher

am

plit

ude,

is t

hen

used

to d

rive

the

bubb

le.

The

new

inc

iden

t Bar

ker

sequ

ence

an

d th

e re

sult

ing

scat

tere

d pr

essu

re p

ulse

fro

m t

he b

ubbl

e ca

n be

see

n in

the

upp

er a

nd

low

er p

anel

of F

ig.

3 .12

, res

pect

ivel

y.

The

thi

rd h

arm

onic

env

elop

e, o

btai

ned

wit

h th

e na

rrow

band

ban

dpas

s fi

lter,

is d

is­

play

ed a

s th

e so

lid

line

in

the

uppe

r pa

nel

of F

ig.

3.13

. A

gain

, th

e da

shed

lin

e re

pre­

sent

s th

e re

sult

obt

aine

d by

usi

ng a

dri

ve p

ulse

sim

ilar

to t

he o

ne i

n th

e up

per

pane

l of

Fi

g. 3

.12

but

wit

h no

pha

se in

vers

ion

on th

e th

ird

subp

ulse

. C

ompa

ring

the

upp

er p

anel

s o

f Fig

. 3.1

1 an

d Fi

g. 3

.13,

we

noti

ce th

at th

e th

ird

harm

onic

env

elop

e o

f the

thir

d su

bpul

se

in t

he s

catt

ered

Bar

ker

sequ

ence

s ha

ve s

imil

ar t

ime

shif

ts w

hen

the

broa

dban

d in

cide

nt

Bar

ker

sequ

ence

s of

dif

fere

nt a

mpl

itud

es a

re a

pplie

d. B

y in

spec

ting

the

sca

tter

ed p

ulse

s in

the

low

er p

anel

of

Fig.

3.1

0 an

d 3.

12,

it i

s cl

ear

that

the

thi

rd s

ubpu

lse

star

ts w

ith

mai

nly

low

fre

quen

cy s

igna

l co

mpo

nent

s w

hile

the

mai

n co

ntri

buti

ons

to t

he h

igh

fre­

quen

cy c

ompo

nent

s oc

cur

late

r in

the

subp

ulse

. T

he a

mpl

itud

e of

the

thir

d ha

rmon

ic e

nvel

ope

was

in

the

uppe

r pa

nel

of

Fig

. 3.

11

seen

to b

e lo

wer

for

the

thir

d su

bpul

se w

hen

usin

g th

e lo

w a

mpl

itud

e br

oadb

and

inci

dent

B

arke

r se

quen

ce.

Usi

ng th

e hi

gh a

mpl

itud

e br

oadb

and

inci

dent

Bar

ker

sequ

ence

, the

am

­pl

itud

e of

the

thir

d ha

rmon

ic e

nvel

ope

is,

how

ever

, hi

gher

for

the

sub

puls

e w

ith

inve

rted

po

lari

ty e

ven

if th

e am

plit

ude

of

the

tota

l sc

atte

red

sign

al i

n th

e lo

wer

pan

el o

f Fig

. 3.

12

is l

ower

for

this

sub

puls

e.

3.3

Nu

mer

ical

Res

ults

45

~Tf±

B 1

-0.40~----L-7, ----

-L~l

O;--

----

'--c

l:';

-5 --

'--:

;';:

20

----

-:!,

. [IJ

.s]

l++

B i

0 5

to

15

20

25

().1S

]

Fig

ure

3.12

: U

pper

pan

el:

Bro

adba

nd i

ncid

ent B

arke

r se

quen

ce.

Low

er p

anel

: R

esul

ting

sc

atte

red

pres

sure

pul

se f

rom

a 4

J-Lm

bub

ble.

{!IS

]

Fig

ure

3.13

: U

pper

pan

el:

Thi

rd h

arm

onic

env

elop

e o

f sca

tter

ed s

igna

l fro

m l

ower

pan

el

of F

ig.

3.12

, so

lid

line.

Das

hed

line

rep

rese

nts

thir

d ha

rmon

ic e

nvel

ope

obta

ined

by

dri

v­in

g th

e bu

bble

wit

h fo

ur id

enti

cal s

ubpu

lses

. L

ower

pan

el:

Res

ult a

fter

pul

se c

ompr

essi

on

of

scat

tere

d br

oadb

and

Bar

ker

sequ

ence

.

46

-fff

fi

~ -Q.0

4

0 5

10

15

20

25

30

("

'I

Pap

erB

Fig

ure

3.14

: U

pper

pan

el:

Sig

nal

scat

tere

d fr

om b

ubbl

e dr

iven

by

the

acou

stic

pul

se i

n th

e lo

wer

pan

el o

f Fi

g. 3

.1 w

here

the

equ

ilib

rium

bub

ble

radi

us i

s in

crea

sed

by 5

% f

or

the

last

sub

puls

e. L

ower

pan

el:

Res

ults

aft

er th

ird

harm

onic

ban

dpas

s fi

lteri

ng o

n th

e th

e pu

lse

in t

he u

pper

pan

el a

nd c

ompr

essi

ng u

sing

the

sta

bili

zed

inve

rse

filte

r. S

olid

line

is

obta

ined

usi

ng t

he n

arro

wba

nd b

andp

ass

filte

r an

d th

e da

shed

lin

e is

obt

aine

d us

ing

the

broa

dban

d ba

ndpa

ss f

ilter

.

3.3.

6 V

aria

ble

Aco

usti

c B

ubbl

e P

aram

eter

s

Con

tras

t ag

ent

gas

bubb

les

are

not

enti

rely

sta

ble

and

as t

he b

ubbl

es a

re s

ubje

cted

to

the

inci

dent

pre

ssur

e pu

lses

the

y m

ay,

to s

ome

degr

ee,

chan

ge t

heir

aco

usti

c pr

oper

ties

. T

he t

hin

shel

l enc

apsu

lati

ng t

he g

as b

ubbl

e dr

amat

ical

ly c

hang

es t

he a

cous

tic p

rope

rtie

s an

d st

abil

ity

of th

e co

ntra

st b

ubbl

e co

mpa

red

to a

fre

e ga

s bu

bble

not

enc

apsu

late

d by

th

is s

hell

[19

]. T

he p

rope

rtie

s o

f the

she

ll h

ence

, to

a l

arge

ext

ent,

dete

rmin

e th

e ac

oust

ic

prop

erti

es o

f the

bub

ble.

Whe

n th

e bu

bble

is s

ubje

cted

to a

Bar

ker s

eque

nce

it is

the

refo

re,

cont

rary

to t

he s

itua

tion

in P

ower

Dop

pler

tech

niqu

es, i

mpo

rtan

t for

the

she

ll to

mai

ntai

n its

pro

pert

ies

for

the

enti

re d

urat

ion

of th

e se

quen

ce.

The

upp

er p

anel

in

Fig.

3.1

4 sh

ows

an e

xam

ple

of th

e sc

atte

red

pres

sure

pul

se f

rom

a

bubb

le w

hen

the

bubb

le h

as i

ncre

ased

its

equi

libr

ium

rad

ius

by 5

% f

or t

he l

ast s

ubpu

lse

com

pare

d to

the

thr

ee f

irst

sub

puls

es.

Thi

s in

crea

se i

n ra

dius

cou

ld f

or e

xam

ple

be d

ue

to a

cha

nge

in t

he p

rope

rtie

s of

the

enc

apsu

lati

ng s

hell

or a

hea

ting

of

the

gas

insi

de

the

shel

l. T

he r

adiu

s in

crea

se r

esul

ts i

n a

smal

l re

duct

ion

of th

e re

sona

nce

freq

uenc

y o

f th

e bu

bble

. In

the

low

er p

anel

of

Fig.

3.1

4 w

e se

e th

e re

sults

aft

er t

he t

hird

har

mon

ic

com

pone

nt o

f the

seq

uenc

e in

the

upp

er p

anel

has

bee

n fi

ltere

d ou

t and

pro

cess

ed b

y th

e st

abil

ized

inv

erse

filt

er.

Com

pare

d to

res

ults

obt

aine

d in

Fig

. 3.

9, r

ange

sid

elob

e le

vels

ar

e si

gnif

ican

tly in

crea

sed

both

whe

n ap

plyi

ng th

e br

oadb

and

band

pass

filte

r (d

ashe

d lin

e)

and

the

narr

owba

nd b

andp

ass

filte

r (s

olid

line

).

Fig.

3.1

5 de

pict

s th

e no

rmal

ized

env

elop

e o

f the

thir

d ha

rmon

ic c

ompo

nent

in th

e la

st s

ub-

3.3

Nu

mer

ical

Res

ults

47

0.9

0.3

Fig

ure

3.15

: N

orm

aliz

ed e

nvel

ope

of th

e th

ird

harm

onic

com

pone

nt in

the

las

t su

bpul

se

in t

he u

pper

pan

el o

f Fig

. 3.

8 an

d 3.

14, s

olid

and

das

hed

line,

res

pect

ivel

y.

puls

e in

the

upp

er p

anel

of F

ig.

3.8

and

3.14

, sol

id a

nd d

ashe

d li

ne r

espe

ctiv

ely.

A s

mal

l ch

ange

in

the

equi

libr

ium

rad

ius

of th

e bu

bble

sli

ghtl

y ch

ange

s th

e ac

oust

ic p

rope

rtie

s,

and

henc

e th

e re

sona

nce

freq

uenc

y of

the

bubb

le.

Thi

s ha

s an

eff

ect o

n th

e sc

atte

red

thir

d ha

rmon

ic c

ompo

nent

env

elop

e.

The

env

elop

e o

f th

e th

ird

harm

onic

com

pone

nt i

n th

e su

bpul

se s

catt

ered

fro

m t

he b

ubbl

e w

ith

the

incr

ease

d eq

uili

briu

m ra

dius

(da

shed

line

) is

so

mew

hat d

elay

ed a

nd s

tret

ched

rel

ativ

e to

the

env

elop

e ob

tain

ed fr

om t

he s

ubpu

lse

scat

­te

red

from

the

bub

ble

wit

h th

e un

chan

ged

orig

inal

equ

ilib

rium

rad

ius

(sol

id l

ine)

. T

he

ampl

itud

e o

f the

thir

d ha

rmon

ic c

ompo

nent

sca

tter

ed f

rom

the

incr

ease

d bu

bble

is a

roun

d 3

dB l

arge

r th

an f

rom

the

ori

gina

l bu

bble

. In

add

itio

n to

thi

s am

plit

ude

vari

atio

n, t

he

smal

l de

lay

and

stre

tch

of

the

thir

d ha

rmon

ic e

nvel

ope

sign

ific

antly

inc

reas

es t

he r

ange

si

delo

be le

vel i

n th

e co

mpr

esse

d pu

lse

as s

how

n in

the

low

er p

anel

of F

ig.

3.14

.

If in

stea

d th

e bu

bble

rad

ius

is i

ncre

ased

by

5 %

for

the

fir

st s

catt

ered

sub

puls

e, w

hile

th

e th

ree

last

sub

puls

es a

re s

catt

ered

fro

m t

he o

rigi

nal

4 p,

m b

ubbl

e, w

e ob

tain

the

re­

sults

dis

play

ed i

n Fi

g. 3

.16.

Aga

in,

the

soli

d an

d da

shed

lin

es i

n th

e lo

wer

pan

el o

f th

e fi

gure

is

obta

ined

usi

ng t

he n

arro

wba

nd a

nd b

road

band

thi

rd h

arm

onic

ban

dpas

s fi

lter,

resp

ectiv

ely.

In

the

low

er p

anel

of

Fig.

3.1

4 th

e si

delo

bes

to t

he l

eft

of t

he m

ainl

obe

are

sign

ific

antly

low

er t

han

the

side

lobe

s to

the

rig

ht a

nd o

ne m

ight

ini

tial

ly e

xpec

t th

e si

delo

bes

in t

he l

ower

pan

el o

f Fi

g. 3

.16

to a

ppea

r in

an

exac

tly

oppo

site

man

ner.

T

he

side

lobe

s to

the

left

of t

he m

ainl

obe

in th

e lo

wer

pan

el o

f Fig

. 3.

16 a

re,

inde

ed,

som

ewha

t hi

gher

tha

n th

e si

delo

bes

to t

he r

ight

but

the

sid

elob

es a

t th

e le

ft a

nd r

ight

of

the

mai

n­lo

be a

re s

igni

fica

ntly

mor

e ba

lanc

ed i

n le

vel

than

wha

t w

as f

ound

in

the

low

er p

anel

of

Fig.

3 .1

4. A

lso,

the

hig

hest

sid

elob

e le

vel i

n Fi

g. 3

.16

is s

omew

hat l

ower

than

wha

t fou

nd

in F

ig.

3.14

.

48

··~

<: -<>.04

-to

-20

0 5

10

15

20

25

30

""'

~-30

/

-40

I I

-50

I

4~,0~~~~~~~~~~~~~~~~

Pap

erB

Fig

ure

3.16

: U

pper

pan

el:

Sig

nal

scat

tere

d fr

om b

ubbl

e dr

iven

by

the

acou

stic

pul

se i

n th

e lo

wer

pan

el o

f Fig

. 3.

1 w

here

the

equ

ilib

rium

bub

ble

radi

us i

s in

crea

sed

by 5

% f

or

the

firs

t su

bpul

se.

Low

er p

anel

: R

esul

ts a

fter

thir

d ha

rmon

ic b

andp

ass

filte

ring

on

the

the

puls

e in

the

upp

er p

anel

and

com

pres

sing

usi

ng t

he s

tabi

lize

d in

vers

e fil

ter.

Sol

id l

ine

is

obta

ined

usi

ng t

he n

arro

wba

nd b

andp

ass

filte

r an

d th

e da

shed

lin

e is

obt

aine

d us

ing

the

broa

dban

d ba

ndpa

ss f

ilter

.

3.3.

7 B

ubbl

e M

ovem

ent

The

con

tras

t ag

ent

in a

med

ical

ult

raso

und

imag

ing

situ

atio

n is

usu

ally

mov

ing

due

to

bloo

d flo

w.

Eve

n th

ough

the

bloo

d flo

w v

eloc

ity

is l

ow c

ompa

red

to t

he s

peed

of s

ound

it

may

hav

e a

degr

adin

g ef

fect

on

the

rang

e si

delo

be le

vel o

btai

ned

afte

r pu

lse

com

pres

sion

o

f a

Bar

ker

sequ

ence

. T

he m

ovem

ent

of th

e co

ntra

st b

ubbl

e w

ill

caus

e a

Dop

pler

shi

ft

acco

rdin

g to

the

fol

low

ing

equa

tion

(3.7

)

whe

re f

is

the

tran

smit

fre

quen

cy,

v is

the

vel

ocit

y o

f th

e co

ntra

st a

gent

in

the

beam

di

rect

ion,

and

c is

the

spe

ed o

f sou

nd in

the

med

ium

. S

etti

ng v

=

1 rn

!s g

ives

a D

oppl

er

freq

uenc

y ar

ound

5 k

Hz

for

the

thir

d ha

rmon

ic c

ompo

nent

wit

h a

tran

smit

freq

uenc

y eq

ual

to 1

MH

z w

hich

is r

athe

r lo

w c

ompa

red

to t

he f

requ

ency

shi

fts

obta

ined

fro

m a

bsor

ptio

n (u

pper

pan

el in

Fig

. 3.

6) a

nd s

catt

erin

g (l

ower

pan

el in

Fig

. 3.

8).

The

fre

quen

cy s

hift

due

to

the

Dop

pler

eff

ect i

s th

us n

ot b

elie

ved

to h

ave

a si

gnif

ican

t eff

ect o

n th

e ra

nge

side

lobe

le

vel o

btai

ned

in t

he c

ompr

esse

d pu

lse.

Whe

n th

e co

ntra

st b

ubbl

e is

sub

ject

ed to

an

inci

dent

pre

ssur

e w

ave

it is

als

o af

fect

ed b

y a

radi

atio

n pr

essu

re d

ue to

the

fact

that

the

bubb

le a

bsor

bs a

nd s

catt

ers

part

s o

f the

ene

rgy

in

the

inco

min

g w

ave.

Thi

s ra

diat

ion

pres

sure

wil

l hav

e th

e po

tent

ial t

o in

trod

uce

a ve

loci

ty

to t

he b

ubbl

e in

the

dire

ctio

n o

f th

e in

com

ing

wav

e. T

he in

tens

ity

of

a pl

ane

or s

pher

ical

3.3

Nu

mer

ical

Res

ult

s 49

inci

dent

wav

e ca

n be

cal

cula

ted

as

(3.8

)

whe

re p

is

the

acou

stic

pre

ssur

e am

plit

ude

and

Z i

s th

e ac

oust

ic i

mpe

danc

e. T

he e

nerg

y ab

sorb

ed a

nd s

catt

ered

by

the

bubb

le d

urin

g a

tim

e in

terv

al b

..t i

s I (

J eb.

.t w

here

(J e

is t

he

exti

ncti

on c

ross

sec

tion

of t

he b

ubbl

e. E

xtin

ctio

n cr

oss

sect

ion

is t

he s

um o

f the

sca

tter

ing

cros

s se

ctio

n an

d th

e ab

sorp

tion

cro

ss s

ecti

on a

nd is

thu

s th

e to

tal l

oss

of e

nerg

y fr

om t

he

inci

dent

pre

ssur

e w

ave.

T

he w

ork

done

on

the

bubb

le d

urin

g b.

.t is

Frc

b..t

whe

re F

r is

th

e ra

diat

ion

forc

e on

the

bubb

le a

nd c

is th

e sp

eed

of s

ound

in t

he m

ediu

m.

Equ

atin

g th

e en

ergy

abs

orbe

d/sc

atte

red

by th

e bu

bble

and

the

wor

k do

ne o

n th

e bu

bble

we

obta

in

"' _

I (Je

rr-

c (3

.9)

whe

re v

alue

s fo

r (Je

for

the

agen

t Son

azoi

d ca

n be

est

imat

ed [

19, p

p. 1

52-1

57].

If t

he fl

ow

arou

nd t

he b

ubbl

e is

ass

umed

to b

e la

min

ar a

nd t

he s

hape

of

the

bubb

le is

ass

umed

to b

e pu

rely

sph

eric

al,

the

bubb

le v

eloc

ity

due

to t

he r

adia

tion

for

ce c

an b

e ca

lcul

ated

as

[ 42,

pp

. 18

3-18

4]

(3.1

0)

Her

e, a

is t

he b

ubbl

e ra

dius

, an

d f.iv

is

the

visc

osit

y o

f th

e am

bien

t fl

uid.

Ins

erti

ng ty

pica

l nu

mer

ical

val

ues

give

s a

velo

city

cau

sed

by r

adia

tion

for

ces

whi

ch is

of t

he s

ame

orde

r as

co

mm

on v

eloc

itie

s du

e to

reg

ular

blo

od fl

ow a

nd t

his

effe

ct is

the

refo

re n

ot n

egli

gibl

e.

Day

ton

et a

l [1

0] e

xam

ined

the

mag

nitu

de o

f ra

diat

ion

forc

es o

n ul

tras

ound

con

tras

t ag

ents

tak

ing

a m

ore

rigo

rous

app

roac

h th

an d

one

here

. A

vel

ocit

y o

f up

to

0.5

mls

due

to

rad

iati

on f

orce

s on

a 4

f.im

bub

ble

inso

nifi

ed w

ith

sim

ilar

pre

ssur

e am

plit

udes

as

in th

e pr

esen

t pap

er ( r

v 0

.1 M

Pa)

and

a tr

ansm

it fr

eque

ncy

arou

nd 2

.25

MH

z w

as t

hen

obta

ined

. T

he v

eloc

ity

intr

oduc

ed d

ue to

rad

iati

on f

orce

s w

ill b

e ti

me-

vary

ing.

If th

e ve

loci

ty o

f the

bub

ble

is a

ssum

ed to

be

1 m

/s,

the

bubb

le w

ill h

ave

mov

ed a

dis

tanc

e o

f 25

f.im

in

a ti

me

peri

od o

f 25

f.L

S (w

hich

is

appr

oxim

atel

y th

e du

rati

on o

f th

e fo

ur b

it

Bar

ker

sequ

ence

use

d).

In a

pul

se e

cho

imag

ing

syst

em t

his

wil

l in

trod

uce

a ti

me

shif

t eq

ual

to 3

3 ns

if

the

spee

d o

f so

und

is s

et e

qual

to 1

500

m/s

. D

ue to

the

pum

ping

of

the

hear

t m

uscl

e an

d th

e pr

esen

ce o

f ra

diat

ion

forc

es,

the

bloo

d flo

w w

ill

not

be s

tati

onar

y an

d th

e up

per p

anel

in F

ig.

3.17

sho

ws

an e

xam

ple

whe

re th

e la

st s

ubpu

lse

in th

e sc

atte

red

Bar

ker

sequ

ence

has

bee

n ti

me

shif

ted

by a

n am

ount

equ

al to

30

ns r

elat

ive

to t

he o

rigi

nal

sequ

ence

in

the

uppe

r pa

nel

of

Fig.

3.8

. H

ere,

the

sol

id l

ine

is t

he n

orm

aliz

ed t

hird

ha

rmon

ic e

nvel

ope

of

the

orig

inal

uns

hift

ed l

ast

subp

ulse

, w

hile

the

das

hed

line

is

the

norm

aliz

ed t

hird

har

mon

ic e

nvel

ope

of

the

resu

ltin

g ti

me-

shif

ted

subp

ulse

. In

the

low

er

pane

l it

is s

how

n ho

w t

his

tim

e sh

ift

effe

cts

the

rang

e si

delo

be l

evel

obt

aine

d af

ter

the

stab

iliz

ed i

nver

se f

ilter

is

appl

ied.

W

e se

e th

at t

he B

arke

r se

quen

ce i

s ve

ry s

ensi

tive

to

even

a m

inor

tim

e sh

ift b

etw

een

its s

ubpu

lses

. T

he c

ompr

esse

d pu

lse

in t

he l

ower

pan

el o

f Fig

. 3 .

14,

obta

ined

by

slig

htly

cha

ngin

g th

e ac

oust

ic p

rope

rtie

s o

f th

e co

ntra

st b

ubbl

e fo

r th

e la

st s

ubpu

lse,

and

the

com

pres

sed

50

Pap

erB

Fig

ure

3.17

: U

pper

pan

el:

Nor

mal

ized

env

elop

e o

f th

ird

harm

onic

com

pone

nt f

rom

tw

o su

bpul

ses

whe

re o

ne o

f th

em h

as b

een

tim

e sh

ifte

d by

an

amou

nt e

qual

to 3

0 ns

rel

ativ

e to

the

oth

er.

Low

er p

anel

: D

ashe

d li

ne s

how

eff

ect o

n ra

nge

side

lobe

leve

l in

trod

uced

by

tim

e sh

ifti

ng t

he l

ast s

ubpu

lse

of

a fo

ur b

it B

arke

r se

quen

ce b

y an

am

ount

equ

al to

30

ns

rela

tive

to t

he s

idel

obe

leve

l obt

aine

d fr

om t

he o

rigi

nal u

nshi

fted

seq

uenc

e (s

olid

line

).

puls

e in

the

low

er p

anel

of F

ig.

3.17

, ob

tain

ed b

y sl

ight

ly t

ime

shif

ting

the

last

sub

puls

e,

are

seen

to b

e ve

ry s

imila

r. A

s se

en in

Fig

. 3.1

5, a

n im

port

ant e

ffec

t int

rodu

ced

by s

ligh

tly

chan

ging

the

aco

usti

c pr

oper

ties

of

the

bubb

le w

as a

tim

e sh

ift

of

the

scat

tere

d th

ird

harm

onic

env

elop

e w

hich

exp

lain

s th

e si

mil

arit

ies

in t

he l

ower

pan

els

of

Fig.

3.1

4 an

d Fi

g. 3

.17.

3.3.

8 E

ffec

t of H

avin

g a

Fin

ite

CN

R

In a

n ac

tual

ult

raso

und

imag

ing

situ

atio

n, t

here

wil

l al

way

s be

a f

inite

CN

R a

nd t

he m

o­ti

vati

on f

or i

ntro

duci

ng B

arke

r se

quen

ces

was

to

impr

ove

the

CN

R a

t th

e re

ceiv

ed t

hird

ha

rmon

ic c

ompo

nent

fro

m t

he c

ontr

ast

agen

t. T

wo

diff

eren

t lev

els

of

unco

rrel

ated

noi

se

are

now

add

ed t

o th

e or

igin

al s

catt

ered

fou

r bi

t B

arke

r se

quen

ce d

ispl

ayed

in

Fig.

3.8

. In

bot

h ca

ses

the

nois

e le

vel

is s

o hi

gh t

hat

the

resu

ltin

g si

delo

bes

in t

he c

ompr

esse

d se

quen

ce is

lim

ited

by

the

nois

e si

gnal

and

not

the

effe

cts

disc

usse

d in

rela

tion

to F

ig.

3.9.

In th

e up

per p

anel

of F

ig. 3

.18,

the

enve

lope

of t

he s

catt

ered

thir

d ha

rmon

ic c

ompo

nent

of

the

Bar

ker

sequ

ence

, w

hen

the

narr

owba

nd b

andp

ass

filte

r ha

s be

en a

pplie

d, i

s di

spla

yed

as t

he s

olid

line

. T

he d

ashe

d lin

e re

pres

ents

the

enve

lope

of t

he th

ird

harm

onic

com

pone

nt

of a

n un

corr

elat

ed n

oise

sig

nal

and

the

CN

R b

efor

e ap

plyi

ng t

he s

tabi

lize

d in

vers

e fi

lter

is a

roun

d 4

dB.

In t

he l

ower

pan

el o

f th

e sa

me

figu

re,

the

resu

lts

afte

r pu

lse

com

pres

sion

ar

e sh

own.

T

he s

olid

lin

e is

the

res

ult

obta

ined

fee

ding

the

sum

of

the

two

sign

als

in

the

uppe

r pa

nel

to t

he s

tabi

lize

d in

vers

e fi

lter

whi

le t

he d

ashe

d li

ne is

the

res

ult o

btai

ned

3.4

Exp

erim

enta

l R

esul

ts

51

-50

Fig

ure

3.18

: U

pper

pan

el:

Env

elop

e o

f sca

tter

ed th

ird

harm

onic

com

pone

nt, o

btai

ned

wit

h na

rrow

band

ban

dpas

s fil

ter,

from

a 4

bit

Bar

ker s

eque

nce

(sol

id li

ne)

and

enve

lope

of t

hird

ha

rmon

ic u

ncor

rela

ted

nois

e si

gnal

(da

shed

line

). T

hird

har

mon

ic C

NR

is a

ppro

xim

atel

y 4

dB b

efor

e pu

lse

com

pres

sion

. L

ower

pan

el:

Res

ult a

fter

app

lyin

g th

e st

abil

ized

inve

rse

filte

r on

the

sum

of t

he tw

o se

quen

ces

in th

e up

per p

anel

(so

lid

line

) an

d on

the

nois

e si

gnal

on

ly (

dash

ed li

ne).

Thi

rd h

arm

onic

CN

R is

app

roxi

mat

ely

13 d

B a

fter

pul

se c

ompr

essi

on.

proc

essi

ng o

nly

the

nois

e si

gnal

in

the

uppe

r pa

nel.

The

CN

R a

fter

pul

se c

ompr

essi

on is

ap

prox

imat

ely

13 d

B a

nd t

he in

crea

se in

CN

R a

chie

ved

usin

g th

e B

arke

r seq

uenc

e is

thu

s ar

ound

9 d

B.

In F

ig.

3.19

the

add

ed n

oise

sig

nal

has

been

som

ewha

t re

duce

d.

The

sol

id l

ine

in t

he

uppe

r pa

nel

show

s th

e en

velo

pe o

f th

e sc

atte

red

thir

d ha

rmon

ic B

arke

r se

quen

ce w

hile

th

e da

shed

lin

e re

pres

ents

the

env

elop

e o

f th

e th

ird

harm

onic

com

pone

nt o

f th

e no

ise

sign

al w

hen

the

narr

owba

nd f

ilter

is

used

. T

he th

ird

harm

onic

CN

R b

efor

e th

e st

abil

ized

in

vers

e fi

lter

is a

ppli

ed is

now

app

roxi

mat

ely

13 d

B.

In t

he l

ower

pan

el w

e se

e th

e re

sult

s af

ter

puls

e co

mpr

essi

on.

Aga

in,

the

soli

d li

ne i

s ob

tain

ed p

roce

ssin

g th

e su

m o

f th

e tw

o si

gnal

s in

the

uppe

r pan

el a

nd th

e da

shed

line

is o

btai

ned

from

the

noi

se s

igna

l onl

y in

the

up

per

pane

l. A

n in

crea

se o

f ab

out 7

dB

in

the

thir

d ha

rmon

ic C

NR

is n

ow a

chie

ved

afte

r pu

lse

com

pres

sion

is p

erfo

rmed

.

3.4

Exp

erim

enta

l Res

ults

In v

itro

mea

sure

men

ts a

re d

one

on a

tis

sue

mim

icki

ng p

hant

om u

sing

an

annu

lar

tran

s­du

cer

cons

isti

ng o

f 5

ring

s. T

he o

uter

rin

g is

a lo

w f

requ

ency

rin

g us

ed f

or t

rans

mit

ting

th

e ul

tras

ound

sig

nal

whi

le t

he f

our

inne

r ri

ngs

are

high

fre

quen

cy r

ings

use

d fo

r re

ceiv

­in

g th

e sc

atte

red

thir

d ha

rmon

ic c

ompo

nent

s o

f th

e tr

ansm

itte

d si

gnal

. A

sig

nal s

imil

ar to

th

e on

e in

the

low

er p

anel

of F

ig.

3.1,

wit

h a

cent

er fr

eque

ncy

equa

l to

1.3

MH

z, i

s st

ored

52

Pap

erB

-50

-55

~-60

I

-65

:,

•',

..

• :'t

, r,

: -7

0 ':!

~ .. J:

: '"•: :·

\:,/

:: :

_ 75

!~(

I 1 1

1 I

I 11

11

I

0 20

Fig

ure

3.19

: U

pper

pan

el:

Env

elop

e o

f sca

tter

ed th

ird

harm

onic

com

pone

nt, o

btai

ned

wit

h na

rrow

band

ban

dpas

s fil

ter,

from

a 4

bit

Bar

ker s

eque

nce

(sol

id li

ne)

and

enve

lope

of t

hird

ha

rmon

ic u

ncor

rela

ted

nois

e si

gnal

(da

shed

lin

e).

Upp

er p

anel

: T

hird

har

mon

ic C

NR

is

appr

oxim

atel

y 13

dB

bef

ore

puls

e co

mpr

essi

on.

Low

er p

anel

: R

esul

t af

ter

appl

ying

the

st

abil

ized

inve

rse

filte

r on

the

sum

of t

he tw

o se

quen

ces

in t

he u

pper

pan

el (

soli

d li

ne)

and

on th

e no

ise

sign

al o

nly

(das

hed

line

). T

hird

har

mon

ic C

NR

is a

ppro

xim

atel

y 20

dB

aft

er

puls

e co

mpr

essi

on.

in a

sig

nal

gene

rato

r an

d us

ed a

s an

exc

itat

ion

puls

e on

the

out

er r

ing

of

the

ultr

asou

nd

tran

sduc

er.

The

tiss

ue m

imic

king

pha

ntom

con

tain

s a

smal

l pol

yeth

ylen

e tu

be w

ith

inne

r di

amet

er e

qual

to

0.28

mm

thr

ough

whi

ch a

sol

utio

n o

f w

ater

and

con

tras

t ag

ent

may

flo

w.

The

con

tras

t ag

ent S

onaz

oid

[19]

whi

ch h

as a

res

onan

ce f

requ

ency

aro

und

4 M

Hz,

w

as u

sed

in t

he p

rese

nt m

easu

rem

ents

. M

easu

rem

ents

wer

e co

nduc

ted

on a

Sys

tem

FiV

e ul

tras

ound

sca

nner

mad

e by

GE

Vin

gmed

Ult

raso

und

and

the

cont

rast

bub

bles

wer

e su

b­je

cted

to r

elat

ivel

y lo

w a

mpl

itud

e ul

tras

ound

pul

ses

wit

h an

am

plit

ude

arou

nd 0

.1 M

Pa.

The

nar

row

band

thir

d ha

rmon

ic b

andp

ass

filte

r sh

own

in F

ig.

3.5

wit

h a

cent

er fr

eque

ncy

equa

l to

3.9

MH

z w

as u

sed

on t

he r

ecei

ved

sign

als

to o

btai

n th

e sc

atte

red

thir

d ha

rmon

ic

com

pone

nt.

The

upp

er p

anel

of F

ig.

3.20

dep

icts

the

thi

rd h

arm

onic

env

elop

e fr

om a

rec

eive

d B

arke

r se

quen

ce w

here

the

CN

R is

aro

und

4 dB

. W

e no

tice

tha

t for

the

thir

d su

bpul

se, o

ccur

ring

at

aro

und

29 J

l,S o

n th

e ti

me

axis

, th

e si

gnal

lev

el i

s pa

rtic

ular

ly r

educ

ed.

Thi

s re

duct

ion

is m

ost

like

ly d

ue t

o de

stru

ctiv

e in

terf

eren

ce w

ith

the

unco

rrel

ated

noi

se s

igna

l an

d no

t a

chan

ge i

n th

e ac

oust

ic p

rope

rtie

s of

the

bubb

le s

ince

for

the

las

t su

bpul

se,

occu

rrin

g at

aro

und

35 !

JS,

the

sign

al l

evel

is

agai

n in

crea

sed.

In

the

low

er p

anel

of

Fig

. 3.

20,

the

resu

lt a

fter

the

sta

bili

zed

inve

rse

filte

r ha

s be

en a

ppli

ed i

s sh

own

and

the

CN

R i

s no

w

appr

oxim

atel

y 13

dB

.

Fig.

3.2

1 sh

ows

anot

her e

xam

ple

of a

rece

ived

sca

tter

ed B

arke

r seq

uenc

e fr

om th

e co

ntra

st

bubb

les

flow

ing

thro

ugh

the

tiss

ue m

imic

king

pha

ntom

. In

the

upp

er p

anel

of

the

figu

re,

3.4

Exp

erim

enta

l R

esul

ts

53

·~~j

0 10

2

0

30

40

50

6

0

70

80

90

'"'l

Fig

ure

3.20

: U

pper

pan

el:

Env

elop

e o

f m

easu

red

thir

d ha

rmon

ic c

ompo

nent

, ob

tain

ed

wit

h th

e na

rrow

band

ban

dpas

s fi

lter,

from

a 4

bit

Bar

ker

sequ

ence

. T

hird

har

mon

ic C

NR

is

app

roxi

mat

ely

4 dB

bef

ore

puls

e co

mpr

essi

on.

Low

er p

anel

: R

esul

t af

ter

appl

ying

th

e st

abil

ized

inv

erse

filt

er o

n th

e si

gnal

in

the

uppe

r pa

nel.

Thi

rd h

arm

onic

CN

R i

s ap

prox

imat

ely

13 d

B a

fter

pul

se c

ompr

essi

on.

the

thir

d ha

rmon

ic e

nvel

ope

is d

ispl

ayed

and

the

CN

R is

for

thi

s ca

se a

roun

d 10

dB

. T

he

low

er p

anel

of

the

figu

re s

how

s th

e re

sult

aft

er p

ulse

com

pres

sion

and

the

CN

R i

s no

w

seen

to

be a

ppro

xim

atel

y 17

dB

. T

here

is

a gr

adua

l in

crea

se i

n th

e re

ceiv

ed s

igna

l le

vel

from

the

fir

st t

o th

e th

ird

subp

ulse

occ

urri

ng b

etw

een

27 a

nd 3

8 JlS

on

the

tim

e ax

is.

Thi

s in

crea

se i

s al

so m

ost

like

ly d

ue t

o in

terf

eren

ce b

etw

een

the

bubb

le s

igna

l an

d th

e no

ise

sign

al s

ince

for

the

las

t su

bpul

se,

occu

rrin

g at

aro

und

43 J

lS,

the

sign

al l

evel

is

slig

htly

re

duce

d.

Fig.

3.2

2 de

pict

s ye

t an

othe

r ex

ampl

e o

f a

rece

ived

sca

tter

ed B

arke

r se

quen

ce.

In t

he

uppe

r pa

nel,

befo

re p

ulse

com

pres

sion

, th

e C

NR

is s

een

to b

e ar

ound

16

dB.

In t

he l

ower

pa

nel,

afte

r pul

se c

ompr

essi

on, t

he C

NR

has

inc

reas

ed to

aro

und

23 d

B.

The

pre

viou

s th

ree

figu

res

show

exa

mpl

es o

f re

ceiv

ed s

catt

ered

Bar

ker

sequ

ence

s w

here

th

e pr

esen

ce o

f un

corr

elat

ed n

oise

is b

elie

ved

to b

e th

e li

mit

ing

fact

or r

egar

ding

the

side

­lo

be le

vel o

btai

ned

afte

r pul

se c

ompr

essi

on is

per

form

ed.

The

bub

bles

are

hen

ce a

ssum

ed

to m

aint

ain

rath

er c

onst

ant

valu

es w

ith

resp

ect

to a

cous

tic

prop

erti

es a

nd b

ubbl

e m

ove­

men

t is

beli

eved

not

to c

ause

a li

mit

atio

n on

the

side

lobe

leve

l obt

aine

d.

In th

e up

per p

anel

of F

ig. 3

.23,

we

see

an e

xam

ple

of a

rece

ived

seq

uenc

e w

here

the

sign

al

leve

l fro

m th

e co

ntra

st a

gent

is s

een

to g

radu

ally

incr

ease

from

the

firs

t sub

puls

e oc

cmT

ing

at a

roun

d 27

JlS

, to

the

las

t su

bpul

se o

ccur

ring

at

arou

nd 4

2 Jl

S.

Thi

s st

eady

inc

reas

e in

si

gnal

leve

l may

ind

icat

e a

grad

ual c

hang

e of

the

acou

stic

pro

pert

ies

of th

e co

ntra

st a

gent

in

side

the

sam

ple

volu

me.

One

pla

usib

le e

xpla

nati

on m

ight

be

that

the

thin

enc

apsu

lati

ng

shel

l ge

ts s

ligh

tly

mor

e fl

exib

le d

urin

g th

e os

cill

atio

ns o

f ea

ch s

ubpu

lse

and

thus

res

ults

54

Pap

erB

Fig

ure

3.21

: U

pper

pan

el:

Env

elop

e o

f m

easu

red

thir

d ha

rmon

ic c

ompo

nent

, ob

tain

ed

wit

h th

e na

rrow

band

ban

dpas

s fil

ter,

from

a 4

bit

Bar

ker

sequ

ence

. T

hird

har

mon

ic C

NR

is

app

roxi

mat

ely

10 d

B b

efor

e pu

lse

com

pres

sion

. L

ower

pan

el:

Res

ult

afte

r ap

plyi

ng

the

stab

iliz

ed i

nver

se f

ilter

on

the

sign

al i

n th

e up

per

pane

l. T

hird

har

mon

ic C

NR

is

appr

oxim

atel

y 17

dB

aft

er p

ulse

com

pres

sion

.

Fig

ure

3.22

: U

pper

pan

el:

Env

elop

e o

f m

easu

red

thir

d ha

rmon

ic c

ompo

nent

, ob

tain

ed

wit

h th

e na

rrow

band

ban

dpas

s fil

ter,

from

a 4

bit

Bar

ker

sequ

ence

. T

hird

har

mon

ic C

NR

is

app

roxi

mat

ely

16 d

B b

efor

e pu

lse

com

pres

sion

. L

ower

pan

el:

Res

ult

afte

r ap

plyi

ng

the

stab

iliz

ed i

nver

se f

ilter

on

the

sign

al i

n th

e up

per

pane

l. T

hird

har

mon

ic C

NR

is

appr

oxim

atel

y 23

dB

aft

er p

ulse

com

pres

sion

.

3.5

Con

clus

ions

55

Fig

ure

3.23

: U

pper

pan

el:

Env

elop

e o

f m

easu

red

thir

d ha

rmon

ic c

ompo

nent

, ob

tain

ed

wit

h th

e na

rrow

band

ban

dpas

s fi

lter,

from

a 4

bit

Bar

ker

sequ

ence

. L

ower

pan

el:

Res

ult

afte

r ap

plyi

ng th

e st

abil

ized

inve

rse

filte

r on

the

sign

al in

the

upp

er p

anel

.

in a

sli

ght i

ncre

ase

in th

e sc

atte

ring

cro

ss s

ecti

on f

rom

the

con

tras

t age

nt.

The

low

er p

anel

o

f F

ig.

3.23

sho

ws

the

resu

lt a

fter

pul

se c

ompr

essi

on a

nd b

y co

mpa

ring

wit

h th

e up

per

pane

l in

the

fig

ure,

we

see

that

the

CN

R is

app

roxi

mat

ely

the

sam

e be

fore

and

aft

er p

ulse

co

mpr

essi

on is

per

form

ed.

The

upp

er p

anel

of F

ig. 3

.24

show

s a

fina

l ex

ampl

e o

f the

thir

d ha

rmon

ic e

nvel

ope

from

a

rece

ived

sca

tter

ed B

arke

r se

quen

ce.

We

noti

ce th

at th

e tw

o la

st re

ceiv

ed s

ubpu

lses

, occ

ur­

ring

bet

wee

n 29

and

37

J-tS

on t

he t

ime

axis

, ar

e si

gnif

ican

tly

low

er in

am

plit

ude

than

the

tw

o fi

rst

subp

ulse

s in

the

seq

uenc

e. T

his

effe

ct m

ight

als

o be

a r

esul

t o

f a

chan

ge i

n th

e ac

oust

ic p

rope

rtie

s o

f th

e co

ntra

st a

gent

. T

he C

NR

in

the

uppe

r pa

nel

is a

ppro

xim

atel

y 19

dB

for

the

two

firs

t sub

puls

es a

nd h

ence

too

high

to e

xpla

in th

e si

gnif

ican

t red

ucti

on in

am

plit

ude

of

the

two

last

sub

puls

es in

the

seq

uenc

e as

res

ulti

ng f

rom

des

truc

tive

inte

rfer

­en

ce b

etw

een

the

cont

rast

sig

nal a

nd t

he n

oise

sig

nal.

In t

he l

ower

pan

el o

f Fig

. 3.

24, w

e se

e th

e re

sult

aft

er a

pply

ing

the

stab

iliz

ed in

vers

e fi

lter.

We

noti

ce th

at,

agai

n, t

here

is li

ttle

or

no

impr

ovem

ent i

n th

e C

NR

in th

e co

mpr

esse

d se

quen

ce r

elat

ive

to t

he u

ncom

pres

sed

sequ

ence

.

3.5

Con

clus

ions

The

app

lica

tion

of a

fou

r bi

t Bar

ker

code

to i

ncre

ase

the

CN

R fo

r th

ird

harm

onic

con

tras

t ag

ent

imag

ing

has

been

stu

died

num

eric

ally

and

exp

erim

enta

lly.

Res

ults

fro

m n

umer

ical

si

mul

atio

ns, a

ddin

g va

riou

s le

vels

ofu

ncor

rela

ted

nois

e to

a fo

ur b

it B

arke

r seq

uenc

e sc

at­

tere

d fr

om a

con

tras

t bub

ble

and

appl

ying

a s

tabi

lize

d in

vers

e fi

lter

indi

cate

d an

inc

reas

e in

the

thir

d ha

rmon

ic C

NR

bet

wee

n 6

and

9 dB

aft

er p

ulse

com

pres

sion

. In

vit

ro m

easu

re-

56

Pap

erB

Fig

ure

3.24

: U

pper

pan

el:

Env

elop

e o

f m

easu

red

thir

d ha

rmon

ic c

ompo

nent

, ob

tain

ed

wit

h th

e na

rrow

band

ban

dpas

s fil

ter,

from

a 4

bit

Bar

ker

sequ

ence

. L

ower

pan

el:

Res

ult

afte

r ap

plyi

ng t

he s

tabi

lize

d in

vers

e fi

lter

on t

he s

igna

l in

the

upp

er p

anel

.

men

ts p

erfo

rmed

on

a ti

ssue

mim

icki

ng p

hant

om w

ith

the

cont

rast

age

nt S

onaz

oid,

car

ried

ou

t usi

ng t

he s

ame

four

bit

Bar

ker

sequ

ence

, ty

pica

lly

gave

sim

ilar

impr

ovem

ents

in

the

thir

d ha

rmon

ic C

NR

whe

n th

e ac

oust

ic p

rope

rtie

s o

f th

e co

ntra

st a

gent

wer

e as

sum

ed to

be

clo

se to

con

stan

t for

the

who

le B

arke

r se

quen

ce,

and

resu

lts

from

mea

sure

men

ts w

ere

henc

e in

goo

d ag

reem

ent

wit

h th

e nu

mer

ical

res

ults

. R

ecei

ved

sequ

ence

s fo

r w

hich

the

ac

oust

ic p

rope

rtie

s o

f th

e co

ntra

st b

ubbl

es w

ere

beli

eved

to c

hang

e du

ring

ins

onif

icat

ion

by t

he B

arke

r se

quen

ce s

how

ed l

ittl

e or

no

impr

ovem

ent

in C

NR

whe

n co

mpa

ring

the

co

mpr

esse

d an

d un

com

pres

sed

sign

als.

A l

onge

r B

arke

r se

quen

ce w

ould

hav

e th

e po

ten­

tial

to

furt

her

incr

ease

the

CN

R.

Usi

ng a

sig

nifi

cant

ly l

onge

r se

quen

ce o

ne w

ould

, ho

ever

, al

so p

resu

mab

ly e

ncou

nter

pro

blem

s re

gard

ing

bubb

le m

otio

n du

ring

ins

onif

icat

ion

by t

he s

eque

nce.

The

pos

sibi

lity

that

the

cont

rast

bub

bles

wou

ld,

to s

ome

exte

nt, c

hang

e th

eir

acou

stic

pro

pert

ies

duri

ng in

soni

fica

tion

by

such

a lo

ng s

eque

nce

is a

lso

grea

ter

than

fo

r th

e sh

orte

r cod

e. B

oth

thes

e ef

fect

s ar

e in

the

pres

ent p

aper

sho

wn

to p

oten

tial

ly h

ave

a m

ajor

deg

radi

ng e

ffec

t on

the

rang

e si

delo

be le

vel o

btai

ned

in th

e fi

nal

com

pres

sed

puls

e.

For

seq

uenc

es w

ith

a lo

w C

NR

bef

ore

puls

e co

mpr

essi

on, t

he a

djus

tabl

e st

abil

ized

inve

rse

filte

r is

set

so

that

the

filt

er i

s sh

ifte

d to

war

ds a

mat

ched

filt

er,

whi

le f

or s

eque

nces

wit

h hi

gher

CN

R b

efor

e pu

lse

com

pres

sion

, th

e fi

lter

mor

e cl

osel

y re

sem

bles

the

inv

erse

filt

er.

3.6

Ack

now

ledg

men

ts

Thi

s w

ork

was

sup

port

ed b

y th

e R

esea

rch

Cou

ncil

of N

orw

ay.

Ch

apte

r 4

A N

ew D

ual

Fre

qu

ency

Ban

d C

ontr

ast

Age

nt

Det

ecti

on T

echn

ique

Abs

trac

t

Ult

raso

und

wav

e pr

opag

atio

n in

sof

t tis

sue

and

scat

teri

ng f

rom

ult

raso

und

cont

rast

age

nts

are

both

kno

wn

to b

e no

nlin

ear

proc

esse

s at

fre

quen

cies

and

am

plit

udes

com

mon

ly a

p­pl

ied

in m

edic

al u

ltra

soun

d im

agin

g.

The

fac

t th

at t

he c

ontr

ast

agen

ts u

sual

ly r

espo

nd

muc

h m

ore

nonl

inea

rly

than

sof

t tis

sue

has

give

n ri

se t

o th

e co

ntra

st h

arm

onic

im

agin

g te

chni

ques

whe

re o

nly

a ha

rmon

ic c

ompo

nent

of

the

tota

l sc

atte

red

sign

al,

typi

call

y th

e se

cond

har

mon

ic c

ompo

nent

, is

use

d fo

r im

age

reco

nstr

ucti

on.

In a

med

ical

ult

raso

und

imag

ing

situ

atio

n, b

oth

the

harm

onic

sca

tter

ed ti

ssue

sig

nal a

nd t

he u

ncor

rela

ted

ther

mal

an

d el

ectr

onic

noi

se s

igna

l w

ill

pote

ntia

lly

mas

k th

e sc

atte

red

cont

rast

har

mon

ic s

igna

l. T

he p

rese

nt p

aper

dea

ls w

ith

a ne

w c

ontr

ast

hatm

onic

im

agin

g te

chni

que,

des

igne

d to

in

crea

se t

he c

ontr

ast

harm

onic

sig

nal

rela

tive

to b

oth

the

nois

e si

gnal

as

wel

l as

the

har

­m

onic

tiss

ue s

igna

l. In

ord

er to

ach

ieve

this

, the

new

met

hod

mak

es u

se o

f dua

l fre

quen

cy

band

tran

smit

pul

ses,

tog

ethe

r w

ith

a ge

nera

l pu

lse

inve

rsio

n te

chni

que.

4.1

Intr

oduc

tion

Wav

e pr

opag

atio

n in

sof

t ti

ssue

is

usua

lly

a w

eak

nonl

inea

r pr

oces

s fo

r fr

eque

ncie

s an

d am

plitu

des

typi

call

y us

ed i

n m

edic

al u

ltra

soun

d im

agin

g, a

nd t

he t

rans

mit

ted

puls

e is

sl

ight

ly d

isto

rted

as

it p

ropa

gate

s th

roug

h th

e m

ediu

m.

Alt

houg

h th

e lo

cal e

ffec

t of

non­

linea

rity

is s

mal

l, th

e cu

mul

ativ

e ef

fect

whe

n th

e w

ave

has

prop

agat

ed s

ever

al w

avel

engt

hs

is n

ot n

eglig

ible

. If

the

wav

e tr

ansm

itte

d fr

om a

n ul

tras

ound

tra

nsdu

cer

has

its e

nerg

y co

ncen

trat

ed in

som

e fu

ndam

enta

l fr

eque

ncy

band

, th

e no

nlin

eari

ty o

f wav

e pr

opag

atio

n gi

ves

rise

to

harm

onic

s o

f th

is f

unda

men

tal

band

[3,

Cha

pter

12]

[30

, C

hapt

er 1

1].

The

58

Pap

er C

leve

l of r

ecei

ved

seco

nd h

arm

onic

com

pone

nt fr

om t

issu

e is

typ

ical

ly f

ound

to b

e ar

ound

20

dB

bel

ow t

he l

evel

of

the

fund

amen

tal

com

pone

nt b

ut t

his

leve

l de

pend

s on

aco

usti

c pa

ram

eter

s in

add

itio

n to

im

agin

g pa

ram

eter

s su

ch a

s fr

eque

ncy,

am

plit

ude,

and

dep

th o

f im

agin

g.

Ult

raso

und

scat

teri

ng f

rom

sof

t tis

sue

is a

ssum

ed to

be

a li

near

pro

cess

so

that

the

ener

gy

rece

ived

fro

m t

issu

e ou

tsid

e th

e fu

ndam

enta

l tr

ansm

itte

d ba

nd is

gen

erat

ed in

the

forw

ard

nonl

inea

r pr

opag

atio

n o

f th

e w

ave

unle

ss a

spr

eadi

ng o

f sca

tter

ed c

ontr

ast

sign

al b

eyon

d th

e ac

tual

con

tras

t-fi

lled

reg

ion

occu

rs.

Alt

houg

h m

uch

wea

ker

than

the

sec

ond

harm

onic

co

mpo

nent

, hig

her

harm

onic

s m

ay a

lso

exis

t in

the

scat

tere

d ti

ssue

sig

nal.

Med

ical

ult

raso

und

cont

rast

age

nts

are

typi

call

y m

ade

as s

olut

ions

of

smal

l ga

s bu

bble

s (d

iam

rv 3

JLm

) in

a f

luid

and

sca

tter

ing

from

suc

h ga

s bu

bble

s is

pot

enti

ally

a s

tron

g no

nlin

ear

proc

ess

[23]

[11

] [1

2].

The

hig

h co

mpl

ianc

e o

f th

e ga

s bu

bble

s re

lati

ve to

sof

t ti

ssue

mak

e th

em h

ighl

y ef

fect

ive

scat

tere

rs o

f ac

oust

ic e

nerg

y.

A s

pher

ical

gas

bub

ble

in a

liq

uid

unde

rgoi

ng s

impl

e ha

rmon

ic m

otio

n ha

s a

natu

ral

or

reso

nanc

e fr

eque

ncy

firs

t ca

lcul

ated

by

Min

naer

t [2

7].

Whe

n dr

iven

by

acou

stic

pul

ses

used

in

med

ical

ult

raso

und

imag

ing,

and

esp

ecia

lly

whe

n su

bjec

ted

to p

ulse

s w

ith

fre­

quen

cy c

ompo

nent

s cl

ose

to o

r be

low

its

res

onan

ce f

requ

ency

, th

e ga

s bu

bble

rep

rese

nts

a hi

ghly

non

line

ar s

catt

erer

of

ultr

asou

nd g

ivin

g ri

se t

o th

e co

ntra

st h

arm

onic

im

agin

g te

chni

ques

[35

].

The

Con

tras

t to

Tis

sue

Rat

io (

CT

R),

or

spec

ific

ity, i

s de

fine

d as

the

rat

io o

f si

gnal

pow

er

from

the

con

tras

t ag

ent

in a

reg

ion

to t

he s

igna

l po

wer

fro

m t

he t

issu

e in

tha

t re

gion

. In

or

der

to a

dequ

atel

y di

ffer

enti

ate

cont

rast

sig

nal

and

tiss

ue s

igna

l it

is t

here

fore

nec

essa

ry

wit

h a

high

CT

R.

Con

tras

t bu

bble

s ge

nera

lly

resp

ond

muc

h m

ore

nonl

inea

rly

than

sof

t ti

ssue

whe

n su

bjec

ted

to u

ltra

soun

d pu

lses

and

the

CT

R t

ypic

ally

inc

reas

es a

s hi

gher

ha

rmon

ic c

ompo

nent

s ar

e co

nsid

ered

.

Ult

raso

und

puls

e ec

ho i

mag

ing

syst

ems

are

infe

sted

by

ther

mal

and

ele

ctro

nic

nois

e an

d th

e C

ontr

ast

to N

oise

Rat

io (

CN

R),

or

sens

itivi

ty,

is d

efin

ed a

s th

e ra

tio o

f si

gnal

pow

er

from

the

con

tras

t ag

ent

in a

reg

ion

to t

he n

oise

pow

er i

n th

at r

egio

n.

The

the

rmal

and

el

ectr

onic

noi

se s

igna

l (n

oise

not

cor

rela

ted

wit

h th

e tr

ansm

itte

d si

gnal

) ca

n be

con

sid­

ered

con

stan

t ove

r th

e fr

eque

ncy

rang

e o

f in

tere

st i

n m

edic

al u

ltra

soun

d im

agin

g. I

n th

e re

ceiv

ed s

igna

l fr

om a

con

tras

t bub

ble,

the

am

plit

ude

of

harm

onic

com

pone

nts

typi

call

y de

crea

ses

as h

ighe

r har

mon

ic c

ompo

nent

s ar

e co

nsid

ered

and

the

CN

R th

us d

ecre

ases

for

hi

gher

har

mon

ic c

ompo

nent

s.

In a

n im

agin

ed i

mag

ing

situ

atio

n w

itho

ut ti

ssue

, th

e be

st C

NR

wou

ld b

e ac

hiev

ed t

rans

­m

itti

ng a

hig

h am

plit

ude

puls

e an

d th

en u

sing

the

tot

al r

ecei

ved

sign

al f

or i

mag

e re

con­

stru

ctio

n o

f th

e co

ntra

st a

gent

. A

hig

h am

plit

ude

tran

smit

pul

se i

s, h

owev

er,

lim

ited

by

pati

ent

safe

ty [

5] [

8].

Als

o, t

he b

ubbl

es t

end

to g

et d

estr

oyed

eve

n du

ring

ins

onif

icat

ion

by r

elat

ivel

y lo

w a

mpl

itud

e ul

tras

ound

pul

ses.

O

n th

e ot

her h

and,

in a

n im

agin

ed n

oise

free

sit

uati

on, t

he b

est C

TR

wou

ld b

e ac

hiev

ed

4.2M

etho

d 59

by t

rans

mit

ting

a l

ow a

mpl

itud

e pu

lse,

mak

ing

the

tiss

ue b

ehav

e ap

prox

imat

ely

line

arly

w

hile

sti

ll d

rivi

ng th

e bu

bble

s in

to n

onli

near

osc

illa

tion

s an

d us

ing

the

thir

d or

hig

her h

ar­

mon

ic c

ompo

nent

of

the

rece

ived

sig

nal

for

imag

e re

cons

truc

tion

. In

an

actu

al i

mag

ing

situ

atio

n, ti

ssue

sig

nals

and

noi

se s

igna

ls a

re p

rese

nt,

and

the

CT

R a

nd C

NR

bot

h ne

ed to

be

as

high

as

poss

ible

in o

rder

to c

onst

ruct

a r

elia

ble

and

adeq

uate

im

age

of

the

cont

rast

ag

ent

adde

d to

the

blo

od.

The

pre

sent

pap

er d

escr

ibes

a n

ew c

ontr

ast h

arm

onic

im

agin

g m

etho

d de

sign

ed to

sig

nif­

ican

tly

incr

ease

the

CN

R a

t th

e th

ird

or f

ourt

h ha

rmon

ic c

ompo

nent

whi

le m

aint

aini

ng,

or e

ven

incr

easi

ng,

the

pote

ntia

lly

good

CT

R f

ound

for

the

se h

arm

onic

com

pone

nts.

4.2

Met

hod

4.2.

1 W

ave

Pro

paga

tion

and

Sca

tter

ing

from

Sof

t T

issu

e

Ult

raso

und

wav

e pr

opag

atio

n in

sof

t tis

sue

can,

as

indi

cate

d, b

e co

nsid

ered

a w

eak

nonl

in­

ear

proc

ess

for

ampl

itud

es a

nd f

requ

enci

es c

omm

on in

med

ical

ult

raso

und

imag

ing.

The

lo

cal n

onli

near

ity

is lo

w b

ut th

e di

stor

tion

acc

umul

ates

gra

dual

ly in

the

forw

ard

prop

agat

­in

g w

ave.

The

tiss

ue e

last

icit

y be

have

s sl

ight

ly n

onli

near

ly a

nd b

y do

ing

a T

aylo

r se

ries

ex

pans

ion

of th

e eq

uati

on o

f st

ate

P =

P(p

, s)

alon

g an

ise

ntro

pe s

= s

0 [1

6, C

hapt

er

2],

whe

re P

is

the

sum

of

the

ambi

ent

and

acou

stic

pre

ssur

e an

d p

is t

he d

ensi

ty o

f th

e m

ediu

m,

we

can

incl

ude

this

non

line

arit

y. B

y di

scar

ding

ter

ms

of

orde

r hi

gher

tha

n th

e se

cond

in t

he T

aylo

r se

ries

exp

ansi

on,

we

obta

in th

e fo

llow

ing

nonl

inea

r ti

ssue

ela

stic

ity

equa

tion

[3,

Cha

pter

12.

3]

-\7

·-!i(

r, t)

= ~p(

r, t)-

f3{~p(r, t)

}2 +

h * ~

p(r,

t)

t (4

.1)

whe

re 1$

is p

arti

cle

disp

lace

men

t, ~

is t

he c

ompr

essi

bili

ty o

f th

e m

ediu

m, p

is

the

acou

s­tic

pre

ssur

e, (

3 is

a n

onli

near

ity

para

met

er,

h is

a c

ausa

llow

pass

filt

er,

and

f an

d t

are

the

spac

e an

d ti

me

coor

dina

tes,

res

pect

ivel

y. T

he f

irst

and

sec

ond

term

on

the

righ

t-ha

nd

side

of E

q. 4

.1 r

epre

sent

the

line

ar a

nd n

onli

near

tis

sue

elas

ticity

, res

pect

ivel

y, w

hile

the

la

st c

onvo

luti

on t

erm

is

taki

ng c

are

of

acou

stic

abs

orpt

ion.

B

y ap

plyi

ng t

his

nonl

inea

r ti

ssue

ela

stic

ity

equa

tion

we

may

der

ive

the

foll

owin

g no

nlin

ear

equa

tion

for

wav

e pr

op­

agat

ion

[3, C

hapt

er 1

2.3]

(4.2

)

whe

re c

is th

e sp

eed

of s

ound

in th

e pr

opag

atio

n m

ediu

m.

We

obse

rve

that

the

nonl

inea

r­it

y de

scri

bed

by t

his

wav

e eq

uati

on i

s pr

oduc

ed b

y a

quad

rati

c ef

fect

and

tha

t th

is e

ffec

t en

ters

as

a so

urce

ter

m i

n th

e ho

mog

eneo

us w

ave

equa

tion

obt

aine

d by

set

ting

the

ter

m

on r

ight

-han

d si

de in

Eq.

4.2

equ

al to

zer

o.

60

Pap

er C

Fir

st c

alcu

lati

ng th

e tr

ansm

itte

d fu

ndam

enta

l fi

eld

from

the

hom

ogen

eous

wav

e eq

ua­

tion

and

usin

g th

is f

ield

as

a so

urce

ter

m i

n E

q. 4

.2 t

o ca

lcul

ate

the

tran

smit

ted

seco

nd

harm

onic

fie

ld i

s of

ten

refe

rred

to a

s th

e qu

asi-

line

ar a

ppro

xim

atio

n o

f the

non

line

ar w

ave

equa

tion.

Thi

s qu

asi-

line

ar a

ppro

xim

atio

n, w

hich

is

a fi

rst

appr

oxim

atio

n to

the

non

lin­

ear

wav

e eq

uati

on,

is t

ypic

ally

goo

d w

hen

the

nonl

inea

r di

stor

tion

is r

elat

ivel

y lo

w a

s in

ab

sorb

ing

soft

tiss

ue.

The

sig

nal

scat

tere

d fr

om s

oft

tiss

ue i

s a

resu

lt o

f th

e in

here

nt i

nhom

ogen

eous

nat

ure

of

the

prop

agat

ion

med

ium

. T

here

is

a sp

atia

l va

riat

ion

of th

e m

ass

dens

ity

and

com

­pr

essi

bili

ty o

n se

vera

l sca

les

resu

ltin

g in

sca

tter

ing

of t

he t

rans

mit

ted

acou

stic

wav

e. T

he

acou

stic

sca

tter

ing

proc

ess

from

sof

t ti

ssue

is

assu

med

to

be l

inea

r an

d th

e pr

esen

ce o

f hi

gher

har

mon

ic c

ompo

nent

s in

the

sca

tter

ed t

issu

e si

gnal

is,

unl

ess

spre

adin

g o

f sc

at­

tere

d co

ntra

st a

gent

sig

nal b

eyon

d a

cont

rast

-fil

led

regi

on o

ccur

s, t

here

fore

a r

esul

t of

the

nonl

inea

rity

in th

e fo

rwar

d pr

opag

atin

g w

ave

[3, C

hapt

er 7

].

4.2.

2 Sc

atte

ring

from

Con

tras

t Age

nts

Ult

raso

und

cont

rast

age

nts

gene

rall

y re

spon

d m

uch

mor

e no

nlin

earl

y th

an s

oft

tiss

ue

whe

n su

bjec

t to

an

imag

ing

ultr

asou

nd p

ulse

. H

ighe

r or

der

term

s w

ill

not

be n

egli

gibl

e in

the

sca

tter

ed s

igna

l an

d a

quas

i-li

near

app

roxi

mat

ion

of t

he n

onlin

eari

ty,

as e

xpla

ined

in

Sec

. 4.2

.1, i

s th

eref

ore

usua

lly

not a

goo

d ap

prox

imat

ion

for

the

cont

rast

age

nt.

A w

ell

know

n no

nlin

ear

equa

tion

for

the

flu

id s

urro

undi

ng a

sph

eric

al p

ulsa

ting

gas

bub

ble

is

the

Ray

leig

h-P

less

et e

quat

ion

[33]

[31

]. T

he r

adiu

s os

cill

atio

n of

the

bubb

le i

s in

thi

s eq

uati

on e

xpre

ssed

as

3 p(

aii +

2a?) =

p(

a, t)-

Po

-p;

(t)

(4.3

)

whe

re a

is

the

radi

us, a

and

ii i

s th

e ve

loci

ty a

nd a

ccel

erat

ion

of

the

bubb

le r

adiu

s, p

is

the

den

sity

of

the

surr

ound

ing

flui

d, P

0 is

the

am

bien

t eq

uili

briu

m p

ress

ure,

p;(

t) i

s th

e in

cide

nt d

rivi

ng p

ress

ure,

and

p( a

, t)

is t

he p

ress

ure

at t

he b

ubbl

e su

rfac

e. N

onli

near

el

asti

city

of

the

gas

and

the

enca

psul

atin

g th

in s

hell,

sur

face

ten

sion

, an

d vi

scos

ity

may

be

inco

rpor

ated

in t

he f

irst

ter

m o

n th

e ri

ght-

hand

sid

e in

Eq.

4.3

.

A n

umer

ical

mod

el d

eriv

ed b

y A

ngel

sen

et a

l [ 4

] ha

s be

en u

sed

for

calc

ulat

ing

bubb

le

radi

us o

scil

lati

ons

and

scat

tere

d pr

essu

re i

n th

e pr

esen

t pa

per.

Thi

s m

odel

inc

lude

s an

eq

uati

on f

or t

he r

elat

ion

betw

een

pres

sure

and

rad

ial s

trai

n in

a th

in s

hell

enc

apsu

lati

ng a

ga

s bu

bble

. T

he m

odel

als

o al

low

s fo

r a

fini

te s

peed

of s

ound

in t

he m

ediu

m s

urro

undi

ng

the

bubb

le,

thus

tak

ing

radi

atio

n lo

sses

fro

m t

he b

ubbl

e in

to a

ccou

nt.

Oth

erw

ise

this

m

odel

is

com

para

ble

to t

he w

ell

know

n R

ayle

igh-

Ple

sset

equ

atio

n an

d th

e tw

o m

odel

s gi

ve s

imil

ar re

sults

for

sm

all a

mpl

itud

e ra

dius

osc

illa

tion

s of

the

cont

rast

bub

ble.

4.2

Met

hod

61

4.2.

3 A

New

Pul

se I

nver

sion

Tec

hniq

ue

In t

he c

onve

ntio

nal

puls

e in

vers

ion

tech

niqu

e [2

0],

two

sing

le f

requ

ency

ban

d pu

lses

are

tr

ansm

itte

d, s

catte

red,

and

rec

eive

d se

para

tely

whe

re t

he p

olar

ity

of t

he s

econ

d tr

ansm

it­

ted

puls

e is

inv

erte

d re

lativ

e to

the

firs

t. T

he tw

o re

ceiv

ed p

ulse

s ar

e th

en a

dded

tog

ethe

r an

d, i

n th

e id

eal

situ

atio

n, a

ll od

d ha

rmon

ic c

ompo

nent

s in

the

sum

med

sig

nal,

incl

ud­

ing

the

fund

amen

tal

com

pone

nt,

are

canc

eled

whi

le t

he e

ven

harm

onic

com

pone

nts

are

pres

erve

d. I

n th

is w

ay t

he c

onve

ntio

nal

puls

e in

vers

ion

tech

niqu

e ty

pica

lly

turn

s ou

t as

a

seco

nd h

arm

onic

tec

hniq

ue,

usin

g th

e se

cond

har

mon

ic c

ompo

nent

for

im

age

reco

n­st

ruct

ion.

The

sec

ond

harm

onic

com

pone

nt is

, in

the

sum

mat

ion,

ide

ally

inc

reas

ed b

y 6

dB f

or t

he c

ontr

ast

sign

al a

s w

ell

as t

he t

issu

e si

gnal

, he

nce

incr

easi

ng t

he C

ontr

ast

to

Noi

se R

atio

(C

NR

) by

3 d

B a

ssum

ing

a w

hite

noi

se s

igna

l, bu

t giv

ing

the

sam

e C

ontr

ast

to T

issu

e R

atio

(C

TR

) re

lativ

e to

the

seco

nd h

arm

onic

imag

ing

tech

niqu

e w

here

onl

y on

e tr

ansm

it p

ulse

is a

pplie

d an

d th

e re

ceiv

ed s

econ

d ha

rmon

ic s

igna

l co

mpo

nent

is

filte

red

out a

nd u

sed

for

imag

e re

cons

truc

tion.

The

pre

sent

pap

er d

eals

with

a n

ew a

nd m

ore

cont

rast

spe

cifi

c pu

lse

inve

rsio

n te

chni

que

whe

re d

ual

freq

uenc

y ba

nd p

ulse

s, w

ith

freq

uenc

y co

mpo

nent

s ov

erla

ppin

g in

tim

e, a

re

tran

smitt

ed.

Fir

st,

a pu

lse

cont

aini

ng t

wo

freq

uenc

y ba

nds,

in

part

icul

ar a

fun

dam

enta

l ba

nd a

nd i

ts s

econ

d ha

rmon

ic b

and,

is

tran

smit

ted,

and

the

sca

tter

ed s

igna

l is

rec

eive

d an

d st

ored

. T

hen

a se

cond

pul

se i

s tr

ansm

itte

d, w

here

the

pol

arit

y on

eit

her

the

firs

t or

se

cond

fre

quen

cy b

and

is i

nver

ted

rela

tive

to t

he f

irst

tra

nsm

itte

d pu

lse,

and

a g

ener

al

form

of p

ulse

inve

rsio

n is

per

form

ed o

n th

e re

ceiv

ed s

catt

ered

sig

nals

.

By

perf

orm

ing

this

new

pul

se in

vers

ion

tech

niqu

e, n

onli

near

itie

s de

scri

bed

by t

he q

uasi

­li

near

app

roxi

mat

ion

are

canc

eled

. T

his

grea

tly

favo

rs i

mag

ing,

and

in

part

icul

ar th

ird

or

four

th h

arm

onic

im

agin

g, o

f a

regi

on c

onta

inin

g co

ntra

st a

gent

s em

bedd

ed i

n so

ft ti

ssue

si

nce

the

cont

rast

age

nts

are

assu

med

to

resp

ond

muc

h m

ore

nonl

inea

rly

than

the

sof

t ti

ssue

whe

n su

bjec

t to

the

tra

nsm

it p

ulse

s. T

he tw

o tr

ansm

itte

d pu

lses

may

for

exa

mpl

e be

exp

ress

ed a

s

P1(t)

= a

1(t)

sin(

wt)

+ az

(t)s

in(2

wt +

¢)

pz(t

) =

a3(

t)si

n(w

t)-

a4(t

)sin

(2w

t + ¢)

(4.4

)

(4.5

)

whe

re a

n(t)

are

pos

itive

am

plit

ude

func

tions

, w

is t

he a

ngul

ar f

requ

ency

, an

d ¢

is a

n ar

bitr

ary

phas

e an

gle.

The

fac

t th

at a

3(t)

may

be

diff

eren

t fr

om a

1(t

) an

d a 4

(t) m

ay b

e di

ffer

ent f

rom

a2(t)

giv

es t

he f

lexi

bilit

y to

fur

ther

uti

lize

the

assu

mpt

ion

of s

tron

g ve

rsus

w

eak

nonl

inea

rity

of

the

prop

agat

ion

med

ium

. If

the

rece

ived

sig

nals

are

mod

eled

as

pow

er s

erie

s ex

pans

ions

of t

he tr

ansm

itte

d si

gnal

, the

y m

ay b

e w

ritte

n

2

St(t)

= L

)n(t

)pn

(t-

T)

(4.6

) n

=l

(X)

Sc(t)

= L

Cn(

t)pn

(t-

T)

(4.7

) n

=l

62

Pap

er C

for

the

tiss

ue s

igna

l an

d co

ntra

st s

igna

l, re

spec

tivel

y.

Her

e p

is t

he t

rans

mit

ted

sign

al,

bn(t)

and

cn(

t) ar

e am

plit

ude

func

tions

, an

d T

is

a t

ime

dela

y.

If a

3(t)

=

a1(t

) an

d a 4

(t) =

a2(t)

in

Eq.

4.4

and

4.5

, su

mm

ing

the

two

rece

ived

sig

nals

, B

tl a

nd s

t2,

from

a

regi

on o

f so

ft t

issu

e no

t co

ntai

ning

con

tras

t ag

ents

, an

d w

here

non

line

arit

ies

henc

e ar

e as

sum

ed to

be

desc

ribe

d by

the

qua

si-l

inea

r ap

prox

imat

ion,

giv

es

sn(t

) +

st2(

t) =

2b

1(t

)al(

t)si

n(w

t)

+ 2

b2(t

)ai(

t)si

n2 (wt)

+ 2b

2(t)

a~(t

)sin

2(2

wt +

¢).

(4

.8)

Her

e, t

he f

irst

ter

m o

n th

e ri

ght-

hand

sid

e is

the

lin

ear

com

pone

nt i

n th

e su

mm

ed s

ig­

nal

whi

le t

he s

econ

d an

d th

ird

term

s ar

e th

e fi

rst

orde

r no

nlin

ear

harm

onic

com

pone

nts,

i.e

. th

e re

sult

of

the

quad

rati

c ef

fect

in

Eq.

4.2

. T

he l

inea

r co

mpo

nent

of t

he t

rans

mit

ted

seco

nd h

arm

onic

ban

d is

can

cele

d in

the

sum

mat

ion

proc

ess,

due

to

the

phas

e in

vers

ion

in E

q. 4

.4 a

nd 4

.5,

whe

reas

the

lin

ear

com

pone

nt o

f th

e tr

ansm

itte

d fu

ndam

enta

l ba

nd

is d

oubl

ed.

The

tw

o no

nlin

ear

term

s co

nsis

t o

f a

seco

nd h

arm

onic

com

pone

nt f

rom

the

tr

ansm

itte

d fu

ndam

enta

l ba

nd a

nd a

sec

ond

harm

onic

com

pone

nt f

rom

the

tra

nsm

itte

d se

cond

har

mon

ic b

and

(i.e.

a

four

th h

arm

onic

com

pone

nt).

The

non

line

ar s

um a

nd d

if­

fere

nce

freq

uenc

ies,

pro

duci

ng th

ird

and

fund

amen

tal

harm

onic

com

pone

nts,

hav

e he

nce

been

can

cele

d in

the

pul

se i

nver

sion

pro

cess

for

a p

ropa

gati

on m

ediu

m o

f w

eak

nonl

in­

eari

ty,

such

as

soft

tiss

ue.

Str

ong

nonl

inea

r sc

atte

rers

, su

ch a

s co

ntra

st a

gent

s, w

ill

not b

e ad

equa

tely

des

crib

ed b

y th

e qu

asi-

line

ar a

ppro

xim

atio

n o

f th

e no

nlin

eari

ty a

nd s

catt

ered

thi

rd h

arm

onic

com

po­

nent

s fr

om t

he b

ubbl

es w

ill n

ot b

e ca

ncel

ed in

the

resu

ltin

g pu

lse

inve

rsio

n pr

oces

s.

In a

dditi

on,

adju

stin

g th

e ar

bitr

ary

phas

e an

gle

in E

q. 4

.4 a

nd 4

.5 o

ne i

s, w

hen

in­

vert

ing

the

pola

rity

of

the

seco

nd h

arm

onic

com

pone

nt,

able

to p

rodu

ce tw

o as

ymm

etri

c tr

ansm

it p

ulse

s w

ith

resp

ect

to p

osit

ive

and

nega

tive

pres

sure

am

plitu

des,

hen

ce a

lter

ing

the

acou

stic

sca

tteri

ng p

rope

rtie

s of

the

cont

rast

age

nt f

or t

he t

wo

tran

smit

ted

puls

es a

s sh

own

in S

ec. 4

.3.3

.

If w

e in

stea

d su

btra

ct th

e tw

o re

ceiv

ed s

igna

ls, S

t 1 a

nd s

t2,

from

a re

gion

of s

oft t

issu

e no

t co

ntai

ning

con

tras

t ag

ents

, an

d w

here

non

line

arit

ies

henc

e ar

e as

sum

ed t

o be

des

crib

ed

by t

he q

uasi

-lin

ear

appr

oxim

atio

n, w

e ob

tain

sn(t

)-St

2(t)

= 2

b 1(t

)a2(

t)si

n(2w

t +

¢)

+ 4b

2(t)

a1(t

)a2(

t)si

n(w

t)si

n(2w

t +

¢).

(4

.9)

Now

, th

e li

near

tra

nsm

itte

d fu

ndam

enta

l ba

nd is

can

cele

d in

the

pul

se i

nver

sion

pro

cess

w

hile

the

lin

ear

tran

smit

ted

seco

nd h

arm

onic

ban

d is

dou

bled

. T

he f

irst

ord

er n

onli

near

te

rm,

seco

nd t

erm

on

the

righ

t-ha

nd s

ide

in E

q. 4

.9,

now

con

sist

s of

a n

onli

near

mix

­in

g te

rm b

etw

een

the

line

ar t

rans

mit

ted

fund

amen

tal

and

seco

nd h

arm

onic

com

pone

nts

prod

ucin

g no

nlin

ear

fund

amen

tal

and

thir

d ha

rmon

ic c

ompo

nent

s. P

erfo

rmin

g a

subt

rac­

tion

inst

ead

of

a su

mm

atio

n of

the

rece

ived

sca

tter

ed s

igna

ls h

ence

can

cels

the

fir

st o

rder

no

nlin

ear

four

th h

arm

onic

com

pone

nts

from

the

sof

t tis

sue.

4.3

Num

eric

al S

imul

atio

ns

63

Bot

h th

e fi

rst

orde

r no

nlin

ear

thir

d an

d fo

urth

har

mon

ic ti

ssue

com

pone

nts

can

pote

ntia

lly

be c

ance

led

by s

ubtr

acti

ng t

he s

catt

ered

sig

nals

fro

m t

wo

iden

tica

l du

al f

requ

ency

ban

d tr

ansm

it p

ulse

s w

here

ther

e is

no

phas

e in

vers

ion

on e

ithe

r the

fun

dam

enta

l no

r th

e se

cond

ha

rmon

ic b

and.

Sub

trac

ting

the

sca

tter

ed s

igna

ls f

rom

tw

o su

ch i

dent

ical

tra

nsm

it p

ulse

s w

ould

, how

ever

, pro

babl

y al

so s

igni

fica

ntly

red

uce

the

scat

tere

d th

ird

and

four

th h

arm

onic

co

mpo

nent

s fr

om t

he c

ontr

ast a

gent

.

4.3

Num

eric

al S

imul

atio

ns

Num

eric

al s

imul

atio

n o

f no

nlin

ear

wav

e pr

opag

atio

n ha

s be

en d

one

usin

g a

sim

ulat

ion

tool

dev

elop

ed i

n ou

r gr

oup

[41]

. T

he s

imul

atio

n pr

ogra

m i

s ca

pabl

e of

mak

ing

a 3-

dim

ensi

onal

sim

ulat

ion

of t

he a

cous

tic

tran

smit

fiel

d fr

om a

n an

nula

r tr

ansd

ucer

incl

udin

g ef

fect

s o

f no

nlin

ear

wav

e pr

opag

atio

n, f

requ

ency

dep

ende

nt a

bsor

ptio

n, a

nd d

iffr

acti

on.

The

non

line

ar e

last

icit

y ef

fect

of

the

prop

agat

ion

med

ium

is

in t

he s

imul

atio

n pr

ogra

m

not l

imit

ed b

y th

e qu

asi-

line

ar a

ppro

xim

atio

n di

scus

sed

in S

ec.

4.2.

1.

An

annu

lar

tran

sduc

er w

ith

radi

us e

qual

to

1 em

and

a g

eom

etri

c fo

cus

at 8

em

was

us

ed t

o ca

lcul

ate

the

tran

smit

fie

ld w

hen

usin

g ac

oust

ic p

rope

t1ie

s o

f m

uscl

e fo

und

in

the

lite

ratu

re [

13].

T

he t

rans

mit

fie

ld o

n th

e sy

mm

etry

axi

s o

f th

e tr

ansd

ucer

is

then

in

Sec

. 4.

3.2

and

4.3.

3 us

ed t

o ca

lcul

ate

the

scat

tere

d si

gnal

fro

m a

n in

sert

ed "

tiss

ue

scat

tere

r" a

nd a

con

tras

t bub

ble,

res

pect

ivel

y.

Bub

ble

radi

us o

scil

lati

ons

and

scat

tere

d fa

r-fi

eld

pres

sure

pul

ses

wer

e ca

lcul

ated

usi

ng

the

num

eric

al m

odel

dev

elop

ed b

y A

ngel

sen

et a

t [4

].

Aco

usti

c pr

oper

ties

fou

nd i

n th

e li

tera

ture

[37

] [ 1

8] f

or t

he c

ontr

ast a

gent

Son

azoi

d w

ere

used

for

the

cont

rast

bub

ble.

Th

e eq

uili

briu

m r

adiu

s w

as s

et t

o 1.

5 {t

m a

nd t

he r

eson

ance

fre

quen

cy o

f th

e bu

bble

is

then

ar

ound

4 M

Hz.

4.3.

1 T

he T

rans

mit

Fie

ld

Fir

st,

a si

ngle

fre

quen

cy b

and

1 M

Hz

tran

smit

pul

se,

desc

ribe

d by

Eq.

4.4

whe

re a

2(t

) =

0, i

s us

ed a

s a

sour

ce o

n th

e an

nula

r tr

ansd

ucer

and

the

axi

sym

met

ric

tran

smit

fie

ld i

s ca

l­cu

late

d. F

ig.

4.1

depi

cts

the

obta

ined

fun

dam

enta

l an

d se

cond

har

mon

ic t

rans

mit

fie

ld i

n de

cibe

l sc

ale,

lef

t an

d ri

ght

pane

l, re

spec

tive

ly.

The

hor

izon

tal

axis

is

the

late

ral

dire

ctio

n w

hile

the

ver

tica

l ax

is i

s th

e ra

nge

dire

ctio

n. T

he d

ynam

ic r

ange

is

30 d

B i

n bo

th p

anel

s bu

t th

e se

cond

har

mon

ic f

ield

is

plot

ted

in a

dyn

amic

sca

le w

hich

is

20 d

B b

elow

the

fu

ndam

enta

l fi

eld.

We

noti

ce t

hat

the

seco

nd h

arm

onic

fie

ld b

uild

s up

gra

dual

ly i

n ra

nge

dire

ctio

n an

d th

at i

ts i

nten

sity

is

arou

nd 2

5 dB

bel

ow t

he i

nten

sity

of

the

fund

amen

tal

fiel

d.

A d

ual

freq

uenc

y ba

nd p

ulse

, de

scri

bed

by E

q. 4

.4 w

here

now

a2(t

) f=

0 an

d w

here

a1 (t

)

64

Pap

er C

-2

0

_, -2

l

-10

-

30

a -I

S

I -

35

"' -2

0 -4

0

-2

l -4

l

-30

-

SO

-I

0 [e

m)

(em

)

Fig

ure

4.1:

Tra

nsm

it f

ield

fro

m s

ingl

e fr

eque

ncy

band

sou

rce

puls

e. L

eft

pane

l: F

unda

­m

enta

l fi

eld.

Rig

ht p

anel

: S

econ

d ha

rmon

ic f

ield

.

is u

ncha

nged

rel

ativ

e to

the

pre

viou

s pu

lse,

is t

hen

used

as

a so

urce

on

the

tran

sduc

er. T

his

dual

fre

quen

cy b

and

puls

e co

nsis

ts o

f a 1

MH

z an

d a

2 M

Hz

puls

e w

hich

are

ove

rlap

ping

in

tim

e. T

he o

btai

ned

tran

smit

fie

lds

for

the

fund

amen

tal

(1 M

Hz)

and

sec

ond

harm

onic

(2

MH

z) c

ompo

nent

s ar

e di

spla

yed

in F

ig.

4.2,

lef

t an

d ri

ght

pane

l, re

spec

tive

ly.

The

dy

nam

ic r

ange

in

the

plot

s ar

e st

ill

30 d

B b

ut t

he t

wo

fiel

ds a

re n

ow p

lott

ed i

n th

e sa

me

dyna

mic

sca

le.

We

obse

rve

that

the

int

ensi

ty o

f th

e fu

ndam

enta

l an

d se

cond

har

mon

ic

fiel

d is

of

the

sam

e or

der.

The

sec

ond

harm

onic

fie

ld i

s no

w m

ainl

y a

resu

lt o

f th

e li

near

pr

opag

atio

n of

the

seco

nd h

arm

onic

sou

rce

at th

e tr

ansd

ucer

and

not

a fi

rst o

rder

non

line

ar

effe

ct a

s in

the

rig

ht p

anel

of F

ig.

4.1.

By

com

pari

ng th

e le

ft p

anel

in

Fig

. 4.1

and

4.2

we

obse

rve

that

the

tra

nsm

itte

d fu

ndam

enta

l fi

eld

is v

ery

sim

ilar

in t

he t

wo

situ

atio

ns.

In F

ig.

4.3

, th

e ob

tain

ed t

hird

and

fou

rth

harm

onic

fie

lds

usin

g th

e du

al f

requ

ency

ba

nd s

ourc

e pu

lse

are

show

n, l

eft a

nd r

ight

pan

el, r

espe

ctiv

ely.

The

se tw

o ha

rmon

ic fi

elds

ar

e di

spla

yed

in t

he s

ame

dyna

mic

sca

le a

s th

e se

cond

har

mon

ic f

ield

in t

he r

ight

pan

el o

f F

ig. 4

.1.

The

thir

d an

d fo

urth

har

mon

ic f

ield

s fr

om t

he d

ual

freq

uenc

y ba

nd s

ourc

e pu

lse

are

of th

e sa

me

orde

r as

the

sec

ond

harm

onic

fie

ld f

rom

the

sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse

whi

ch i

s na

tura

l si

nce

they

all

mai

nly

are

resu

lts

of th

e fi

rst

orde

r no

nlin

ear

effe

ct

disc

usse

d in

Sec

. 4.2

.1.

A s

econ

d du

al f

requ

ency

ban

d pu

lse,

des

crib

ed b

y E

q.

4.5,

whe

re t

he p

olar

ity

of t

he

tran

smit

ted

seco

nd h

arm

onic

com

pone

nt i

s in

vert

ed r

elat

ive

to t

he f

irst

dua

l fr

eque

ncy

band

pul

se,

and

whe

re a

3 ( t)

=

a

1 ( t)

and

a4

( t)

=

a 2 ( t)

, is

the

n us

ed a

s a

sour

ce o

n th

e tr

ansd

ucer

and

the

tra

nsm

it f

ield

is

calc

ulat

ed.

The

tw

o tr

ansm

it f

ield

s, o

btai

ned

by

usin

g th

e tw

o di

ffer

ent

dual

fre

quen

cy b

and

sour

ces

on t

he t

rans

duce

r, a

re t

hen

sum

med

to

geth

er i

n a

puls

e in

vers

ion

proc

ess.

S

ince

sca

tter

ing

from

tis

sue

is a

ssum

ed t

o be

a

line

ar p

roce

ss,

the

sign

al o

btai

ned

by a

ddin

g th

ese

two

tran

smit

fie

lds

give

s an

im

pres

sion

of

how

the

pul

se s

umm

atio

n pr

oces

s w

ill a

ffec

t th

e re

sult

ing

rece

ived

tis

sue

sign

als.

4.3

Num

eric

al S

imul

atio

ns

65

-S

-S

-10

-

10

-IS

8

-IS

-"

-20

-2

0

_, _,

-30

-

30

-I

0 -I

[em

]

Fig

ure

4.2

: Tra

nsm

it fi

eld

from

dua

l fre

quen

cy b

and

sour

ce p

ulse

. L

eft p

anel

: F

unda

men

­ta

l fi

eld.

Rig

ht p

anel

: S

econ

d ha

rmon

ic f

ield

.

-20

-20

_, _,

-30

-3

0

! -3

5

-35

-40

-40

-4S

-4

S

-SO

-

SO

-I

0 -I

0 (e

m]

(em

]

Fig

ure

4.3

: T

rans

mit

fie

ld f

rom

dua

l fr

eque

ncy

band

sou

rce

puls

e.

Lef

t pa

nel:

Thi

rd

harm

onic

fie

ld.

Rig

ht p

anel

: F

ourt

h ha

rmon

ic f

ield

.

66

Pap

er C

-15

-20

-5

-25

5 "'--1

0

-30

-15

-

35

-20

-4

0

-I

0 -I

[ern

]

Fig

ure

4.4:

Wav

e fi

eld

obta

ined

as

sum

of

tran

smit

fie

lds

from

tw

o du

al f

requ

ency

ban

d so

urce

s w

ith

iden

tica

l fun

dam

enta

l co

mpo

nent

s an

d in

vert

ed p

olar

ity

on s

econ

d ha

rmon

ic

com

pone

nts.

Lef

t pa

nel:

Fun

dam

enta

l fie

ld.

Rig

ht p

anel

: S

econ

d ha

rmon

ic f

ield

.

In F

ig.

4.4,

the

fun

dam

enta

l an

d se

cond

har

mon

ic f

ield

obt

aine

d af

ter

puls

e su

mm

atio

n is

sho

wn,

lef

t an

d ri

ght

pane

l, re

spec

tivel

y. T

he d

ynam

ic r

ange

is

stil

l 30

dB

but

the

dy­

nam

ic le

vel

has

been

incr

ease

d by

6 d

B i

n bo

th p

anel

s re

lati

ve to

Fig

. 4.

1. C

ompa

ring

the

le

ft p

anel

s in

Fig

. 4.

4 an

d 4.

1 w

e se

e th

at t

he i

nten

sity

of

the

fund

amen

tal

com

pone

nt is

in

crea

sed

by a

roun

d 6

dB i

n th

e pu

lse

sum

mat

ion

proc

ess

rela

tive

to t

he s

itua

tion

app

lyin

g a

sing

le f

requ

ency

ban

d so

urce

. T

his

is d

ue to

the

fac

t tha

t the

pha

se a

nd a

mpl

itud

e o

f th

e fu

ndam

enta

l co

mpo

nent

s in

the

tw

o tr

ansm

itte

d du

al f

requ

ency

ban

d pu

lses

are

ide

ntic

al,

and

the

inte

nsit

y o

f the

fun

dam

enta

l com

pone

nt in

the

sum

med

sig

nal i

s he

nce

doub

led

as

show

n in

Eq.

4.8

. C

ompa

ring

the

righ

t pan

els

in F

ig.

4.4

and

4.1

we

obse

rve

that

the

sec

­on

d ha

rmon

ic c

ompo

nent

in t

he s

igna

l obt

aine

d af

ter

puls

e su

mm

atio

n al

so h

as i

ncre

ased

its

int

ensi

ty b

y ap

prox

imat

ely

6 dB

rel

ativ

e to

the

sit

uati

on w

hen

a si

ngle

fre

quen

cy b

and

sour

ce is

use

d. A

gain

, th

is is

in

agre

emen

t w

ith

Eq.

4.8

. In

Fig

. 4.

5 th

e th

ird

and

four

th h

arm

onic

fie

ld o

btai

ned

from

the

pul

se s

umm

atio

n pr

cess

are

dis

play

ed,

left

and

rig

ht p

anel

, re

spec

tive

ly.

The

dyn

amic

sca

le i

n th

e le

ft p

anel

ha

s be

en r

educ

ed b

y 20

dB

rel

ativ

e to

the

lef

t pa

nel

in F

ig.

4.3

whi

le t

he d

ynam

ic s

cale

in

the

rig

ht p

anel

has

bee

n in

crea

sed

by 6

dB

rel

ativ

e to

the

rig

ht p

anel

in

Fig.

4.3

. B

y co

mpa

ring

the

left

pan

els

in F

ig. 4

.3 a

nd 4

.5 w

e ca

n co

nclu

de th

at th

e th

ird

harm

onic

com

­po

nent

is s

igni

fica

ntly

red

uced

in

the

puls

e su

mm

atio

n pr

oces

s as

exp

ecte

d fr

om E

q. 4

.8.

Fina

lly,

com

pari

ng t

he r

ight

pan

els

in F

ig.

4.3

and

4.5

we

obse

rve

that

the

fou

rth

har­

mon

ic f

ield

has

inc

reas

ed b

y an

exp

ecte

d 6

dB i

n th

e pu

lse

sum

mat

ion

proc

ess

rela

tive

to

the

field

obt

aine

d fr

om t

he d

ual

freq

uenc

y ba

nd s

ourc

e pu

lse.

4.3

Num

eric

al S

imul

atio

ns

67

-15

_,

-20

-2

0

-25

-2

5

-30

1

-30

-35

-3

5

-40

-4

0

-I

0 -

I 0

(em

} [e

m]

Figu

re 4

.5:

Wav

e fi

eld

obta

ined

as

sum

of

tran

smit

fie

lds

from

tw

o du

al f

requ

ency

ban

d so

urce

s w

ith

iden

tica

l fun

dam

enta

l co

mpo

nent

s an

d in

vert

ed p

olar

ity

on s

econ

d ha

rmon

ic

com

pone

nts.

Lef

t pa

nel:

Thi

rd h

arm

onic

fie

ld.

Rig

ht p

anel

: F

ourt

h ha

rmon

ic f

ield

.

4.3.

2 Sc

atte

ring

from

Tis

sue

The

cal

cula

ted

tran

smit

fie

ld a

t th

e sy

mm

etry

axi

s is

now

use

d to

cal

cula

te t

he s

catt

ered

si

gnal

fro

m a

"ti

ssue

sca

tter

er"

inse

rted

at v

ario

us l

ocat

ions

alo

ng t

he s

ymm

etry

axi

s. T

he

scat

teri

ng f

rom

sof

t tis

sue

is a

ssum

ed t

o be

a l

inea

r pr

oces

s pr

opor

tion

al w

ith

the

fre­

quen

cy.

Onl

y th

e re

lativ

e le

vels

of s

catt

ered

har

mon

ic c

ompo

nent

s ar

e co

nsid

ered

in th

e pr

esen

t pa

per

and

abso

lute

leve

ls o

f sca

tter

ed t

issu

e si

gnal

s an

d co

ntra

st b

ubbl

e si

gnal

s ar

e he

nce

not

give

n.

Firs

t, th

e ob

tain

ed t

rans

mit

fie

ld f

rom

the

sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse,

des

crib

ed

by s

etti

ng a

2(t)

= 0

in E

q. 4

.4,

is u

sed

to c

alcu

late

the

sca

tter

ed s

igna

l fr

om t

issu

e. T

he

inte

nsit

y of

the

scat

tere

d ti

ssue

sig

nal

alon

g th

e sy

mm

etry

axi

s is

dis

play

ed a

s th

e da

shed

li

nes

in F

ig. 4

.6.

The

pan

els

in t

his

figu

re i

ndic

ate

scat

tere

d ha

rmon

ic c

ompo

nent

s, g

oing

fr

om t

he f

unda

men

tal

com

pone

nt in

the

lef

t pa

nel,

to t

he f

ourt

h ha

rmon

ic c

ompo

nent

in

the

righ

t pa

nel.

The

dyn

amic

ran

ge i

n al

l pa

nels

is

set

to 3

0 dB

whe

reas

the

dyn

amic

le

vel

vari

es b

etw

een

the

pane

ls.

As

seen

in

the

firs

t pa

nel,

the

scat

tere

d ti

ssue

sig

nal

is

norm

aliz

ed s

o th

at th

e fu

ndam

enta

l co

mpo

nent

at 8

em

is s

et to

0 d

B.

In t

he s

econ

d pa

nel

we

see

that

the

sca

tter

ed s

econ

d ha

rmon

ic t

issu

e co

mpo

nent

is a

roun

d 20

dB

bel

ow t

he

scat

tere

d ti

ssue

fun

dam

enta

l co

mpo

nent

, w

hile

the

scat

tere

d th

ird

harm

onic

com

pone

nt is

in

the

thir

d pa

nel f

ound

to b

e ar

ound

35

dB b

elow

the

sca

tter

ed f

unda

men

tal

com

pone

nt.

The

sol

id l

ines

in

Fig.

4.6

are

har

mon

ic t

issu

e co

mpo

nent

s of

the

puls

e su

mm

atio

n si

g­na

l. T

his

puls

e su

mm

atio

n si

gnal

is a

cqui

red

by s

umm

ing

the

two

scat

tere

d ti

ssue

sig

nals

ob

tain

ed b

y ap

plyi

ng th

e tw

o du

al f

requ

ency

ban

d so

urce

s, d

escr

ibed

by

Eq.

4.4

and

4.5

, w

here

a3(t)

= a

1(t)

and

a4(t

) =

a2(t

).

In t

he l

eft

pane

l, w

e ob

serv

e th

at t

he i

nten

sity

68

Pap

er C

Fig

ure

4.6:

S

catt

ered

har

mon

ic t

issu

e si

gnal

alo

ng s

ymm

etry

axi

s ba

sed

on c

alcu

late

d tr

ansm

it f

ield

s, g

oing

fro

m f

unda

men

tal c

ompo

nent

in le

ft p

anel

to f

ourt

h ha

rmon

ic c

om­

pone

nt i

n ri

ght

pane

l. D

ashe

d lin

es:

Sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse

used

. S

olid

lin

es:

Tw

o du

al f

requ

ency

ban

d so

urce

pul

ses

used

, ph

ase

inve

rsio

n on

sec

ond

harm

onic

co

mpo

nent

, w

ith

puls

e su

mm

atio

n of

scat

tere

d si

gnal

s.

of th

e fu

ndam

enta

l ti

ssue

com

pone

nt i

s in

crea

sed

by a

ppro

xim

atel

y 6

dB i

n th

e pu

lse

sum

mat

ion

proc

ess

of

the

two

scat

tere

d du

al f

requ

ency

ban

d so

urce

sig

nals

rel

ativ

e to

the

sc

atte

red

sing

le f

requ

ency

ban

d so

urce

sig

nal.

In t

he s

econ

d pa

nel,

the

seco

nd h

arm

onic

co

mpo

nent

of

the

puls

e su

mm

atio

n si

gnal

is a

lso

seen

to b

e ar

ound

6 d

B a

bove

the

sign

al

obta

ined

usi

ng t

he s

ingl

e fr

eque

ncy

band

sou

rce

puls

e. T

he t

hird

har

mon

ic c

ompo

nent

, di

spla

yed

in t

he t

hird

pan

el, i

s si

gnif

ican

tly

high

er th

an t

he s

catt

ered

thir

d ha

rmon

ic c

om­

pone

nt o

btai

ned

usin

g th

e si

ngle

fre

quen

cy b

and

sour

ce p

ulse

. H

owev

er,

by c

ompa

ring

w

ith

the

scat

tere

d fo

urth

har

mon

ic c

ompo

nent

of t

he p

ulse

sum

mat

ion

sign

al in

the

four

th

pane

l, w

e se

e th

at t

he s

catt

ered

thi

rd h

arm

onic

pul

se s

umm

atio

n si

gnal

is

sign

ific

antl

y re

duce

d in

the

pul

se s

umm

atio

n pr

oces

s.

The

se a

re a

ll ex

pect

ed r

esul

ts i

n re

ason

able

ag

reem

ent w

ith

Eq.

4.8

.

If th

e tw

o sc

atte

red

sign

als,

obt

aine

d us

ing

the

two

dual

fre

quen

cy b

and

sour

ces,

are

tim

e sh

ifte

d re

lativ

e to

eac

h ot

her

by a

sm

all

amou

nt b

efor

e su

mm

atio

n, t

he r

esul

ting

thi

rd

harm

onic

com

pone

nt in

the

puls

e su

mm

atio

n si

gnal

can

be

furt

her

redu

ced.

In

Fig

. 4.7

the

two

scat

tere

d si

gnal

s ha

ve b

een

tim

e sh

ifte

d re

lati

ve to

eac

h ot

her b

y up

to

10

ns b

efor

e pu

lse

sum

mat

ion

is p

erfo

rmed

. Fi

g. 4

.7 r

epre

sent

s th

e sa

me

as F

ig. 4

.6 a

nd

the

disp

laye

d dy

nam

ic r

ange

and

sca

le a

re id

enti

cal i

n th

e tw

o fi

gure

s. B

y co

mpa

ring

thes

e tw

o fi

gure

s w

e ob

serv

e th

at th

e sm

all t

ime

shif

ts i

ntro

duce

d be

fore

pul

se s

umm

atio

n ha

ve

litt

le o

r no

eff

ect o

n th

e fu

ndam

enta

l an

d fo

urth

har

mon

ic p

ulse

sum

mat

ion

com

pone

nts.

T

his

is d

ue to

the

fact

that

thes

e ha

rmon

ic c

ompo

nent

s ar

e in

pha

se w

hen

sum

med

toge

ther

an

d a

smal

l ti

me

shif

t, re

lati

ve t

o th

e w

ave

leng

th,

will

not

hav

e a

maj

or e

ffec

t on

the

re

sults

of t

he s

umm

atio

n. T

he s

econ

d an

d th

ird

harm

onic

com

pone

nts

are,

how

ever

, clo

se

4.3

Nu

mer

ical

Sim

ula

tion

s 69

Fig

ure

4.7:

Sam

e as

Fig

. 4.

6 bu

t w

ith

smal

l ti

me

shif

ts b

etw

een

the

two

scat

tere

d du

al

freq

uenc

y ba

nd p

ulse

s be

fore

pul

se s

umm

atio

n.

to 1

r ou

t of p

hase

whe

n su

mm

ed to

geth

er a

nd th

e sm

all t

ime

shif

ts i

ntro

duce

d ar

e se

en to

ha

ve m

ajor

eff

ects

on

thes

e ha

rmon

ic c

ompo

nent

s. R

elat

ive

to t

he s

itua

tion

wit

hout

tim

e sh

ifts

bet

wee

n th

e tw

o sc

atte

red

puls

es a

s in

Fig

. 4.6

, bo

th th

ese

com

pone

nts

are

redu

ced

whe

n in

trod

ucin

g th

e sm

all

tim

e sh

ifts

wit

h a

3 dB

red

ucti

on f

or t

he s

econ

d ha

rmon

ic

com

pone

nt a

nd a

maj

or re

duct

ion

for

the

thir

d ha

rmon

ic c

ompo

nent

. W

ith th

e in

trod

uced

ti

me

shif

ts,

the

thir

d ha

rmon

ic c

ompo

nent

aft

er p

ulse

sum

mat

ion

is o

f th

e sa

me

orde

r as

ob

tain

ed f

rom

the

sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse

(das

hed

line)

.

If in

stea

d th

e tw

o sc

atte

red

sign

als

from

the

dua

l fr

eque

ncy

band

sou

rces

are

sub

trac

ted,

th

e sc

atte

red

four

th h

arm

onic

com

pone

nt f

rom

tis

sue

may

be

redu

ced

as p

revi

ousl

y in

di­

cate

d in

rel

atio

n to

Eq.

4.9

. T

he d

ashe

d lin

es i

n Fi

g. 4

.8 s

till

ind

icat

e th

e sc

atte

red

leve

l ob

tain

ed b

y us

ing

a si

n­gl

e fr

eque

ncy

band

sou

rce

and

the

scat

tere

d fu

ndam

enta

l co

mpo

nent

in t

he l

eft

pane

l is

no

rmal

ized

to 0

dB

at

8 em

as

in t

he t

wo

prev

ious

fig

ures

. T

he s

olid

lin

es i

n th

e pa

nels

in

dica

te h

arm

onic

lev

els

obta

ined

aft

er p

ulse

sub

trac

tion

of

the

scat

tere

d ti

ssue

sig

nals

ob

tain

ed f

rom

the

two

dual

fre

quen

cy b

and

sour

ces,

des

crib

ed b

y E

qs. 4

.4 a

nd 4

.5,

whe

re

a 3(t)

=

a1(t)

and

a4(t)

=

a2(t)

. In

the

lef

t pa

nel

we

clea

rly

see

that

the

fun

dam

enta

l co

mpo

nent

is h

eavi

ly r

educ

ed i

n th

e pu

lse

subt

ract

ion

proc

ess

rela

tive

to t

he c

ase

usin

g a

sing

le f

requ

ency

ban

d so

urce

. T

he l

inea

r tr

ansm

itte

d fu

ndam

enta

l co

mpo

nent

is c

an­

cele

d in

the

pro

cess

and

onl

y a

nonl

inea

r fu

ndam

enta

l co

mpo

nent

, se

cond

ter

m o

n th

e ri

ght-

hand

sid

e in

Eq.

4.9

, re

mai

ns.

A s

tron

g li

near

tra

nsm

itte

d se

cond

har

mon

ic c

om­

pone

nt,

firs

t te

rm o

n th

e ri

ght-

hand

sid

e in

Eq.

4.9

, is

evi

dent

in

the

seco

nd p

anel

. In

th

e th

ird

pane

l, a

sign

ific

ant f

irst

ord

er n

onli

near

thir

d ha

rmon

ic c

ompo

nent

, sec

ond

term

on

the

rig

ht-h

and

side

in

Eq.

4.9

, al

so r

emai

ns a

fter

the

pul

se s

ubtr

acti

on p

roce

ss.

The

fo

urth

har

mon

ic c

ompo

nent

in t

he l

ast p

anel

is,

alth

ough

sig

nifi

cant

ly r

educ

ed c

ompa

red

to F

ig. 4

.6,

stil

l rel

ativ

ely

stro

ng.

70

Pap

er C

Fig

ure

4.8:

S

catt

ered

har

mon

ic t

issu

e si

gnal

alo

ng s

ymm

etry

axi

s ba

sed

on c

alcu

late

d tr

ansm

it fi

elds

, go

ing

from

fun

dam

enta

l co

mpo

nent

in l

eft p

anel

to f

ourt

h ha

rmon

ic c

om­

pone

nt i

n ri

ght

pane

l, D

ashe

d lin

es:

Sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse

used

. S

olid

lin

es:

Tw

o du

al f

requ

ency

ban

d so

urce

pul

ses

used

, ph

ase

inve

rsio

n on

sec

ond

harm

onic

co

mpo

nent

, wit

h pu

lse

subt

ract

ion

of s

catt

ered

sig

nals

.

To f

urth

er r

educ

e th

e fo

urth

har

mon

ic c

ompo

nent

in F

ig. 4

.8,

smal

l tim

e sh

ifts

and

am

pli­

tude

cor

rect

ions

mus

t be

intr

oduc

ed in

the

tw

o sc

atte

red

puls

es b

efor

e th

ey a

re c

ombi

ned

in th

e pu

lse

inve

rsio

n pr

oces

s. I

n Fi

g. 4

.9, a

tim

e sh

ift o

f up

to 2

2 ns

and

am

plit

ude

corr

ec­

tion

s up

to 4

dB

are

int

rodu

ced

befo

re p

ulse

sub

trac

tion

. W

e no

tice

tha

t the

eff

ects

on

the

resu

ltin

g fu

ndam

enta

l an

d fo

urth

har

mon

ic c

ompo

nent

s, a

re o

f sp

ecia

l im

port

ance

. T

he

four

th h

arm

onic

com

pone

nt in

the

rig

ht p

anel

is h

eavi

ly r

educ

ed b

y ap

prox

imat

ely

20 d

B

com

pare

d to

wha

t was

obt

aine

d in

Fig

. 4.8

wit

hout

the

tim

e an

d am

plit

ude

com

pens

atio

ns

whe

reas

the

res

ulti

ng f

unda

men

tal

com

pone

nt, i

n th

e le

ft p

anel

, is

sign

ific

antl

y in

crea

sed

by a

roun

d 20

dB

.

In F

ig. 4

.6 a

nd 4

.8,

we

saw

tha

t the

sca

tter

ed th

ird

or fo

urth

har

mon

ic t

issu

e co

mpo

nent

s,

mai

nly

intr

oduc

ed d

ue t

o ap

plic

atio

n o

f du

al f

requ

ency

ban

d so

urce

s, c

ould

be

sign

ifi­

cant

ly r

educ

ed b

y pe

rfor

min

g th

e si

mpl

e pu

lse

sum

mat

ion

or p

ulse

sub

trac

tion

pro

cess

ac

cord

ing

to E

q. 4

.8 a

nd 4

.9.

Intr

oduc

ing

smal

l ti

me

shif

ts a

nd a

mpl

itud

e co

rrec

tion

s in

th

e tw

o sc

atte

red

puls

es b

efor

e su

mm

atio

n or

sub

trac

tion

, th

e th

ird

or f

ourt

h ha

rmon

ic

com

pone

nts

coul

d, h

owev

er,

be f

urth

er r

educ

ed.

The

nee

d to

int

rodu

ce t

hese

com

pen­

sati

ons

in t

he s

catt

ered

sig

nals

bef

ore

perf

orm

ing

the

puls

e in

vers

ion

proc

ess

is a

con

se­

quen

ce o

f th

e fa

ct t

hat t

he r

esul

ting

wav

e pr

opag

atio

n fr

om t

he a

ppli

ed s

ourc

es d

evia

tes

som

ewha

t fro

m t

he q

uasi

-lin

ear

appr

oxim

atio

n di

scus

sed

in S

ec. 4

.2.1

.

In T

able

4.1

, th

e re

sult

ing

thir

d an

d fo

urth

har

mon

ic s

igna

l co

mpo

nent

s al

ong

the

sym

­m

etry

axi

s fo

r th

e tw

o du

al f

requ

ency

ban

d tr

ansm

it f

ield

s ar

e co

mpa

red.

T

wo

sour

ces

desc

ribe

d by

Eq.

4.4

and

4.5

, w

here

a3(t)

= a

1 (t

) an

d a 4

(t) =

a2(t)

an

= 0

, ar

e us

ed

as s

ourc

es o

n th

e in

dica

ted

tran

sduc

er.

4.3

Nu

mer

ical

Sim

ulat

ions

71

Fig

ure

4.9:

Sam

e as

Fig

. 4.

8 bu

t w

ith

tim

e sh

ifts

and

am

plit

ude

corr

ecti

ons

betw

een

the

two

scat

tere

d du

al f

requ

ency

ban

d pu

lses

bef

ore

subt

ract

ion.

Insp

ecti

ng th

e th

ird

harm

onic

com

pone

nts

we

obse

rve

that

the

rela

tive

tim

e sh

ifts

be­

twee

n th

e tw

o tr

ansm

it fi

elds

are

alm

ost c

onst

ant f

rom

aro

und

6 em

in r

ange

dir

ecti

on a

nd

that

dif

fere

nces

in

ampl

itud

es g

ener

ally

are

sm

all.

Cha

ngin

g to

the

fou

rth

harm

onic

com

pone

nts,

we

see

that

dif

fere

nces

in

ampl

itud

es

are

muc

h la

rger

and

in

Fig.

4.9

, am

plit

ude

com

pens

atio

ns h

ad to

be

incl

uded

in o

rder

to

furt

her

supp

ress

the

four

th h

arm

onic

com

pone

nt in

the

pul

se s

ubtr

acti

on s

igna

l.

The

dev

iati

ons

betw

een

the

full

nonl

inea

r w

ave

prop

agat

ion

and

the

quas

i-li

near

app

rox­

imat

ion

can

be f

urth

er e

xam

ined

by

usin

g ou

r si

mul

atio

n pr

ogra

m in

a q

uasi

-lin

ear

mod

e to

cal

cula

te t

he t

wo

quas

i-li

near

wav

e fi

elds

res

ulti

ng f

rom

the

tw

o du

al f

requ

ency

ban

d so

urce

s.

The

se t

wo

tran

smit

wav

e fi

elds

are

the

n ca

lcul

ated

by

firs

t us

ing

the

dual

fre

­qu

ency

ban

d so

urce

pul

se d

escr

ibed

by

Eq.

4.4

on

the

tran

sduc

er a

nd t

hen

appl

ying

the

so

urce

des

crib

ed b

y E

q. 4

.5,

whe

re a

3(t)

= a

1(t)

and

a4(t)

= a

2(t)

an

= 0

. K

eepi

ng

in m

ind

that

the

scat

teri

ng f

rom

tis

sue

is a

ssum

ed to

be

a li

near

pro

cess

, th

e tw

o tr

ansm

it

fiel

ds a

re t

hen

com

bine

d in

the

pul

se i

nver

sion

pro

cess

and

com

pare

d w

ith t

he p

revi

ous

resu

lts o

btai

ned

by p

erfo

rmin

g a

full

nonl

inea

r so

luti

on o

f Eq.

4.2

.

Fig.

4.1

0 di

spla

ys a

com

pari

son

of

the

thir

d ha

rmon

ic p

ulse

sum

mat

ion

tran

smit

fie

lds

obta

ined

fro

m t

he t

he f

ull

nonl

inea

r so

luti

on o

f th

e no

nlin

ear

wav

e eq

uati

on a

nd t

he

quas

i-li

near

sol

utio

n of

the

nonl

inea

r w

ave

equa

tion

, le

ft a

nd r

ight

pan

el,

resp

ectiv

ely.

W

e ob

serv

e th

at t

he t

hird

har

mon

ic l

evel

fro

m t

he q

uasi

-lin

ear

solu

tion

is

sign

ific

antly

lo

wer

tha

n fr

om t

he f

ull

nonl

inea

r so

lutio

n. C

ompa

riso

ns o

f th

e tw

o tr

ansm

it f

ield

s ob

­ta

ined

fro

m t

he f

ull

nonl

inea

r so

luti

on o

f th

e w

ave

equa

tion

res

ulte

d in

tim

e de

lays

and

am

plit

ude

vari

atio

ns s

how

n in

Tab

le 4

.1, w

hich

are

not

pre

sent

in th

e qu

asi-

line

ar s

olut

ion

of t

he w

ave

equa

tion.

F

rom

Eq.

4.8

, th

e th

ird

harm

onic

com

pone

nt o

f th

e pu

lse

sum

mat

ion

sign

al s

houl

d,

in t

he q

uasi

-lin

ear

situ

atio

n, i

deal

ly b

e to

tally

can

cele

d.

In t

he r

ight

pan

el o

f Fi

g. 4

.10,

72

Pap

er C

Tab

le 4

.1:

Rel

ativ

e ti

me

dela

ys a

nd a

mpl

itud

e va

riat

ions

alo

ng s

ymm

etry

axi

s fo

r th

e tw

o du

al f

requ

ency

ban

d tr

ansm

it f

ield

s.

3rct

har

mon

ic

3rct

har

mon

ic

4th

har

mon

ic

4th

har

mon

ic

1cm

0

.2d

B

0.7

dB

2cm

0.

4 dB

1.

3 dB

3

cm

-2 n

s 0

.6d

B

-2 n

s 2

.6d

B

4cm

5

ns

0.1

dB

24

ns

4d

B

Scm

6

ns

0.5

dB

15 n

s 2.

9 dB

6

cm

8 ns

0.

5 dB

15

ns

3 dB

7

cm

9

ns

0.5

dB

15 n

s 3

.2d

B

Scm

9

ns

0.5

dB

16 n

s 3.

4 dB

9

cm

9 ns

0.

5 dB

18

ns

3.6

dB

1

0cm

9

ns

0.5

dB

19 n

s 3.

8 dB

11

em

9

ns

0.4

dB

20

ns

3.9

dB

1

2cm

10

ns

0.3

dB

22

ns

4d

B

the

thir

d ha

rmon

ic c

ompo

nent

is,

how

ever

, no

t fu

lly

canc

eled

. T

he r

esul

ting

sec

ond

and

four

th h

arm

onic

com

pone

nts

whi

ch a

re n

ot th

at s

tron

gly

supp

ress

ed in

the

pul

se s

umm

a­ti

on s

igna

l w

ill,

depe

ndin

g on

the

ban

dwid

th o

f th

e tr

ansm

itte

d fu

ndam

enta

l an

d se

cond

ha

rmon

ic c

ompo

nent

s an

d th

e ba

ndw

idth

of

the

thir

d ha

rmon

ic f

ilter

app

lied

, in

trod

uce

wea

k si

gnal

com

pone

nts

in t

he p

assb

and

of t

he t

hird

har

mon

ic f

ilter

.

In F

ig.

4.11

we

see

a co

mpa

riso

n be

twee

n th

e fo

urth

har

mon

ic p

ulse

sub

trac

tion

tran

smit

fi

elds

obt

aine

d fr

om t

he t

he f

ull

nonl

inea

r so

luti

on o

f th

e no

nlin

ear

wav

e eq

uati

on a

nd

the

quas

i-li

near

sol

utio

n o

f the

non

line

ar w

ave

equa

tion

, lef

t an

d ri

ght p

anel

, res

pect

ivel

y.

We

obse

rve

that

the

inte

nsit

y o

f th

e fo

urth

har

mon

ic f

ield

obt

aine

d fr

om t

he q

uasi

-lin

ear

appr

oxim

atio

n o

f th

e no

nlin

ear

wav

e eq

uati

on is

sig

nifi

cant

ly lo

wer

in t

he r

esul

ting

pul

se

subt

ract

ion

sign

al.

4.3.

3 Sc

atte

ring

from

a C

ontr

ast B

ubbl

e

We

now

pro

ceed

to i

nves

tiga

te th

e sc

atte

ring

from

a c

ontr

ast b

ubbl

e. T

he m

ain

goal

now

is

twof

old.

Fir

st,

to c

ompa

re th

e si

gnal

sca

tter

ed f

rom

the

bub

ble

whe

n dr

iven

by

a co

nven

­ti

onal

sin

gle

freq

uenc

y ba

nd p

ulse

and

the

sign

al o

btai

ned

afte

r pul

se in

vers

ion

usin

g du

al

freq

uenc

y ba

nd d

rive

pul

ses.

And

sec

ond,

to

com

pare

the

rela

tive

leve

l of h

arm

onic

com

­po

nent

s in

the

dua

l fr

eque

ncy

band

pul

se i

nver

sion

bub

ble

sign

al a

nd t

he d

ual

freq

uenc

y ba

nd p

ulse

inve

rsio

n so

ft ti

ssue

sig

nal f

rom

the

pre

viou

s se

ctio

n. U

ltra

soun

d co

ntra

st b

ub­

bles

hav

e m

uch

high

er c

ompl

ianc

e th

an s

oft t

issu

e an

d th

e bu

bble

wil

l res

pond

dif

fere

ntly

re

lati

ve to

sof

t tis

sue

whe

n dr

iven

by

the

dual

fre

quen

cy b

and

puls

es.

4.3

Num

eric

al S

imul

atio

ns

73

-35

-3

5

-40

-4

0

-45

-4

5

~ -5

0

1 -5

0

-55

-5

5

-60

-o

o

-I

0 -I

0 [e

m)

(em

]

Fig

ure

4.10

: W

ave

fiel

d ob

tain

ed a

s su

mm

atio

n o

f tra

nsm

it fi

elds

fro

m tw

o du

al f

requ

ency

ba

nd s

ourc

es w

ith

iden

tica

l fun

dam

enta

l co

mpo

nent

s an

d in

vert

ed p

olar

ity

on s

econ

d ha

r­m

onic

com

pone

nts.

Lef

t pa

nel:

Thi

rd h

arm

onic

fie

ld o

btai

ned

from

ful

l no

nlin

ear

solu

­ti

on o

f E

q. 4

.2.

Rig

ht p

anel

: T

hird

har

mon

ic f

ield

obt

aine

d fr

om q

uasi

-lin

ear

solu

tion

of

Eq

. 4.2

.

-35

-3

5

-40

-4

0

-45

-45

I -5

0

I -5

0

-55

_,

-60

-o

o

-I

0 -I

0 [e

m]

(em

]

Fig

ure

4.1

1: W

ave

fiel

d ob

tain

ed a

s di

ffer

ence

of

tran

smit

fie

lds

from

tw

o du

al f

requ

ency

ba

nd s

ourc

es w

ith

iden

tica

l fun

dam

enta

l co

mpo

nent

s an

d in

vert

ed p

olar

ity

on s

econ

d ha

r­m

onic

com

pone

nts.

Lef

t pa

nel:

Fou

rth

harm

onic

fie

ld o

btai

ned

from

ful

l no

nlin

ear

solu

­ti

on o

f E

q. 4

.2.

Rig

ht p

anel

: F

ourt

h ha

rmon

ic f

ield

obt

aine

d fr

om q

uasi

-lin

ear

solu

tion

of

Eq.

4.2

.

74

7.::~

~3·

~

0

-0.1

-0.2

-O.]

l 1.

5 2

2.5~·-=-,_~, ~-4.5

5 5.

5 6

"")

0.2

~ o

f-----..

..

-0.2

-0.4

1'-

--~~-,~-~~,_,:--~-"---c,~.,-~~._,,-------L...__,,~_, _

__

_!

[).tS

]

Pap

er C

Figu

re 4

.12:

U

pper

pan

el:

Sing

le f

requ

ency

ban

d pu

lse.

L

ower

pan

el:

Dua

l fr

eque

ncy

band

pul

ses

wit

h id

enti

cal

fund

amen

tal

com

pone

nts

and

phas

e in

vers

ion

on s

econ

d ha

r­m

onic

com

pone

nts.

The

upp

er p

anel

in F

ig.

4.12

sho

ws

an e

xam

ple

of a

1 M

Hz

sing

le f

requ

ency

ban

d so

urce

pu

lse

whe

re a

2(t

) in

Eq.

4.4

is

set

to z

ero.

If

a1(t)

in

Eq.

4.4

is

unch

ange

d an

d a 2

(t)

now

is

diff

eren

t fr

om z

ero,

so

that

a 2

MH

z pu

lse

is a

dded

, w

e ca

n ge

t th

e so

lid

line

in t

he l

ower

pan

el o

f Fi

g. 4

.12

repr

esen

ting

a d

ual

freq

uenc

y ba

nd s

ourc

e pu

lse.

T

hen,

si

mpl

y by

inve

rtin

g th

e po

lari

ty o

n th

e ad

ded

2 M

Hz

puls

e w

hile

kee

ping

the

1 M

Hz

puls

e un

chan

ged,

we

can

cons

truc

t the

pul

se d

ispl

ayed

as

the

dash

ed l

ine

in t

he l

ower

pan

el o

f th

e fi

gure

. T

hese

tw

o pu

lses

, in

the

low

er p

anel

, re

pres

ent

the

two

dual

fre

quen

cy b

and

puls

es u

sed

in t

he e

xpla

ined

pul

se i

nver

sion

tec

hniq

ue.

We

noti

ce t

hat

thes

e pu

lses

are

as

ymm

etri

c w

ith

resp

ect

to p

ositi

ve a

nd n

egat

ive

pres

sure

am

plit

udes

and

the

con

tras

t bu

bble

will

pre

sum

ably

res

pond

dif

fere

ntly

whe

n dr

iven

by

one

of th

em r

elat

ive

to t

he

othe

r.

In F

ig.

4.13

, th

e so

lid

line

s di

spla

y th

e ab

solu

te v

alue

of

the

Fou

rier

Tra

nsfo

rm o

f th

e sc

atte

red

bubb

le s

igna

l fr

om a

3 p

m b

ubbl

e w

ith

reso

nanc

e fr

eque

ncy

arou

nd 4

MH

z w

hen

driv

en b

y th

e si

ngle

fre

quen

cy b

and

puls

e in

the

upp

er p

anel

of

Fig.

4.1

2.

We

clea

rly

see

that

the

bub

ble

has

resp

onde

d no

nlin

earl

y to

the

dri

ve p

ulse

with

sig

nifi

cant

am

ount

s of

scat

tere

d en

ergy

at h

arm

onic

com

pone

nts.

The

sca

tter

ed b

ubbl

e si

gnal

is

then

cal

cula

ted

usin

g th

e tw

o du

al f

requ

ency

ban

d pu

lses

in

the

low

er p

anel

of F

ig.

4.12

as

driv

e pu

lses

. A

ddin

g th

e re

sult

ing

two

scat

tere

d pu

lses

, w

e ob

tain

the

das

hed

line

in t

he u

pper

pa

nel

of F

ig.

4.13

. A

ll sc

atte

red

harm

onic

com

pone

nts

are

incr

ease

d in

the

pul

se s

um­

mat

ion

proc

ess

rela

tive

to w

hen

usin

g th

e si

ngle

fre

quen

cy b

and

driv

e pu

lse

(sol

id l

ine)

. W

e pa

rtic

ular

ly n

otic

e th

e in

crea

se o

n th

e fu

ndam

enta

l an

d th

ird

harm

onic

com

pone

nt,

appr

oxim

atel

y 6

and

15 d

B,

resp

ectiv

ely.

If

we

inst

ead

subt

ract

the

two

scat

tere

d bu

bble

sig

nals

fro

m t

he d

ual

freq

uenc

y ba

nd

4.3

Num

eric

al S

imu

lati

ons

75

20 ·] ~---]

0 0.

5 1

1.5

2 2.

5 3

3.5

4 4.

5 5

{MH

z]

Fig

ure

4.13

: A

bsol

ute

valu

e o

f F

ouri

er T

rans

form

of

scat

tere

d bu

bble

sig

nal.

Sol

id li

ne:

Sin

gle

freq

uenc

y ba

nd d

rive

pul

se f

rom

upp

er p

anel

in F

ig. 4

.12

used

. D

ashe

d li

ne u

pper

pa

nel:

Sum

of s

catt

ered

pul

ses

whe

n dr

iven

by

the

two

puls

es in

low

er p

anel

of F

ig. 4

.12.

D

ashe

d lin

e lo

wer

pan

el:

Sub

trac

tion

of

the

scat

tere

d pu

lses

whe

n dr

iven

by

the

two

puls

es in

low

er p

anel

of F

ig. 4

.12.

driv

e pu

lses

, w

e ob

tain

the

das

hed

line

in t

he l

ower

pan

el o

f Fi

g. 4

.13.

A

ll s

catt

ered

ha

rmon

ic c

ompo

nent

s ex

cept

fro

m t

he f

unda

men

tal,

are

now

inc

reas

ed r

elat

ive

to w

hen

usin

g th

e si

ngle

fre

quen

cy b

and

driv

e pu

lse

(sol

id li

ne).

Her

e, w

e pa

rtic

ular

ly n

otic

e th

e m

ajor

incr

ease

on

the

scat

tere

d fo

urth

har

mon

ic c

ompo

nent

of

abou

t 30

dB

.

In F

ig.

4.14

, th

e da

shed

lin

es d

ispl

ay h

arm

onic

com

pone

nts

scat

tere

d fr

om a

con

tras

t bu

bble

whe

n dr

iven

by

the

calc

ulat

ed tr

ansm

it fi

eld

from

Sec

. 4.3

.1 o

btai

ned

wit

h a

sing

le

freq

uenc

y ba

nd s

ourc

e pu

lse

desc

ribe

d by

Eq.

4.4

whe

re a

2(t)

=

0.

As

prev

ious

ly,

the

scat

tere

d fu

ndam

enta

l co

mpo

nent

in t

he l

eft

pane

l is

nor

mal

ized

to

0 dB

at

8 em

. B

oth

the

dyna

mic

ran

ge a

nd s

cale

var

ies

betw

een

the

pane

ls d

ue t

o th

e fa

ct t

hat

the

leve

l o

f sc

atte

red

harm

onic

bub

ble

sign

al d

epen

ds s

tron

gly

on t

he a

mpl

itud

e o

f the

inc

iden

t dri

ve

puls

e.

Sim

ilar

to F

ig.

4.7,

the

sol

id l

ines

in

Fig.

4.1

4 sh

ow t

he s

catt

ered

har

mon

ic c

ompo

nent

s ob

tain

ed u

sing

the

tra

nsm

it f

ield

s fr

om t

he d

ual

freq

uenc

y ba

nd s

ourc

e pu

lses

in

Eqs

. 4.

4 an

d 4.

5 to

dri

ve t

he b

ubbl

e, a

nd t

hen

sum

min

g th

e tw

o sc

atte

red

sign

als

in a

pul

se s

um­

mat

ion

proc

ess.

The

sm

all t

ime

shif

ts in

trod

uced

bet

wee

n th

e tw

o sc

atte

red

sign

als

befo

re

the

puls

e su

mm

atio

n pr

oces

s in

Fig

. 4.7

hav

e al

so b

een

appl

ied

in F

ig. 4

.14

and

it is

ther

e­fo

re o

f spe

cial

inte

rest

to c

ompa

re th

ese

two

figu

res.

Int

rodu

cing

the

indi

cate

d ti

me

shif

ts

to t

he s

catt

ered

bub

ble

sign

als

befo

re s

umm

atio

n do

, ho

wev

er, o

nly

have

mar

gina

l eff

ects

on

the

obt

aine

d pu

lse

sum

mat

ion

sign

al.

Sta

rtin

g w

ith

the

scat

tere

d fu

ndam

enta

l co

mpo

nent

s in

the

lef

t pa

nel

we

see

that

the

le

vel

is i

ncre

ased

by

arou

nd 6

dB

in

the

puls

e su

mm

atio

n pr

oces

s re

lati

ve t

o th

e le

vel

obta

ined

usi

ng a

sin

gle

freq

uenc

y ba

nd s

ourc

e fo

r th

e co

ntra

st b

ubbl

e (F

ig.

4.14

) as

wel

l

76

Pap

erC

as f

or t

he s

oft t

issu

e (F

ig.

4.7)

. T

he s

econ

d ha

rmon

ic b

ubbl

e si

gnal

obt

aine

d af

ter p

ulse

sum

mat

ion

is s

een

to li

e fr

om

arou

nd 1

0 to

2 d

B a

bove

the

bubb

le s

igna

l ach

ieve

d us

ing

a si

ngle

fre

quen

cy b

and

sour

ce

puls

e w

here

as f

or s

oft t

issu

e, t

here

is a

n al

mos

t con

stan

t 3 d

B i

ncre

ase

in s

catt

ered

sig

nal

leve

l app

lyin

g th

e pu

lse

sum

mat

ion

proc

ess.

T

he t

hird

har

mon

ic p

ulse

sum

mat

ion

bubb

le s

igna

l is

inc

reas

ed s

igni

fica

ntly

by

15

to 2

0 dB

(at

dep

ths

from

4 t

o 12

em

) re

lati

ve t

o w

hen

appl

ying

a c

onve

ntio

nal

sing

le

freq

uenc

y ba

nd s

ourc

e pu

lse.

The

thi

rd h

arm

onic

pul

se s

umm

atio

n ti

ssue

sig

nal,

on t

he

othe

r ha

nd,

is a

roun

d th

e sa

me

leve

l as

for

the

sing

le fr

eque

ncy

band

sig

nal a

s pr

evio

usly

se

en.

Thi

s im

plic

ates

that

the

new

met

hod,

con

sist

ing

of

tran

smit

ting

two

dual

fre

quen

cy

band

sou

rce

puls

es a

nd p

erfo

rmin

g a

puls

e su

mm

atio

n pr

oces

s, i

s ca

pabl

e o

f sig

nifi

cant

ly

incr

easi

ng b

oth

the

CN

R a

nd C

TR

at

the

thir

d ha

rmon

ic c

ompo

nent

rel

ativ

e to

whe

n ap

­pl

ying

the

conv

enti

onal

sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse.

L

ooki

ng a

t the

fou

rth

harm

onic

com

pone

nts

in th

e ri

ght p

anel

, we

noti

ce th

at th

ere

is a

m

ajor

incr

ease

in s

igna

l lev

el f

or b

oth

the

cont

rast

bub

ble

and

the

soft

tiss

ue a

pply

ing

the

dual

fre

quen

cy s

ourc

e pu

lses

wit

h th

e pu

lse

sum

mat

ion

tech

niqu

e. U

sing

thi

s ne

w p

ulse

su

mm

atio

n m

etho

d on

the

fou

rth

harm

onic

com

pone

nt w

ould

the

refo

re r

esul

t in

a m

ajor

in

crea

se i

n C

NR

but

als

o a

stro

ng r

educ

tion

in

CT

R r

elat

ive

to u

sing

a s

ingl

e fr

eque

ncy

band

sou

rce

puls

e.

It is

als

o in

tere

stin

g to

com

pare

the

thi

rd h

arm

onic

CN

R o

btai

ned

wit

h th

e ne

w p

ulse

su

mm

atio

n te

chni

que

and

the

seco

nd h

arm

onic

CN

R a

chie

ved

usin

g co

nven

tion

al s

ec­

ond

harm

onic

im

agin

g w

ith

a si

ngle

fre

quen

cy b

and

sour

ce p

ulse

. T

he s

olid

line

in

the

thir

d pa

nel

and

the

dash

ed l

ine

in t

he s

econ

d pa

nel o

f Fig

. 4.1

4 ar

e th

en t

o be

com

pare

d.

Whe

n co

mpa

ring

the

CN

R a

t tw

o di

ffer

ent h

arm

onic

com

pone

nts,

the

effe

ct o

f abs

orpt

ion

due

to w

ave

prop

agat

ion

from

the

sca

tter

er t

o th

e tr

ansd

ucer

sho

uld

be i

nclu

ded,

and

in

the

pres

ent

com

pari

son,

an

abso

rpti

on o

f 0.

5 dB

/cm

/MH

z w

as u

sed.

A

t 4

em,

the

thir

d ha

rmon

ic C

NR

wit

h th

e ne

w m

etho

d is

aro

und

13 d

B a

bove

the

sec

ond

harm

onic

CN

R

obta

ined

wit

h a

sing

le f

requ

ency

ban

d so

urce

pul

se.

At

6 an

d 8

em,

the

incr

ease

in C

NR

is

app

roxi

mat

ely

10 a

nd 5

dB

, res

pect

ivel

y, w

hile

at

10 e

m, t

he th

ird

and

seco

nd h

arm

onic

C

NR

are

abo

ut th

e sa

me.

The

new

pul

se s

umm

atio

n te

chni

que

is s

een

to p

erfo

rm b

est

in t

he n

ear-

fiel

d an

d fo

cal

regi

on w

here

the

tran

smit

am

plit

ude

is h

ighe

r th

an i

n th

e fa

r-fi

eld.

Loo

king

at F

ig. 4

.2 th

e tr

ansm

it a

mpl

itud

e is

see

n to

fal

l ra

ther

ste

eply

in th

e fa

r-fi

eld.

The

new

pul

se s

umm

atio

n te

chni

que

wou

ld p

roba

bly

have

per

form

ed b

ette

r in

the

far-

fiel

d ap

plyi

ng a

tran

smit

fie

ld

mor

e co

llim

ated

in th

e fa

r-fi

eld.

Thi

s ca

n fo

r ex

ampl

e be

ach

ieve

d by

inc

reas

ing

the

radi

us

of t

he a

nnul

ar tr

ansd

ucer

to 1

.5 e

m a

nd th

e ge

omet

ric

focu

s to

10

em.

Als

o, a

cous

tic

abso

rpti

on i

ncre

ases

wit

h fr

eque

ncy

whe

n no

t m

easu

red

as n

umbe

r o

f w

ave

leng

ths

trav

eled

hen

ce w

orki

ng a

gain

st h

ighe

r har

mon

ic im

agin

g te

chni

ques

at l

arge

de

pths

.

The

new

met

hod,

tra

nsm

itti

ng d

ual

freq

uenc

y ba

nd s

ourc

e pu

lses

and

per

form

ing

a ge

n­er

al f

orm

of

puls

e in

vers

ion,

may

als

o be

use

d ap

plyi

ng t

he s

catt

ered

fou

rth

harm

onic

4.3

Num

eric

al S

imul

atio

ns

77

Fig

ure

4.14

: S

catt

ered

har

mon

ic b

ubbl

e si

gnal

alo

ng s

ymm

etry

axi

s ba

sed

on c

alcu

late

d tr

ansm

it fi

elds

, go

ing

from

fun

dam

enta

l co

mpo

nent

in l

eft p

anel

to f

ourt

h ha

rmon

ic c

om­

pone

nt i

n ri

ght

pane

l. D

ashe

d lin

es:

Sin

gle

freq

uenc

y ba

nd s

ourc

e pu

lse

used

. S

olid

lin

es:

Tw

o du

al f

requ

ency

ban

d so

urce

pul

ses

used

, ph

ase

inve

rsio

n on

sec

ond

harm

onic

co

mpo

nent

. P

ulse

sum

mat

ion

of s

catt

ered

sig

nals

wit

h sa

me

tim

e sh

ift a

s in

Fig

. 4.7

.

com

pone

nt f

or i

mag

e re

cons

truc

tion

. T

hen,

in

orde

r to

red

uce

the

resu

ltin

g fo

urth

har

­m

onic

com

pone

nts

from

the

sof

t ti

ssue

as

seen

in

Sec.

4.3

.2,

the

two

scat

tere

d pu

lses

sh

ould

be

subt

ract

ed.

Fig

. 4.1

5 sh

ows

the

resu

lts

afte

r the

res

ulti

ng s

catt

ered

bub

ble

sign

als

have

bee

n su

btra

cted

in

a p

ulse

sub

trac

tion

pro

cess

. T

he tw

o sc

atte

red

bubb

le s

igna

ls h

ave

been

tim

e sh

ifte

d an

d am

plit

ude

corr

ecte

d re

lati

ve to

eac

h ot

her b

y th

e sa

me

amou

nt a

s w

as u

sed

in F

ig. 4

.9 a

nd

it is

the

refo

re o

f spe

cial

inte

rest

to c

ompa

re F

ig. 4

.9 a

nd 4

.15.

As

befo

re, t

he d

ashe

d li

nes

indi

cate

the

sca

tter

ed h

arm

onic

lev

els

obta

ined

fro

m t

he s

ingl

e fr

eque

ncy

band

sou

rce

puls

e fr

om s

oft

tissu

e an

d a

cont

rast

bub

ble,

res

pect

ivel

y.

In F

ig.

4.9,

we

see

that

all

harm

onic

com

pone

nts

from

sof

t ti

ssue

, ex

cept

the

fou

rth

harm

onic

, ar

e ve

ry s

tron

g an

d th

us o

nly

four

th h

arm

onic

imag

ing

is i

nter

esti

ng w

ith

this

pul

se s

ubtr

acti

on te

chni

que

due

to t

he r

esul

ting

lim

itat

ions

in C

TR

usi

ng t

he o

ther

har

mon

ic c

ompo

nent

s.

Inve

stig

atin

g th

e fo

urth

har

mon

ic c

ompo

nent

in th

e ri

ght p

anel

in F

ig. 4

.15,

we

noti

ce

that

the

incr

ease

in s

igna

l lev

el a

pply

ing

dual

fre

quen

cy b

and

sour

ce p

ulse

s an

d th

e pu

lse

subt

ract

ion

proc

ess

is s

igni

fica

nt.

We

thus

con

clud

e th

at u

sing

tw

o du

al f

requ

ency

ban

d so

urce

pul

ses

in c

ombi

nati

on w

ith

the

puls

e su

btra

ctio

n pr

oces

s si

gnif

ican

tly

incr

ease

s th

e C

NR

at

the

four

th h

arm

onic

com

pone

nt r

elat

ive

to a

pply

ing

a si

ngle

fre

quen

cy b

and

sour

ce p

ulse

. A

lso,

fro

m F

ig.

4.9

we

see

that

the

fou

rth

harm

onic

tis

sue

sign

al r

esul

ting

fr

om t

he p

ulse

sub

trac

tion

pro

cess

is v

ery

low

giv

ing

a hi

gh C

TR

.

Her

e, i

t is

als

o in

tere

stin

g to

com

pare

the

fou

rth

harm

onic

CN

R o

btai

ned

wit

h th

e ne

w

puls

e su

btra

ctio

n te

chni

que

and

the

seco

nd h

arm

onic

CN

R a

chie

ved

usin

g co

nven

tion

al

seco

nd h

arm

onic

imag

ing

wit

h a

sing

le f

requ

ency

ban

d so

urce

pul

se.

The

sol

id li

ne in

the

78

Pap

er C

Fig

ure

4.15

: S

catt

ered

har

mon

ic b

ubbl

e si

gnal

alo

ng s

ymm

etry

axi

s ba

sed

on c

alcu

late

d tr

ansm

it f

ield

, go

ing

from

fun

dam

enta

l co

mpo

nent

in l

eft

pane

l to

fou

rth

harm

onic

com

­po

nent

in r

ight

pan

el.

Das

hed

line

s: S

ingl

e fr

eque

ncy

band

sou

rce

puls

e us

ed.

Sol

id li

nes:

T

wo

dual

freq

uenc

y ba

nd s

ourc

e pu

lses

use

d, p

hase

inve

rsio

n on

sec

ond

harm

onic

com

po­

nent

. P

ulse

sub

trac

tion

of

scat

tere

d si

gnal

s w

ith

sam

e re

lati

ve t

ime

shif

ts a

nd a

mpl

itud

es

as i

n Fi

g. 4

.9.

four

th p

anel

and

the

das

hed

line

in t

he s

econ

d pa

nel

of F

ig. 4

.15

are

then

to b

e co

mpa

red.

A

n ab

sorp

tion

equ

al t

o 0.

5 dB

/cm

/MH

z is

inc

lude

d in

the

pre

sent

com

pari

son.

At

4 em

, th

e fo

urth

har

mon

ic C

NR

is a

bout

18

dB a

bove

the

seco

nd h

arm

onic

CN

R o

btai

ned

wit

h th

e si

ngle

fre

quen

cy b

and

sour

ce.

The

inc

reas

e in

CN

R u

sing

the

new

pul

se s

ubtr

acti

on

met

hod

is r

educ

ed to

aro

und

15, 8

, an

d 3

dB a

t 6,

8, a

nd 1

0 em

, re

spec

tive

ly.

Aga

in,

as i

ndic

ated

pre

viou

sly,

the

new

pul

se s

ubtr

acti

on t

echn

ique

wou

ld p

roba

bly

have

pe

rfor

med

bet

ter

in t

he f

ar-f

ield

app

lyin

g a

tran

smit

fie

ld m

ore

coll

imat

ed i

n th

e fa

r-fi

eld.

T

he e

ffec

ts o

f the

aco

usti

c ab

sorp

tion

mec

hani

sms

wil

l be

stro

nger

for

the

four

th h

arm

onic

si

gnal

com

pone

nts

from

the

pul

se s

ubtr

acti

on m

etho

d th

an f

or t

he t

hird

har

mon

ic s

igna

l co

mpo

nent

s fr

om t

he p

ulse

sum

mat

ion

met

hod.

4.4

Con

clus

ions

The

pre

sent

pap

er h

as d

escr

ibed

and

dis

cuss

ed a

new

con

tras

t har

mon

ic i

mag

ing

met

hod

desi

gned

to

incr

ease

the

sca

tter

ed h

arm

onic

con

tras

t si

gnal

rel

ativ

e to

bot

h th

e sc

atte

red

harm

onic

tis

sue

sign

al a

nd t

he n

oise

sig

nal

alw

ays

pres

ent

in a

pul

se e

cho

imag

ing

sys­

tem

. T

o ac

hiev

e th

is, t

he n

ew m

etho

d co

nsis

ts o

f tr

ansm

itti

ng d

ual f

requ

ency

ban

d pu

lses

w

here

in p

arti

cula

r, a

fun

dam

enta

l ban

d an

d its

sec

ond

harm

onic

com

pone

nt a

re t

rans

mit

­te

d ov

erla

ppin

g in

tim

e. T

his

dual

fre

quen

cy b

and

tran

smit

pul

se b

oost

s up

the

sca

tter

ed

thir

d an

d fo

urth

har

mon

ic c

ontr

ast

sign

al a

nd t

issu

e si

gnal

com

pone

nts.

The

inc

reas

e in

4.5

Fu

rth

er W

ork

79

scat

tere

d th

ird

and

four

th h

arm

onic

tis

sue

sign

al is

the

n re

mov

ed o

r re

duce

d tr

ansm

itti

ng

a se

cond

dua

l fr

eque

ncy

band

pul

se a

nd p

erfo

rmin

g a

gene

ral

puls

e in

vers

ion

proc

ess.

T

rans

mit

ting

dua

l fr

eque

ncy

band

pul

ses,

one

is c

apab

le o

f con

stru

ctin

g tw

o as

ymm

etri

c tr

ansm

it p

ulse

s w

ith

resp

ect t

o po

siti

ve a

nd n

egat

ive

pres

sure

am

plit

ude

and

thus

pre

vent

­in

g th

e sc

atte

red

thir

d or

four

th h

arm

onic

con

tras

t sig

nal f

rom

bei

ng s

igni

fica

ntly

red

uced

in

the

puls

e in

vers

ion

proc

ess.

4.5

Fur

ther

Wor

k

Pre

sent

ed r

esul

ts b

ased

on

num

eric

al s

imul

atio

ns a

re i

nter

esti

ng a

nd s

ugge

st t

hat e

xper

i­m

enta

l stu

dies

sho

uld

be c

arri

ed o

ut to

fur

ther

val

idat

e th

e ne

w c

ontr

ast h

arm

onic

imag

ing

met

hod.

The

mai

n ob

stac

le i

n co

nduc

ting

the

se e

xper

imen

ts i

s th

e de

sign

and

man

ufac

­tu

re o

f a

new

mul

ti ba

nd u

ltra

soun

d tr

ansd

ucer

cap

able

of t

rans

mit

ting

a f

unda

men

tal

and

seco

nd h

arm

onic

im

agin

g pu

lse

whi

le r

ecei

ving

the

sca

tter

ed t

hird

and

pos

sibl

y fo

urth

ha

rmon

ic c

ompo

nent

s.

One

int

eres

ting

tra

nsdu

cer

desi

gn i

s an

ann

ular

tra

nsdu

cer

con­

sist

ing

of s

ever

al in

depe

nden

t rin

gs.

The

n, t

he o

uter

ring

s m

ight

be

used

in t

rans

mit

mod

e w

hile

the

inn

er r

ings

, ha

ving

a d

iffe

rent

fre

quen

cy r

espo

nse,

cou

ld b

e us

ed i

n re

ceiv

e m

ode.

4.6

Ack

now

ledg

men

ts

Thi

s w

ork

was

sup

port

ed b

y th

e R

esea

rch

Cou

ncil

of N

orw

ay.

Cha

pter

5

Lin

ear

Con

tras

t A

gen

t D

etec

tion

th

roug

h L

ow F

req

uen

cy M

anip

ulat

ion

of H

igh

Fre

qu

ency

Sca

tter

ing

Pro

pert

ies

Abs

trac

t

The

pre

sent

pap

er p

ropo

ses

a ne

w m

etho

d ap

plyi

ng t

he t

otal

sca

tter

ed c

ontr

ast

sign

al

for

imag

e re

cons

truc

tion

, thu

s la

rgel

y ov

erco

min

g th

e pr

oble

ms

enco

unte

red

in h

arm

onic

im

agin

g te

chni

ques

. In

the

new

met

hod,

the

con

tras

t si

gnal

s an

d th

e ti

ssue

sig

nals

are

di

ffer

enti

ated

app

lyin

g a

sim

ple

puls

e su

btra

ctio

n te

chni

que

whi

ch c

ance

ls o

r sig

nifi

cant

ly

redu

ces

the

scat

tere

d tis

sue

sign

al,

whe

reas

the

sca

tter

ed c

ontr

ast

sign

al,

due

to a

ssis

ting

tr

ansm

itte

d lo

w f

requ

ency

pul

ses

alte

ring

the

acou

stic

sca

tter

ing

prop

erti

es o

f the

con

tras

t ag

ent,

is p

rese

rved

in

this

pro

cess

. T

he m

ain

mec

hani

sm t

hrou

gh w

hich

thi

s im

agin

g te

chni

que

sele

cts

the

cont

rast

age

nt s

igna

l is

the

line

ar r

eson

ant p

rope

rtie

s o

f the

con

tras

t bu

bble

and

the

new

met

hod

is t

hus

mai

nly

a li

near

con

tras

t age

nt d

etec

tion

tech

niqu

e.

5.1

Intr

oduc

tion

Med

ical

ult

raso

und

wav

e pr

opag

atio

n is

typ

ical

ly a

wea

k no

nlin

ear

proc

ess

[3,

Cha

pter

12

]. U

ltra

soun

d sc

atte

ring

fro

m s

oft

tissu

e is

ass

umed

to

be a

lin

ear

proc

ess

and

ener

gy

rece

ived

fro

m s

oft

tiss

ue o

utsi

de t

he f

unda

men

tal

tran

smit

ted

freq

uenc

y ba

nd i

s he

nce

gene

rate

d in

the

forw

ard

prop

agat

ion

of th

e ul

tras

ound

wav

e un

less

a s

prea

ding

of c

ontr

ast

agen

t si

gnal

bey

ond

the

cont

rast

-fil

led

regi

on,

as d

iscu

ssed

bel

ow,

occu

rs.

Ult

raso

und

cont

rast

age

nts

are

intr

oduc

ed to

inc

reas

e th

e ul

tras

ound

sca

tter

ing

from

blo

od w

hich

is

82

Pap

erD

wea

k co

mpa

red

to t

he s

catt

ered

tis

sue

sign

al [

13,

Tab

le 4

.21-

4.22

]. T

he c

ontr

ast

agen

ts

are

usua

lly

mad

e as

sol

utio

ns o

f ga

s bu

bble

s in

a f

luid

whi

ch i

s in

ject

ed i

nto

the

bloo

d flo

w.

Ult

raso

und

scat

teri

ng f

rom

the

add

ed g

as b

ubbl

es in

the

blo

od is

usu

ally

str

ong

and

high

ly n

onlin

ear,

hen

ce in

crea

sing

the

scat

tere

d bl

ood

sign

al.

The

str

ong

nonl

inea

r re

spon

se f

rom

the

con

tras

t bu

bble

s w

hen

driv

en b

y an

ult

raso

und

puls

e ha

s gi

ven

rise

to

the

cont

rast

har

mon

ic i

mag

ing

tech

niqu

es [

35]

[11]

[12

], w

here

on

ly a

har

mon

ic c

ompo

nent

of

the

tota

l sc

atte

red

bubb

le s

igna

l is

use

d fo

r im

age

reco

n­st

ruct

ion.

As

high

er s

catt

ered

har

mon

ic c

ompo

nent

s ar

e co

nsid

ered

, one

is a

ble

to o

btai

n a

bett

er d

iffe

rent

iati

on o

f th

e re

ceiv

ed c

ontr

ast

sign

al a

nd th

e re

ceiv

ed t

issu

e si

gnal

due

to

the

wea

ker

nonl

inea

r di

stor

tion

of

the

rece

ived

tis

sue

sign

al.

In a

ddit

ion

to t

he f

act

that

onl

y a

frac

tion

(a

harm

onic

com

pone

nt)

of

the

tota

l sc

atte

red

cont

rast

sig

nal i

s us

ed

for

imag

e re

cons

truc

tion

, th

e co

ntra

st h

arm

onic

im

agin

g te

chni

ques

do

have

im

port

ant

unw

ante

d as

pect

s, s

ome

of w

hich

we

are

brie

fly

goin

g to

dis

cuss

her

e.

Firs

t, as

hig

her

harm

onic

sig

nal

com

pone

nts

are

cons

ider

ed,

the

rece

ived

con

tras

t ha

r­m

onic

sig

nal

is,

alth

ough

inc

reas

ed r

elat

ive

to t

he h

arm

onic

tis

sue

sign

al,

typi

cally

sig

­ni

fica

ntly

red

uced

in a

mpl

itude

. T

he r

educ

tion

in

ampl

itud

e of

the

rece

ived

con

tras

t har

­m

onic

com

pone

nts

has

impo

rtan

t co

nseq

uenc

es i

n a

puls

e ec

ho i

mag

ing

syst

em w

here

el

ectr

onic

and

the

rmal

noi

se a

lway

s is

pre

sent

, an

d as

hig

her

cont

rast

har

mon

ic c

ompo

­ne

nts

are

cons

ider

ed,

the

ampl

itud

e o

f the

se w

ill b

e o

f th

e sa

me

orde

r as

the

noi

se i

n th

e im

agin

g sy

stem

. Se

cond

, fo

r th

e co

ntra

st b

ubbl

es t

o re

spon

d w

ith

stro

ng s

catt

ered

har

mon

ic c

ompo

­ne

nts,

the

fre

quen

cy o

f th

e tr

ansm

itte

d dr

ive

puls

es s

houl

d be

wel

l be

low

the

res

onan

ce

freq

uenc

y o

f th

e co

ntra

st a

gent

. A

lso,

for

the

bub

ble

to r

espo

nd w

ith

dist

inct

har

mon

ic

com

pone

nts,

the

tra

nsm

it p

ulse

has

to

be r

elat

ivel

y na

rrow

band

ed.

The

se c

onst

rain

ts o

n tr

ansm

it f

requ

ency

and

pul

se l

engt

h im

pose

res

tric

tion

s in

the

rang

e re

solu

tion

of t

he u

l­tr

asou

nd i

mag

e w

hich

is i

nver

sely

pro

port

iona

l to

the

leng

th o

f the

tra

nsm

it p

ulse

. T

hird

, th

e pa

rt o

f th

e co

ntra

st s

igna

l sc

atte

red

in t

he f

orw

ard

prop

agat

ion

dire

ctio

n ad

ds i

n ph

ase

wit

h th

e tr

ansm

it p

ulse

and

int

rodu

ces

an e

xtra

dis

tort

ion

of

the

tran

smit

fi

eld

due

to t

he s

tron

g no

nlin

eari

ty o

f sc

atte

ring

fro

m t

he b

ubbl

es.

Thi

s ex

tra

dist

orti

on

of

the

tran

smit

fie

ld m

ay t

hen

be l

inea

rly

back

-sca

tter

ed f

rom

tis

sue

regi

ons

and

fals

ely

inte

rpre

ted

as c

ontr

ast s

igna

l. T

his

unw

ante

d sp

read

of c

ontr

ast a

gent

sig

nal i

s es

peci

ally

tr

oubl

esom

e fo

r tis

sue

regi

ons

whi

ch in

ran

ge d

irec

tion

lies

bey

ond

larg

e bl

ood

vess

els

or

the

larg

e bl

ood

fille

d he

art c

aviti

es.

And

fin

ally

, th

e de

sign

and

man

ufac

ture

of b

road

band

ult

raso

und

tran

sduc

ers

capa

ble

of

effi

cien

tly r

ecei

ving

hig

her

than

the

sca

tter

ed s

econ

d ha

rmon

ic c

ompo

nent

, is

tod

ay

very

cha

llen

ging

.

The

pre

sent

pap

er d

eals

wit

h a

new

con

tras

t ag

ent

dete

ctio

n te

chni

que,

usi

ng t

he t

otal

sc

atte

red

cont

rast

sig

nal,

and

in p

arti

cula

r th

e li

near

com

pone

nt o

f th

is,

for

imag

e re

­co

nstr

ucti

on.

By

not

bein

g de

pend

ent

on t

he s

catt

ered

con

tras

t ha

rmon

ic c

ompo

nent

s,

the

new

det

ecti

on te

chni

que

larg

ely

over

com

es th

e m

enti

oned

unw

ante

d as

pect

s re

sulti

ng

from

the

con

tras

t ha

rmon

ic i

mag

ing

tech

niqu

es.

The

new

met

hod

acco

mpl

ishe

s th

is b

y

5.2T

heo

ry

83

mak

ing

use

of t

rans

mit

ted

assi

stin

g lo

w f

requ

ency

pul

ses

whi

ch p

urpo

se a

re to

man

ipul

ate

the

acou

stic

sca

tter

ing

prop

erti

es o

f th

e re

sona

nt c

ontr

ast

bubb

les.

In

addi

tion

, a

sim

ple

puls

e su

btra

ctio

n m

etho

d is

app

lied

to

canc

el o

r si

gnif

ican

tly

redu

ce t

he s

catt

ered

tis

sue

sign

al h

ence

mak

ing

it p

ossi

ble

to e

ffic

ient

ly d

iffe

rent

iate

the

scat

tere

d co

ntra

st s

igna

l and

th

e sc

atte

red

tiss

ue s

igna

l.

5.2

The

ory

5.2.

1 W

ave

Pro

paga

tion

and

Sca

tter

ing

from

Sof

t T

issu

e

Wav

e pr

opag

atio

n in

sof

t tis

sue

can

be c

onsi

dere

d a

wea

k no

nlin

ear p

roce

ss f

or a

mpl

itud

es

and

freq

uenc

ies

com

mon

in

med

ical

ult

raso

und

imag

ing.

The

tis

sue

elas

tici

ty r

espo

nds

slig

htly

non

line

arly

giv

ing

rise

to

the

nonl

inea

rity

of

ultr

asou

nd w

ave

prop

agat

ion.

The

lo

cal n

onli

near

ity

is lo

w b

ut th

e di

stor

tion

acc

umul

ates

gra

dual

ly in

the

forw

ard

prop

agat

­in

g w

ave,

man

ifes

ting

its

elf m

ainl

y as

a s

econ

d ha

rmon

ic c

ompo

nent

. B

y do

ing

a T

aylo

r se

ries

exp

ansi

on o

f th

e eq

uati

on o

f st

ate

P =

P(p

, s)

alon

g an

ise

ntro

pe s

= s

0, w

here

p

is t

he d

ensi

ty o

f th

e m

ediu

m,

we

can

acco

unt

for

this

non

line

arit

y. B

y d

isca

rdin

g te

rms

of

orde

r hi

gher

than

the

sec

ond

in t

he T

aylo

r se

ries

exp

ansi

on,

we

obta

in [

16,

Cha

pter

2]

p =

AP

1 +

B P~

.

Po

2 Po

(5

.1)

Her

e, p

0 is

the

den

sity

in t

he u

nstr

aine

d m

ater

ial w

hile

p1

= p

-Po

· The

aco

usti

c pr

essu

re

is d

efin

ed a

s p

= P

-P

0 w

here

Po

is t

he a

mbi

ent p

ress

ure,

and

the

par

amet

ers

A a

nd B

ar

e de

fine

d as

aPI

A=

po

-0

, p

O,s

azpl

B =

P6 8

p2

o,s

whe

re t

he s

ubsc

ript

s in

the

par

tial

der

ivat

ives

ind

icat

e th

at t

hey

are

eval

uate

d at

the

un­

stra

ined

sta

te f

or a

n is

entr

opic

pro

cess

. W

e m

ay th

en d

eriv

e th

e fo

llow

ing

tiss

ue e

last

icit

y eq

uati

on [

3, C

hapt

er 1

2.3]

p(f

, t)

= -

A\1

· ~(r

, t) +

A{3

( \1

· ~(f,

t) r

(5.2

)

whe

re ~is

par

ticl

e di

spla

cem

ent a

nd {3

is

a no

nlin

eari

ty p

aram

eter

def

ined

as

B

{3 =

1 +

2A

.

Eq.

5.2

is a

non

line

ar m

ater

ial e

last

icit

y eq

uati

on w

here

the

nonl

inea

rity

par

amet

er c

an b

e fo

und

expe

rim

enta

lly

for

vari

ous

mat

eria

ls.

In th

e on

e-di

men

sion

al c

ase,

the

equ

atio

n fo

r co

nser

vati

on o

f m

omen

tum

giv

es

(5.3

)

84

Pap

er D

Fro

m E

q. 5

.2,

we

can

for

the

one-

dim

ensi

onal

cas

e, o

mit

ting

the

coor

dina

te d

epen

denc

y,

wri

te th

e m

ater

ial

equa

tion

as

87/;

(87/

J) 2

p=

-A

-+

A/3

-8z

8z

(5

.4)

or a

lter

nati

vely

(5.5

)

whe

re t

he c

ompr

essi

bili

ty "

' is

defi

ned

as t

he i

nver

se o

f th

e pa

ram

eter

A.

We

may

now

de

rive

the

one

-dim

ensi

onal

non

line

ar w

ave

equa

tion

as

(5.6

)

whe

re t

he li

near

pro

paga

tion

vel

ocit

y is

def

ined

as

Co=~

=~

We

noti

ce t

hat t

he n

onli

near

pro

paga

tion

vel

ocit

y va

ries

wit

h th

e vo

lum

e co

mpr

essi

on o

f th

e m

ater

ial

acco

rdin

g to

c =

co /1

-2(

38 7/J v

8z

=

cov

l +

2(3K

-p-

2(32

(K-p

)2 (5

.7)

::::;, c

ov

l +

2(3K

-p::::

;, c 0

(1 +

(3K-p

)

whe

re t

he l

ast a

ppro

xim

atio

ns a

re v

alid

for

the

cas

e w

hen

"-P <

< 1

. E

q. 5

.7 i

s la

ter

used

in

Sec

. 5.

5 to

ana

lyze

the

pro

paga

tion

of t

wo

tran

smit

ted

dual

fre

quen

cy b

and

puls

es.

The

sig

nal

scat

tere

d fr

om s

oft

tiss

ue is

a r

esul

t o

f th

e in

here

nt i

nhom

ogen

eous

nat

ure

of

the

med

ium

. T

here

is a

spa

tial

var

iati

on o

f the

mas

s de

nsit

y an

d co

mpr

essi

bili

ty o

n va

ri­

ous

scal

es r

esul

ting

in s

catt

erin

g o

f the

tran

smit

ted

acou

stic

wav

e. T

he a

cous

tic

scat

teri

ng

proc

ess

from

sof

t tis

sue

is a

ssum

ed to

be

line

ar a

nd th

e pr

esen

ce o

f har

mon

ic c

ompo

nent

s in

the

sca

tter

ed t

issu

e si

gnal

is,

if

spre

adin

g o

f co

ntra

st a

gent

sig

nal

beyo

nd t

he a

ctua

l co

ntra

st-f

ille

d re

gion

s do

es n

ot o

ccur

, th

eref

ore

a re

sult

of t

he n

onli

near

ity

in th

e fo

rwar

d pr

opag

atin

g w

ave

[3,

Cha

pter

7].

In m

edic

al u

ltra

soun

d im

agin

g, s

oft

tiss

ue is

a n

on-r

eson

ant

med

ium

, th

e w

ave

prop

aga­

tion

is a

wea

k no

nlin

ear

proc

ess

whi

le t

he r

esul

ting

sca

tter

ing

is a

line

ar p

roce

ss.

5.2.

2 C

ontr

ast A

gent

Sca

tter

ing

The

con

tras

t ag

ent

is a

ssum

ed t

o be

gas

bub

bles

enc

apsu

late

d in

a t

hin

shel

l. T

he d

iam

­et

er o

f th

e bu

bble

is

muc

h le

ss t

han

the

wav

elen

gth

of

the

inco

min

g w

ave

fiel

d an

d th

e

5.2T

heo

ry

85

bubb

le th

us e

xper

ienc

es a

n ap

prox

imat

ely

unif

orm

spa

tial

fie

ld a

nd th

e bu

bble

osc

illa

tion

is

ass

umed

to b

e pu

rely

sph

eric

al.

Sim

ulat

ions

for

bub

ble

radi

us o

scil

lati

ons

and

acou

stic

sca

tter

ing

are

done

usi

ng t

he n

u­m

eric

al m

odel

dev

elop

ed b

y A

ngel

sen

et a

l [ 4

]. T

his

mod

el i

nclu

des

an e

quat

ion

for

the

rela

tion

bet

wee

n pr

essu

re a

nd r

adia

l st

rain

in a

thin

she

ll e

ncap

sula

ting

a g

as b

ubbl

e. T

he

mod

el a

llow

s fo

r a

fini

te s

peed

of s

ound

in th

e m

ediu

m s

urro

undi

ng th

e bu

bble

, th

us t

ak­

ing

radi

atio

n lo

sses

fro

m t

he b

ubbl

e in

to a

ccou

nt.

Oth

erw

ise

it is

com

para

ble

to t

he w

ell

know

n R

ayle

igh-

Ple

sset

equ

atio

n [3

3] [

31]

and

the

two

mod

els

give

sim

ilar

res

ults

for

in

cide

nt p

ress

ure

puls

es a

nd b

ubbl

e pa

ram

eter

s st

udie

d in

this

pap

er.

The

Ray

leig

h-P

less

et e

quat

ion

is a

sec

ond

orde

r no

nlin

ear

diff

eren

tial

equ

atio

n fo

r th

e fl

uid

surr

ound

ing

a sp

heri

cal

puls

atin

g ga

s bu

bble

. T

his

equa

tion

des

crib

es t

he r

adiu

s os

cill

atio

n o

f the

bub

ble

as [

33]

[31]

3 Po

(aa

+ 2a?

) =

p(a

, t)-

Po

-P

i(t)

(5

.8)

whe

re a

is

the

radi

us, a

and

a is

the

vel

ocit

y an

d ac

cele

rati

on o

f th

e bu

bble

rad

ius,

p0

is t

he d

ensi

ty o

f th

e su

rrou

ndin

g fl

uid,

P0

is t

he a

mbi

ent

pres

sure

, P

i(t)

is

the

inci

dent

dr

ivin

g pr

essu

re,

and

p( a,

t) i

s th

e pr

essu

re a

t th

e bu

bble

sur

face

. N

onli

near

ela

stic

ity

of

the

gas

and

enca

psul

atin

g th

in s

hell

, su

rfac

e te

nsio

n, a

nd v

isco

sity

may

be

inco

rpor

ated

in

the

fir

st t

erm

on

the

righ

t-ha

nd s

ide

in E

q. 5

.8.

For

sm

all a

mpl

itud

es o

f the

inci

dent

dri

ve p

ress

ure,

the

bub

ble

osci

llat

ion

can

be

assu

med

to

be

appr

oxim

atel

y li

near

and

we

have

the

fol

low

ing

seco

nd o

rder

lin

ear

diff

eren

tial

eq

uati

on f

or t

he r

adia

l di

spla

cem

ent,

1/J, a

roun

d an

equ

ilib

rium

rad

ius

a

(5.9

)

Her

e, m

is

the

iner

tia

of

the

surr

ound

ing

flui

d,

b is

a d

ampi

ng c

onst

ant,

and

s is

the

st

iffn

ess

of

the

gas

and

enca

psul

atin

g bu

bble

she

ll. E

q. 5

.9 t

ypic

ally

des

crib

es t

he f

orce

d li

near

osc

illa

tion

of

a sy

stem

con

sist

ing

of a

mas

s m

att

ache

d on

a s

prin

g w

ith

stif

fnes

s s

whe

reas

b a

ccou

nts

for

the

dam

ping

in

the

syst

em.

By

taki

ng t

he F

ouri

er T

rans

form

of

Eq.

5.9

we

obta

in

(5.1

0)

whe

re w

e ha

ve d

efin

ed t

he t

rans

fer

func

tion

fro

m d

rive

pre

ssur

e to

rad

ial d

ispl

acem

ent

as

and

whe

re

1 H

l(D.)

=

D,2

-1

-iD

.d

(5.1

1)

d =

_b

_

2 s

n =

_~!___

• (5

.12)

w

om '

W

o =

m

'

Wo

Her

e, w

is t

he a

ngul

ar f

requ

ency

of

the

Fou

rier

Tra

nsfo

rm,

and

w0

is t

he r

eson

ance

fre

­qu

ency

. T

he a

bsol

ute

valu

e an

d ph

ase

angl

e o

f H

1(D

.) ar

e sh

own

in F

ig. 5

.1.

We

see

that

86

·Jr:~

0 0.

2 0.

4 0

.6

0.8

1

1.2

1.4

1.6

1.8

2 [U

]

4 ~;~ ___ ___

j 0

0.2

0.4

0.6

0

.8

1 1.

2 1.

4 1.

6 1.

8 2

[U)

Pap

erD

Fig

ure

5.1:

T

rans

fer

func

tion

from

dri

ve p

ress

ure

to r

adia

l di

spla

cem

ent

in E

q. 5

.11.

T

he p

aram

eter

din

Eq.

5.1

2 is

set

to

0.5

and

0.1

givi

ng t

he s

olid

lin

e an

d da

shed

lin

e,

resp

ectiv

ely.

Upp

er p

anel

: A

bsol

ute

valu

e. L

ower

pan

el:

Pha

se a

ngle

.

for

driv

e fr

eque

ncie

s w

ell

belo

w r

eson

ance

the

dis

plac

emen

t is

1r

out

of

phas

e w

ith

the

driv

ing

pres

sure

. F

or f

requ

enci

es w

ell

abov

e re

sona

nce,

the

bub

ble

resp

onds

dif

fere

ntly

an

d th

e di

spla

cem

ent

and

driv

e pr

essu

re a

re n

ow i

n ph

ase.

A

roun

d re

sona

nce

the

dis­

plac

emen

t is

appr

oxim

atel

y ~

out o

f pha

se w

ith

the

driv

e pr

essu

re.

The

abs

olut

e va

lue

of th

e am

plit

ude

of t

he t

rans

fer

func

tion

is s

een

in t

he u

pper

pan

el

of F

ig.

5.1.

G

oing

fro

m f

requ

enci

es b

elow

res

onan

ce t

owar

ds r

eson

ance

the

am

plit

ude

incr

ease

s gr

adua

lly c

ulm

inat

ing

wit

h a

prom

inen

t pe

ak a

roun

d re

sona

nce

for

the

situ

a­ti

on w

ith

low

dam

ping

(d

= 0

.1)

and

a co

nsid

erab

le s

mal

ler

peak

for

the

sit

uati

on w

ith

high

er d

ampi

ng (

d =

0.5

). I

n bo

th c

ases

, the

am

plit

ude

is s

een

to d

ecre

ases

rap

idly

abo

ve

reso

nanc

e.

The

far

-fie

ld p

ress

ure

at a

dis

tanc

e r

from

the

sou

rce,

rad

iate

d fr

om a

tim

e ha

rmon

ic

osci

llat

ing

bubb

le b

ehav

ing

as a

mon

opol

e so

urce

is a

div

ergi

ng s

pher

ical

wav

e th

at m

ay

be w

ritte

n p(

r) =

p(

a)a

e-ik

(r-a

) r

(5.1

3)

whe

re a

is

the

bubb

le r

adiu

s an

d k

is t

he w

ave

num

ber.

By

assu

min

g pu

re r

adia

l in

­co

mpr

essi

ble

osci

llat

ions

and

neg

lect

ing

the

nonl

inea

r co

nvec

tive

acce

lera

tion

ter

m,

the

Nav

ier-

Stok

es E

quat

ions

red

uce

to [

42] 8u

r 8p

P

o-=

--

8t

8r

(5.1

4)

whe

re u

,. is

the

radi

al v

eloc

ity.

We

part

icul

arly

not

ice

that

the

visc

ous

term

s ha

ve v

anis

hed

for

the

situ

atio

n w

ith

pure

rad

ial

inco

mpr

essi

ble

flui

d m

otio

n.

We

may

now

wri

te t

he

pres

sure

gra

dien

t as

-8p

(r)

=

p(a)

(9: +

ika)

8r

r

r (5

.15)

5.3

Met

hod

87

At t

he b

ubbl

e su

rfac

e, U

r =

~ a

nd r

= a

, an

d w

e th

us g

et

Poa

2 p(

a,w

) =

-1

+ ik

a w

1/J(

w)

(5.1

6)

Ass

umin

g th

at t

he s

ourc

e is

muc

h le

ss t

han

the

wav

e le

ngth

whi

ch i

s ty

pica

lly

the

case

fo

r ul

tras

ound

con

tras

t bub

bles

, ka

< <

1, w

e ge

t

(5.1

7)

App

lyin

g th

e re

sult

fro

m E

q. 5

.10

we

fina

lly o

btai

n th

e fo

llow

ing

rela

tion

bet

wee

n th

e dr

ive

pres

sure

and

the

sca

tter

ed p

ress

ure

(5.1

8)

whe

re t

he t

rans

fer

func

tion

fro

m d

rive

pre

ssur

e to

sca

tter

ed p

ress

ure

is g

iven

by

(5.1

9)

The

upp

er a

nd l

ower

pan

el o

f Fi

g. 5

.2 d

ispl

ay t

he a

bsol

ute

valu

e an

d ph

ase

angl

e o

f H

2(f

l),

resp

ectiv

ely.

As

prev

ious

ly,

the

dash

ed l

ines

are

res

ults

obt

aine

d se

ttin

g th

e pa

­ra

met

er d

equ

al to

0.1

whi

le th

e so

lid

line

s ar

e ob

tain

ed f

ord

equ

al to

0.5

. T

he a

mpl

itud

e o

f the

sca

tter

ed p

ress

ure,

as

seen

fro

m t

he u

pper

pan

el in

Fig

. 5.

2, s

igni

fica

ntly

incr

ease

s w

hen

goin

g fr

om d

rive

fre

quen

cies

bel

ow r

eson

ance

tow

ards

res

onan

ce.

For

dri

ve f

re­

quen

cies

abo

ve r

eson

ance

, th

e sc

atte

red

ampl

itud

e ap

proa

ches

a c

onst

ant l

evel

. In

the

low

er p

anel

of

the

figu

re,

we

see

that

for

dri

ve f

requ

enci

es w

ell

belo

w r

eso­

nanc

e, t

he s

catt

ered

pre

ssur

e is

in

phas

e w

ith

the

driv

ing

pres

sure

. T

his

mea

ns t

hat

the

bubb

le i

s do

min

ated

by

s, t

he s

tiffn

ess

of

the

gas

and

shel

l. F

or f

requ

enci

es w

ell

abov

e re

sona

nce,

the

bub

ble

resp

onds

dif

fere

ntly

and

is n

ow d

omin

ated

by

m,

the

iner

tia

of t

he

co-o

scil

lati

ng m

ass.

T

he s

catt

ered

pre

ssur

e an

d dr

ive

pres

sure

are

now

1r

out

of

phas

e.

Aro

und

reso

nanc

e th

e sc

atte

red

pres

sure

is

appr

oxim

atel

y %

out

of

phas

e w

ith

the

driv

e pr

essu

re.

In m

edic

al u

ltra

soun

d im

agin

g, t

he c

ontr

ast

bubb

le i

s ty

pica

lly

a re

sona

nt s

catt

erer

and

co

ntra

st a

gent

sca

tter

ing

is a

hig

hly

nonl

inea

r pr

oces

s.

5.3

Met

hod

The

new

con

tras

t age

nt d

etec

tion

met

hod

is p

erfo

rmed

by

cons

ecut

ivel

y tr

ansm

itti

ng tw

o ul

tras

ound

pul

ses,

bot

h co

ntai

ning

tw

o fr

eque

ncy

band

s w

hich

are

ove

rlap

ping

in

the

time

dom

ain.

The

se tw

o tr

ansm

itte

d pu

lses

con

tain

a lo

w f

requ

ency

ban

d an

d a

high

fre

­qu

ency

ban

d, w

here

the

pur

pose

of t

he t

rans

mit

ted

low

fre

quen

cy b

and

is t

o m

anip

ulat

e,

88

·~l Z

< __

_ ;____

: I

0 0.

2 0.

4 0.

6 0

.8

I 1.

2 1.

4 1.

6 1.

8 2

[ill

~j • =s

;mnu

l 0

0 2

0.4

0.6

0.8

1 1.

2 1.

4 1.

6 1.

8 2

[il]

Pap

erD

Fig

ure

5.2:

Tra

nsfe

r fu

nctio

n fr

om d

rive

pre

ssur

e to

sca

tter

ed p

ress

ure

in E

q. 5

.19.

The

pa

ram

eter

din

Eq.

5.1

2 is

set

to 0

.5 a

nd 0

.1 g

ivin

g th

e so

lid

line

and

dash

ed li

ne, r

espe

c­tiv

ely.

Upp

er p

anel

: A

bsol

ute

valu

e. L

ower

pan

el:

Pha

se a

ngle

.

by e

xpan

ding

and

com

pres

sing

the

bub

ble,

the

aco

ustic

sca

tter

ing

prop

erti

es o

f th

e co

n­tr

ast

agen

t at

the

tra

nsm

itte

d hi

gh f

requ

ency

ban

d.

The

tw

o tr

ansm

itte

d pu

lses

may

be

expr

esse

d as

P1(t)

= a

1(t)

sin(

w1t

) +

a2(t

)sin

(w2t

+ (P

t) P2

(t) =

-a3

(t)s

in(w

1t) +

a4(t

)sin

(w2t

+(h

) (5

.20)

(5.2

1)

whe

re a

n a

re p

osit

ive

ampl

itude

func

tions

, Wn

is th

e an

gula

r fre

quen

cy,

and

¢n

are

sel

ecte

d ph

ase

angl

es.

In t

he s

impl

est e

mbo

dim

ent o

f th

e ne

w i

mag

ing

tech

niqu

e, a

3 =

a1,

a4

=

a2,

and

¢2 =

qyt.

Firs

t, th

e pu

lse

desc

ribe

d by

Eq.

5.2

0 is

tran

smit

ted

and

the

scat

tere

d pu

lse

is r

ecei

ved

and

stor

ed.

The

n th

e pu

lse

in E

q. 5

.21

is t

rans

mitt

ed,

whe

re t

he p

hase

of

the

low

fre

quen

cy

com

pone

nts

not

used

for

im

age

reco

nstr

ucti

on a

re i

nver

ted,

and

the

rec

eive

d sc

atte

red

sign

al i

s su

btra

cted

fro

m t

he f

irst

rec

eive

d pu

lse.

T

he n

on-r

eson

ant

soft

tis

sue

and

the

reso

nant

con

tras

t bu

bble

will

res

pond

dif

fere

ntly

on

the

two

tran

smit

ted

dual

fre

quen

cy

band

pul

ses.

We

assu

me

that

the

time

dura

tion

of t

he t

rans

mit

ted

high

fre

quen

cy p

ulse

is l

ess

than

the

ti

me

dura

tion

of a

hal

f per

iod

of t

he tr

ansm

itte

d lo

w fr

eque

ncy

puls

e. I

f the

hig

h fr

eque

ncy

com

pone

nts

w2

in t

he f

irst

tra

nsm

itte

d pu

lse

are

plac

ed i

n th

e ne

gativ

e ha

lf p

erio

d o

f th

e lo

w f

requ

ency

com

pone

nts

w1

, th

en i

n th

e se

cond

tra

nsm

itte

d pu

lse,

the

y w

ill

due

to t

he

phas

e in

vers

ion

be p

lace

d in

the

pos

itiv

e ha

lf p

erio

d of

the

low

fre

quen

cy c

ompo

nent

s.

The

tra

nsm

itte

d lo

w f

requ

ency

com

pone

nts

are

wel

l be

low

the

res

onan

ce f

requ

ency

of

the

cont

rast

age

nt.

In t

he f

irst

sca

tter

ed b

ubbl

e si

gnal

, th

e hi

gh f

requ

ency

com

pone

nts

wil

l hen

ce b

e sc

atte

red

from

an

expa

nded

bub

ble

rela

tive

to e

quil

ibri

um s

ize,

whe

reas

in

5.4

Bub

ble

Osc

illa

tion

s 89

the

seco

nd s

catt

ered

bub

ble

sign

al,

the

high

fre

quen

cy c

ompo

nent

s w

ill b

e sc

atte

red

from

a

com

pres

sed

bubb

le (

see

low

er p

anel

of F

ig.

5.1)

.

We

saw

in

the

low

er p

anel

of

Fig

. 5.

2 th

at t

he p

hase

of

the

tran

sfer

fun

ctio

n fr

om d

rive

pr

essu

re to

sca

tter

ed p

ress

ure

chan

ges

rapi

dly

for

driv

e fr

eque

ncie

s ar

ound

the

res

onan

ce

freq

uenc

y o

f th

e bu

bble

. If

the

tran

smit

ted

high

fre

quen

cy c

ompo

nent

s th

en a

re p

lace

d ar

ound

the

equi

libr

ium

reso

nanc

e fr

eque

ncy

of th

e co

ntra

st b

ubbl

e, t

he r

esul

ting

two

scat

­te

red

high

fre

quen

cy p

ulse

s fr

om t

he c

ontr

ast b

ubbl

e w

ill b

e so

mew

hat t

ime

shif

ted

rela

­ti

ve to

eac

h ot

her.

Als

o, f

rom

the

uppe

r pan

el o

f Fig

. 5.2

the

ampl

itud

e o

f the

two

scat

tere

d bu

bble

sig

nals

wil

l be

som

ewha

t dif

fere

nt.

The

two

rece

ived

sig

nals

fro

m s

oft t

issu

e w

ill

not h

ave

this

rel

ativ

e ti

me

shif

t and

am

plit

ude

diff

eren

ce a

nd t

he s

oft t

issu

e si

gnal

is t

hus

canc

eled

in

the

puls

e su

btra

ctio

n pr

oces

s o

f th

e tw

o re

ceiv

ed s

igna

ls w

hile

the

rec

eive

d co

ntra

st a

gent

sig

nal i

s pr

eser

ved.

5.4

Bub

ble

Osc

illat

ions

Sim

ulat

ions

of

bubb

le r

adiu

s os

cill

atio

ns a

nd a

cous

tic

scat

teri

ng a

re d

one

usin

g th

e nu

­m

eric

al m

odel

dev

elop

ed b

y A

ngel

sen

et a

l [4

]. R

esul

ts f

rom

this

mod

el a

re,

as i

ndic

ated

, si

mil

ar to

res

ults

obt

aine

d us

ing

the

wel

l-kn

own

Ray

leig

h-P

less

et e

quat

ion

[33]

[31

] fo

r pr

essu

re a

mpl

itud

es a

nd b

ubbl

e pa

ram

eter

s us

ed i

n th

e pr

esen

t pa

per.

S

imul

atio

ns a

re

done

usi

ng a

sin

gle

bubb

le w

ith

acou

stic

par

amet

ers

sim

ilar

to

the

cont

rast

age

nt S

on­

azoi

d. T

he e

quil

ibri

um r

eson

ance

fre

quen

cy o

f the

con

tras

t bub

ble

is a

roun

d 5

MH

z.

Fig

. 5.

3 sh

ows

an e

xam

ple

of

two

tran

smit

pul

ses

desc

ribe

d by

Eq.

5.2

0 an

d 5.

21 w

here

a

low

fre

quen

cy 0

.5 M

Hz

and

a hi

gh f

requ

ency

5 M

Hz

puls

e ar

e tr

ansm

itte

d si

mul

ta­

neou

sly.

T

he h

igh

freq

uenc

y pu

lse

in t

he u

pper

pan

el o

f th

e fi

gure

app

ears

dur

ing

the

nega

tive

hal

f per

iod

of

the

low

fre

quen

cy p

ulse

. In

the

low

er p

anel

, th

e ph

ase

of th

e lo

w

freq

uenc

y pu

lse

is i

nver

ted

rela

tive

to t

he u

pper

pan

el,

whe

reas

the

hig

h fr

eque

ncy

puls

e is

unc

hang

ed,

and

the

high

fre

quen

cy p

ulse

now

app

ears

dur

ing

the

posi

tive

hal

f pe

riod

o

f the

low

fre

quen

cy p

ulse

. T

hese

two

tran

smit

pul

ses

are

now

use

d to

dri

ve t

he c

ontr

ast

bubb

le w

hich

equ

ilib

rium

res

onan

ce f

requ

ency

is

arou

nd 5

MH

z.

In F

ig.

5.4

the

bubb

le r

adiu

s re

spon

ses

from

the

tw

o tr

ansm

itte

d dr

ive

puls

es a

re s

how

n in

the

upp

er a

nd l

ower

pan

el,

resp

ectiv

ely.

The

low

fre

quen

cy d

rive

pul

se is

muc

h be

low

th

e eq

uili

briu

m r

eson

ance

fre

quen

cy o

f th

e bu

bble

and

the

rad

ius

resp

onse

is

thus

1r

out

of p

hase

wit

h th

e lo

w f

requ

ency

dri

ve p

ulse

as

expe

cted

fro

m t

he l

ower

pan

el o

f Fig

. 5 .

1.

In t

he f

irst

tra

nsm

itte

d pu

lse,

the

hig

h fr

eque

ncy

driv

e pu

lse

occu

rs f

or a

n ex

pand

ed b

ub­

ble

whi

le i

n th

e se

cond

tra

nsm

itte

d pu

lse,

the

hig

h fr

eque

ncy

driv

e pu

lse

occu

rs w

hen

the

bubb

le is

com

pres

sed.

Rel

ativ

e to

equ

ilib

rium

con

diti

ons,

the

res

onan

ce f

requ

ency

is

som

ewha

t re

duce

d an

d in

crea

sed

for

the

expa

nded

and

com

pres

sed

bubb

le,

resp

ectiv

ely.

W

e no

tice

that

the

radi

us o

scil

lati

ons

due

to t

he h

igh

freq

uenc

y pu

lse

are

larg

er in

mag

ni­

tude

for

the

less

stif

f, e

xpan

ded

bubb

le th

an f

or t

he s

tiffe

r, c

ompr

esse

d bu

bble

.

90

05

LL .. /

'\ ... /\

. J

U

~,[~~LL~Jl

-O.So~~~-~2~~, -~.c

----

':-,

---'

.c--

---'

:-7

---',

---'-

. ---

-:'1

0

I!" I

Pap

erD

Fig

ure

5.3:

Dua

l fre

quen

cy b

and

driv

e pu

lses

. U

pper

pan

el:

Hig

h fr

eque

ncy

com

pone

nts

occu

r du

ring

neg

ativ

e ha

lf p

erio

d o

f lo

w f

requ

ency

com

pone

nts.

L

ower

pan

el:

Hig

h fr

eque

ncy

com

pone

nts

occu

r du

ring

pos

itiv

e ha

lf p

erio

d o

f low

fre

quen

cy c

ompo

nent

s.

·:l·:·

···~··

···:1

1.20

1

2 3

4 5

6 7

8 9

10

I!" I

2 ~::~··················

···.·.···.············

···.····.·······•.····

···· .. ·····

· 1.

4 ..

..

···

; ..

....

'

....

..

. .

..

. .

.:..

...

....

..

;

. .

. .

. .

Llo'--~I--.,2'--~, --

.'---

-''--

.L, -

-.'

----':

-7

-~,'--~9 _

_JIO

I!" I

Fig

ure

5.4:

B

ubbl

e ra

dius

osc

illa

tion

s du

e to

dri

ve p

ulse

s in

upp

er a

nd l

ower

pan

el o

f Fi

g. 5

.3, r

espe

ctiv

ely.

5.4

Bu

bb

le O

scil

lati

ons ~r~ :t~: J

0 5

10

I!" I

~l••••t••·: !••

+••••

l•••i•

•·•l···

······

· 0

3 4

5 6

7 lO

I!

" I

91

Fig

ure

5.5:

S

catt

ered

pre

ssur

e pu

lses

due

to

driv

e pu

lses

in

uppe

r an

d lo

wer

pan

el o

f Fi

g. 5

.3, r

espe

ctiv

ely.

Sim

ulat

ions

of

scat

tere

d pr

essu

re p

ulse

s du

e to

the

tw

o dr

ive

puls

es a

re d

ispl

ayed

in

Fig.

5.5

, up

per

and

low

er p

anel

, re

spec

tivel

y.

Firs

t, w

e no

tice

tha

t th

e sc

atte

red

low

fr

eque

ncy

com

pone

nts,

alm

ost

invi

sibl

e in

thi

s fi

gure

, ar

e m

uch

low

er in

am

plit

ude

than

th

e sc

atte

red

high

freq

uenc

y co

mpo

nent

s. T

his

is i

n ag

reem

ent w

ith o

ur li

near

theo

reti

cal

cons

ider

atio

ns c

ulm

inat

ing

in F

ig.

5.2,

whe

re t

he a

mpl

itud

e in

the

upp

er p

anel

was

see

n to

inc

reas

e si

gnif

ican

tly w

hen

goin

g fr

om d

rive

fre

quen

cies

bel

ow r

eson

ance

tow

ards

res

­on

ance

. W

e al

so s

ee t

hat

the

scat

teri

ng o

f th

e hi

gh f

requ

ency

com

pone

nts

are

som

ewha

t la

rger

in a

mpl

itude

for

the

exp

ande

d bu

bble

tha

n fo

r th

e co

mpr

esse

d on

e. T

his

is d

ue t

o th

e la

rger

hig

h fr

eque

ncy

radi

us o

scil

lati

ons

of t

he e

xpan

ded

bubb

le s

een

in t

he p

revi

ous

figu

re.

The

tw

o sc

atte

red

pres

sure

pul

ses

are

depi

cted

tog

ethe

r in

the

upp

er p

anel

of

Fig.

5.6

. H

ere,

th

e so

lid

line

is

the

puls

e sc

atte

red

from

the

exp

ande

d bu

bble

, up

per

pane

l of

Fi

g. 5

.5,

whi

le t

he d

ashe

d lin

e is

the

sca

tter

ed p

ulse

fro

m t

he c

ompr

esse

d bu

bble

, lo

wer

pa

nel

of

Fig.

5.5

, an

d w

e cl

earl

y se

e th

e di

ffer

ence

in

ampl

itud

e in

dica

ted.

Als

o im

por­

tant

, we

see

that

eve

n if

the

two

tran

smit

ted

high

freq

uenc

y pu

lses

occ

ur a

t the

exa

ct s

ame

rela

tive

time,

the

tw

o sc

atte

red

high

fre

quen

cy p

ulse

s ar

e ti

me

shif

ted

rela

tive

to

each

ot

her.

Thi

s ef

fect

is d

ue t

o th

e ra

pid

chan

ge o

f the

pha

se a

roun

d re

sona

nce

of

the

tran

s­fe

r fu

nctio

ns f

or r

adia

l di

spla

cem

ent

and

scat

tere

d pr

essu

re s

een

in t

he l

ower

pan

els

of

Fig.

5.1

and

Fig

. 5.

2.

The

low

er p

anel

of F

ig. 5

.6 d

ispl

ays

the

resu

lt o

btai

ned

whe

n su

btra

ctin

g th

e tw

o sc

at­

tere

d hi

gh f

requ

ency

pul

ses

in t

he u

pper

pan

el.

Due

to t

he r

elat

ive

tim

e sh

ift b

etw

een

the

two

scat

tere

d pu

lses

, th

e si

gnal

obt

aine

d af

ter

subt

ract

ion

is n

ot c

ance

led

or s

igni

fica

ntly

re

duce

d.

The

sam

e bu

bble

is

now

dri

ven

by t

he h

igh

freq

uenc

y co

mpo

nent

s on

ly i

n Fi

g. 5

.3 a

nd

the

resu

ltin

g ra

dius

osc

illa

tion

and

sca

tter

ed p

ress

ure

puls

e ar

e sh

own

in t

he u

pper

and

92

::r··•····•·

~······.·.··

········.···

········

.. ··········•

.··········.

·.········.·

······ .. · .. ·.·.

·. 0

-.

-···

··:·

··

..

···-

...

···:

..

..

: .

····

·:··

· ........ .

-0.2

.

..

: ~-

-..

....

...

··< .. ;

.···

-~

....

....

. : -0

.4

.........

· ....... ,.

.. ..

. .

. .

. ..

....

.. --

~-..

....

.. ;

.... ·

. .

. .

. .

. .

' 4

4.1

4.2

4.

3 4

.4

4.5

4.6

4

.7

4.8

4

.9

5 I>

" I

Pap

erD

Fig

ure

5.6:

Upp

er p

anel

: S

catt

ered

pre

ssur

e pu

lses

due

to d

rive

pul

se in

upp

er (s

olid

line

) an

d lo

wer

(da

shed

lin

e) p

anel

of

Fig.

5.3

. L

ower

pan

el:

Pul

se s

ubtr

acti

on o

f th

e tw

o pu

lses

in t

he u

pper

pan

el.

low

er p

anel

of F

ig.

5. 7

, re

spec

tivel

y. T

he s

catt

ered

pre

ssur

e pu

lse

in t

he l

ower

pan

el is

in

mag

nitu

de s

een

to l

ie b

etw

een

the

two

scat

tere

d pr

essu

re p

ulse

s in

Fig

. 5.5

obt

aine

d fr

om

the

expa

nded

and

com

pres

sed

bubb

le.

The

upp

er p

anel

of

Fig

. 5.

8 sh

ows

the

abso

lute

val

ue o

f th

e F

ouri

er T

rans

form

of

the

puls

es i

n th

e up

per

pane

l in

Fig

. 5.

6. A

s pr

evio

usly

ind

icat

ed,

we

see

that

the

sca

tter

ed

high

freq

uenc

y fu

ndam

enta

l com

pone

nt is

som

ewha

t lar

ger f

or th

e ex

pand

ed b

ubbl

e (s

olid

lin

e) th

an f

or th

e co

mpr

esse

d bu

bble

(da

shed

line

). T

he n

onli

near

ity

of t

he h

igh

freq

uenc

y sc

atte

ring

pro

cess

is,

how

ever

, st

rong

er f

or t

he c

ompr

esse

d bu

bble

. A

lso,

the

har

mon

ic

com

pone

nts

scat

tere

d fr

om t

he e

xpan

ded

bubb

le a

re s

hift

ed s

ligh

tly

dow

n in

fre

quen

cy

due

to t

he l

ower

ing

of

the

reso

nanc

e fr

eque

ncy

rela

tive

to e

quil

ibri

um c

ondi

tion

s.

In t

he l

ower

pan

el o

f Fig

. 5 .

8, t

he s

olid

line

dis

play

s th

e ab

solu

te v

alue

of t

he F

ouri

er

Tra

nsfo

rm o

f the

pul

se in

the

low

er p

anel

in F

ig. 5

.6.

As

indi

cate

d, th

ere

are

only

mar

gina

l ch

ange

s in

the

hig

h fr

eque

ncy

com

pone

nts

of

the

puls

e su

btra

ctio

n si

gnal

rel

ativ

e to

the

in

divi

dual

sca

tter

ed p

ulse

s, a

nd t

he t

otal

pul

se s

ubtr

acti

on s

igna

l m

ay t

hus

be u

sed

for

imag

e re

cons

truc

tion

. T

he d

ashe

d li

ne in

the

low

er p

anel

of F

ig.

5.8

depi

cts

the

abso

lute

val

ue o

f the

Fou

rier

T

rans

form

of

the

puls

e in

the

low

er p

anel

in

Fig.

5.7

, i.e

. w

hen

the

low

fre

quen

cy c

om­

pone

nts

have

bee

n re

mov

ed f

rom

the

driv

e pr

essu

re.

As

seen

, th

e pu

lse

subt

ract

ion

sign

al

obta

ined

fro

m t

he t

wo

dual

fre

quen

cy b

and

driv

e pu

lses

is

very

sim

ilar

to t

he r

esul

t ob

­ta

ined

app

lyin

g on

ly o

ne s

ingl

e hi

gh f

requ

ency

ban

d dr

ive

puls

e. A

pply

ing

only

one

suc

h si

ngle

hig

h fr

eque

ncy

band

dri

ve p

ulse

, th

e sc

atte

red

tiss

ue s

igna

l ca

n, h

owev

er,

not

be

effi

cien

tly r

emov

ed a

nd w

ill h

ence

mas

k th

e sc

atte

red

cont

rast

sig

nal.

Sim

ulat

ions

for

rad

ius

osci

llat

ion

and

scat

tere

d pr

essu

re u

sing

the

sam

e lo

w f

requ

ency

pu

lse

as i

n F

ig. 5

.3 b

ut v

aryi

ng th

e am

plit

ude

of t

he h

igh

freq

uenc

y pu

lse

wer

e al

so c

arri

ed

5.4

Bu

bb

le O

scil

lati

ons ~J •

• : 1

: : : i

j 0

2 3

5 6

7 8

9 lO

""I

93

Figu

re 5

.7:

Upp

er p

anel

: B

ubbl

e ra

dius

osc

illa

tion

whe

n dr

iven

by

high

fre

quen

cy c

om­

pone

nt o

nly

in F

ig.

5.3.

L

ower

pan

el:

Sca

tter

ed p

ress

ure

puls

e re

sulti

ng f

rom

rad

ius

osci

llat

ion

in u

pper

pan

el.

Figu

re 5

.8:

Upp

er p

anel

: A

bsol

ute

valu

e o

f th

e F

ouri

er T

rans

form

of

the

puls

es i

n th

e up

per

pane

l of

Fig

. 5.

6.

Low

er p

anel

: A

bsol

ute

valu

e of

the

Fou

rier

Tra

nsfo

rm o

f th

e pu

lse

in th

e lo

wer

pan

el o

f Fig

. 5.6

, sol

id li

ne, a

nd th

e pu

lse

in th

e lo

wer

pan

el o

f Fig

. 5. 7

, da

shed

line

.

94

Pap

erD

out.

Whe

n in

crea

sing

and

dec

reas

ing

the

ampl

itud

e o

f th

e hi

gh f

requ

ency

dri

ve p

ulse

by

6 dB

, th

e re

sult

ing

ampl

itud

e o

f th

e fu

ndam

enta

l co

mpo

nent

of

the

high

fre

quen

cy p

ulse

su

btra

ctio

n si

gnal

inc

reas

ed a

nd d

ecre

ased

by

appr

oxim

atel

y 6

dB,

resp

ecti

vely

. It

is

mai

nly

the

line

ar a

cous

tic

prop

erti

es o

f the

osc

illa

ting

res

onan

t bub

ble

whi

ch a

re u

tili

zed

in t

his

new

con

tras

t ag

ent

dete

ctio

n te

chni

que,

and

the

per

form

ance

of

the

tech

niqu

e is

he

nce

not s

ensi

tive

to t

he a

mpl

itud

e o

f the

hig

h fr

eque

ncy

puls

e. A

s di

scus

sed

in th

e ne

xt

sect

ion,

the

am

plit

ude

of

the

tran

smit

ted

high

fre

quen

cy p

ulse

may

var

y co

nsid

erab

ly i

n th

e ra

nge

dire

ctio

n du

e to

aco

usti

c ab

sorp

tion

.

The

tra

nsm

itte

d lo

w f

requ

ency

com

pone

nts

alte

r th

e ac

oust

ic s

catt

erin

g pr

oper

ties

of

the

cont

rast

bub

ble

at t

he t

rans

mit

ted

high

fre

quen

cy c

ompo

nent

s an

d th

e de

scri

bed

tech

­ni

que

will

be

sens

itiv

e to

the

am

plit

ude

of

thes

e lo

w f

requ

ency

pul

ses.

If

the

sam

e hi

gh

freq

uenc

y pu

lse

as i

n Fi

g. 5

.3 i

s us

ed t

o dr

ive

the

bubb

le w

here

as t

he a

mpl

itud

e o

f th

e lo

w f

requ

ency

pul

se is

inc

reas

ed a

nd d

ecre

ased

by

6 dB

, re

spec

tivel

y, w

e ge

t th

e re

sult

s di

spla

yed

in t

he u

pper

and

low

er p

anel

of

Fig.

5.9

, re

spec

tivel

y. T

his

figu

re d

epic

ts t

he

abso

lute

val

ue o

f th

e F

ouri

er T

rans

form

of

the

obta

ined

pul

se s

ubtr

acti

on s

igna

l jus

t as

th

e so

lid

line

in t

he l

ower

pan

el o

f Fig

. 5.8

and

it is

inte

rest

ing

to c

ompa

re w

ith

this

gra

ph.

In th

e up

per p

anel

of F

ig. 5

.9 t

he a

mpl

itud

e o

f the

low

fre

quen

cy p

ulse

is i

ncre

ased

by

6 dB

to

400

k:Pa

and

we

see

that

the

high

fre

quen

cy f

unda

men

tal

com

pone

nt o

f th

e pu

lse

subt

ract

ion

sign

al h

as in

crea

sed

by a

roun

d 3

dB r

elat

ive

to t

he s

olid

line

in th

e lo

wer

pan

el

of F

ig.

5.8.

The

leve

l of t

he h

igh

freq

uenc

y se

cond

har

mon

ic c

ompo

nent

in t

he p

ulse

sub

­tr

acti

on s

igna

l is

clos

e to

unc

hang

ed w

hen

incr

easi

ng th

e lo

w f

requ

ency

am

plit

ude.

T

he l

ow f

requ

ency

am

plit

ude

is t

hen

redu

ced

by 6

dB

to

100

kPa

and

the

resu

ltin

g hi

gh f

requ

ency

fun

dam

enta

l co

mpo

nent

of t

he p

ulse

sub

trac

tion

sig

nal i

n th

e lo

wer

pan

el

of F

ig.

5.9

is s

een

to s

uffe

r a

redu

ctio

n o

f ar

ound

6 d

B r

elat

ive

to t

he s

olid

lin

e in

the

lo

wer

pan

el o

f Fi

g. 5

.8.

The

hig

h fr

eque

ncy

seco

nd h

arm

onic

com

pone

nt i

n th

e pu

lse

subt

ract

ion

sign

al is

now

red

uced

by

appr

oxim

atel

y 4

dB.

Red

ucin

g th

e lo

w f

requ

ency

am

plit

ude

by a

noth

er 6

dB

to

50 k

:Pa

resu

lts

in a

fur

ther

re

duct

ion

in t

he h

igh

freq

uenc

y fu

ndam

enta

l co

mpo

nent

of t

he p

ulse

sub

trac

tion

sig

nal o

f ar

ound

6 d

B.

As

the

ampl

itud

e o

f th

e m

anip

ulat

ing

low

fre

quen

cy d

rive

pul

se is

fur

ther

re

duce

d th

e tw

o sc

atte

red

high

fre

quen

cy p

ulse

s w

ill b

ecom

e m

ore

and

mor

e si

mil

ar.

5.5

Pro

paga

tion

of T

rans

mit

ted

Pul

ses

We

will

now

bri

efly

inv

esti

gate

the

forw

ard

wav

e pr

opag

atio

n o

f th

e tw

o du

al f

requ

ency

ba

nd t

rans

mit

pul

ses.

D

ue t

o th

e la

rge

diff

eren

ce i

n tr

ansm

itte

d fr

eque

ncy

(a f

acto

r 10

w

as u

sed

in t

he p

revi

ous

sect

ion)

, th

e ef

fect

s o

f di

ffra

ctio

n, a

bsor

ptio

n, a

nd n

onli

near

ity

wil

l al

l ap

pear

ver

y di

ffer

ent

for

the

two

tran

smit

ted

freq

uenc

y ba

nds.

It

may

tod

ay b

e ch

alle

ngin

g to

des

ign

and

man

ufac

ture

an

ultr

asou

nd t

rans

duce

r ca

pabl

e o

f ef

fici

entl

y tr

ansm

itti

ng f

or e

xam

ple

a lo

w f

requ

ency

0.5

MH

z pu

lse

and

a hi

gh f

requ

ency

5 M

Hz

puls

e. O

ne s

olut

ion

is t

o us

e an

ann

ular

tran

sduc

er m

ade

up o

f sev

eral

inde

pend

ent r

ings

w

hich

may

hav

e di

ffer

ent t

hick

ness

es a

nd th

us d

iffe

rent

res

onan

ce f

requ

enci

es.

5.5

Pro

paga

tion

of T

rans

mit

ted

Pul

ses

['~~{l

3·····

· ····~j

~20 o

:'-'

-'-:

-, --

-:4

--6

;---

---:

:-, -

-;';1

0,--

----

--;1

':-2 -

'---

:Ll4

--:'

:c--

--:l

':-8

------

:,0.

[MH

z]

·]~~::

1 0

2 4

6 8

10

12

14

16

18

20

[M

Hz]

95

Fig

ure

5.9:

Abs

olut

e va

lue

of th

e F

ouri

er T

rans

form

of

the

puls

e su

btra

ctio

n si

gnal

ob­

tain

ed b

y in

crea

sing

and

dec

reas

ing

the

ampl

itud

e o

f th

e lo

w f

requ

ency

dri

ve p

ulse

by

6 dB

, up

per

and

low

er p

anel

, res

pect

ivel

y.

Firs

t, w

e ex

amin

e th

e ef

fect

s o

f w

ave

diff

ract

ion

from

suc

h an

axi

sym

met

ric

annu

lar

tran

sduc

er c

onsi

stin

g o

f a lo

w f

requ

ency

and

a h

igh

freq

uenc

y ri

ng.

Fig.

5.1

0 di

spla

ys th

e ca

lcul

ated

low

fre

quen

cy (

0.5

MH

z) a

nd h

igh

freq

uenc

y (5

MH

z) f

ield

s in

dec

ibel

sca

le,

left

and

rig

ht p

anel

, res

pect

ivel

y. A

Fin

ite

Dif

fere

nce

Met

hod

was

use

d in

the

cal

cula

tion

o

f th

e w

ave

diff

ract

ion.

The

low

fre

quen

cy p

ulse

is t

rans

mit

ted

from

an

unfo

cuse

d ou

ter

ring

wit

h in

ner

and

oute

r ra

dius

equ

al to

0.5

em

and

1 e

m,

resp

ectiv

ely,

whe

reas

the

hig

h fr

eque

ncy

puls

e is

tra

nsm

itte

d fr

om a

foc

used

inn

er e

lem

ent

wit

h ra

dius

equ

al to

0.5

em

an

d ge

omet

ric

focu

s at

8 e

m.

The

ver

tical

axi

s in

the

fig

ure

repr

esen

ts r

ange

dir

ecti

on

whi

le th

e ho

rizo

ntal

axi

s re

pres

ents

the

lat

eral

dir

ecti

on in

the

field

. T

he s

harp

edg

es o

ccur

ring

dow

n to

1 e

m i

n ra

nge

in t

he l

eft

pane

l o

f Fi

g. 5

.10

are

unph

ysic

al a

nd o

nly

a re

sult

of t

he w

ay t

he c

alcu

late

d fi

eld

is s

tore

d an

d vi

sual

ized

. T

he

calc

ulat

ed l

ow f

requ

ency

wav

e fi

eld

is o

nly

stor

ed a

t ea

ch c

enti

met

er in

ran

ge d

irec

tion

an

d he

nce

has

to b

e in

terp

olat

ed in

ran

ge w

hen

visu

aliz

ed.

We

see,

fro

m t

he l

eft

pane

l in

the

fig

ure,

tha

t th

e lo

w f

requ

ency

fie

ld i

s re

lati

vely

con

stan

t in

am

plitu

de a

roun

d th

e sy

mm

etry

axi

s fr

om 1

em

and

dow

n to

10

em.

Our

inte

ntio

n is

tha

t th

e hi

gh f

requ

ency

fie

ld p

ropa

gate

s in

eit

her

a po

siti

ve o

r a

neg­

ativ

e ha

lf p

erio

d o

f the

ass

isti

ng lo

w f

requ

ency

fie

ld.

For

this

to

happ

en,

the

phas

e of

the

low

fre

quen

cy f

ield

has

to

chan

ge li

ttle

in r

ange

dir

ecti

on a

long

the

sym

met

ry a

xis.

The

ph

ase

shif

ts o

n th

e hi

gh f

requ

ency

com

pone

nts

are

mar

gina

l in

com

pari

son

due

to t

heir

m

uch

high

er fr

eque

ncy

and

resu

ltin

g sh

orte

r te

mpo

ral p

erio

d.

Fig.

5.1

1 di

spla

ys t

he n

orm

aliz

ed t

rans

mit

low

fre

quen

cy p

ulse

in t

he r

etar

ded

tim

e do

­m

ain

at t

he s

ymm

etry

axi

s at

var

ious

loc

atio

ns in

ran

ge d

irec

tion.

The

upp

er p

anel

of t

his

figu

re s

how

s th

e pu

lse

at t

he t

rans

duce

r (0

em

). I

n th

e m

iddl

e pa

nel,

the

resu

ltin

g pu

lse

at 2

em

and

5 e

m,

soli

d an

d da

shed

lin

e, r

espe

ctiv

ely,

are

sho

wn

whi

le t

he l

ower

pan

el

96

Pap

erD

I I

-5

-5

-10

-1

0

-15

-15

Fig

ure

5.10

: C

alcu

late

d lo

w f

requ

ency

, le

ft p

anel

, an

d hi

gh f

requ

ency

, ri

ght p

anel

, tr

ans­

mit

fie

lds

resu

ltin

g fr

om w

ave

diff

ract

ion

only

. L

ow f

requ

ency

sou

rce

is a

n un

focu

sed

ring

wit

h ra

dius

fro

m 0

.5 e

m to

1 e

m.

Hig

h fr

eque

ncy

sour

ce is

a fo

cuse

d di

sc w

ith

radi

us

equa

l to

0.5

em

and

foc

us a

t 8 e

m.

Fie

lds

disp

laye

d in

dec

ibel

sca

le.

depi

cts

the

puls

e at

7 e

m a

nd 1

0 em

, sol

id a

nd d

ashe

d li

ne, r

espe

ctiv

ely.

A

t 2

em t

he p

hase

shi

ft o

f th

e lo

w f

requ

ency

pul

se i

s ar

ound

~ r

elat

ive

to t

he p

ulse

at

the

tra

nsdu

cer

whi

ch i

s si

gnif

ican

t. T

his

mea

ns t

hat

if a

t th

e tr

ansd

ucer

, th

e hi

gh f

re­

quen

cy p

ulse

was

cen

tere

d ar

ound

a n

orm

aliz

ed l

ow f

requ

ency

am

plit

ude

equa

l to

1 i

n th

e po

siti

ve h

alf

peri

od o

f th

e lo

w f

requ

ency

pul

se,

indi

cate

d by

the

ver

tica

l li

ne i

n th

e up

per

pane

l of t

he f

igur

e, a

t 2 e

m it

wou

ld b

e ce

nter

ed in

the

sam

e po

siti

ve h

alf p

erio

d o

f th

e lo

w f

requ

ency

pul

se b

ut a

roun

d a

norm

aliz

ed a

mpl

itud

e eq

ual

to 0

.5.

Fro

m 5

em

dow

n to

10

em,

how

ever

, th

e ph

ase

shif

t is

less

tha

n ~which c

an b

e co

n­si

dere

d li

ttle

in t

he p

rese

nt c

onte

xt.

A p

ossi

ble

solu

tion

for

this

spe

cifi

c ca

se is

to d

ivid

e th

e ra

nge

dire

ctio

n in

to tw

o se

pa­

rate

reg

ions

, on

e fr

om t

he t

rans

duce

r an

d do

wn

to 4

or

5 em

, an

d on

e fr

om 4

or

5 em

and

do

wn

to 1

0 em

. T

he h

igh

freq

uenc

y co

mpo

nent

s de

dica

ted

to t

he f

irst

reg

ion

shou

ld th

en

be t

ime

shif

ted

by a

ppro

xim

atel

y ~

rela

tive

to

the

peak

of

the

low

fre

quen

cy a

mpl

itud

e at

the

tran

sduc

er to

occ

ur a

roun

d pe

ak p

osit

ive

or p

eak

nega

tive

low

fre

quen

cy a

mpl

itud

e in

the

reg

ion

of

inte

rest

. T

his

mea

ns t

hat

a to

tal

of f

our

puls

es m

ust b

e tr

ansm

itte

d do

wn

each

line

of

sigh

t ins

tead

of j

ust t

wo.

Aco

usti

c ab

sorp

tion

wil

l al

so a

ffec

t th

e tw

o ca

lcul

ated

wav

e fi

elds

in

Fig.

5.1

0 v

ery

dif­

fere

ntly

. A

bsor

ptio

n in

crea

ses

wit

h fr

eque

ncy

whe

n m

easu

red

as a

fun

ctio

n o

f pr

opag

a­ti

on d

ista

nce

and

a ty

pica

l ex

peri

men

tal

valu

e fo

r so

ft t

issu

e is

a p

ower

red

ucti

on o

f 0.

5 dB

/cm

/MH

z.

Usi

ng t

his

valu

e, t

he i

nten

sity

of

the

low

fre

quen

cy 0

.5 M

Hz

puls

e is

re­

duce

d by

onl

y 2.

5 dB

at

10 e

m,

whi

le t

he i

nten

sity

of

the

high

fre

quen

cy 5

MH

z pu

lse

is

redu

ced

by a

mas

sive

25

dB.

As

indi

cate

d ea

rlie

r, u

ltra

soun

d w

ave

prop

agat

ion

in t

issu

e is

usu

ally

a w

eak

nonl

inea

r

5.5

Pro

paga

tion

of T

rans

mit

ted

Pul

ses

97

~b;A

/1\/

fH

-lo~

o -4:

-::20

:----7

440:

:-o ---

-.,46:

;;:0,-

--:-!4

8~0 "--

--:sc!

:::oo-

'-:::0

520;;-

--~54~

0-5::0

:60:--

-:css:

:;-o ~Goo

Fig

ure

5.11

: N

orm

aliz

ed l

ow f

requ

ency

pul

se t

aken

out

at

vari

ous

loca

tion

s al

ong

the

sym

met

ry a

xis

in t

he l

eft

pane

l o

f Fi

g. 5

.10

and

plot

ted

in t

he r

etar

ded

tim

e do

mai

n as

fu

nctio

ns o

f sa

mpl

e nu

mbe

r. U

pper

pan

el:

Puls

e at

the

tra

nsdu

cer.

Mid

dle

pane

l: P

ulse

at

2 e

m a

nd 5

em

, so

lid

and

dash

ed li

ne,

resp

ectiv

ely.

Low

er p

anel

: Pu

lse

at 7

em

and

10

em,

soli

d an

d da

shed

line

, re

spec

tivel

y.

proc

ess.

The

tiss

ue e

last

icit

y be

have

s sl

ight

ly n

onlin

earl

y, g

etti

ng s

tiff

er d

urin

g co

mpr

es­

sion

and

les

s st

iff d

urin

g ex

pans

ion

rela

tive

to a

lin

ear

beha

vior

. T

his

resu

lts i

n th

e fa

ct

that

the

ult

raso

und

wav

e pr

opag

atio

n ve

loci

ty w

ill b

e a

func

tion

of

the

pres

sure

and

wil

l he

nce

not b

e co

nsta

nt.

In t

he n

ew i

mag

ing

tech

niqu

e de

scri

bed

in t

he p

rese

nt p

aper

, th

is

effe

ct r

esul

ts in

the

poss

ibil

ity

that

the

high

fre

quen

cy p

ulse

pro

paga

ting

in th

e ex

pans

ion

cycl

e of

the

low

fre

quen

cy p

ulse

(up

per

pane

l of F

ig. 5

.3)

wil

l pro

paga

te w

ith

a so

mew

hat

low

er v

eloc

ity t

han

the

high

fre

quen

cy p

ulse

pro

paga

ting

in t

he c

ompr

essi

on c

ycle

of t

he

low

fre

quen

cy p

ulse

(lo

wer

pan

el o

f Fig

. 5.

3).

In E

q. 5

.7 w

e de

rive

d an

exp

ress

ion

for

the

vari

atio

n o

f the

pro

paga

tion

vel

ocity

wit

h re

spec

t to

the

pre

ssur

e fo

r a

plan

e w

ave

appr

oxim

atio

n. U

sing

typ

ical

val

ues

for

the

pa­

ram

eter

s in

thi

s eq

uati

on,

j3 =

5 a

nd r

;, =

400

· I

Q-12

m

2 jN

, w

e ar

e ab

le t

o ca

lcul

ate

the

diff

eren

ce i

n pr

opag

atio

n ve

loci

ty 6

c f

or t

he t

wo

tran

smit

hig

h fr

eque

ncy

puls

es i

n Fi

g. 5

.3 a

ssum

ing

the

tran

smit

ted

low

fre

quen

cy p

ulse

s to

pro

paga

te a

s pl

ane

wav

es.

The

di

ffer

ence

in

pres

sure

, du

e to

the

low

fre

quen

cy p

ulse

s, f

or t

hese

tw

o hi

gh f

requ

ency

pu

lses

is

arou

nd 0

.5 M

Pa

and

we

may

her

e us

e th

e la

st a

ppro

xim

atio

n in

Eq.

5.7

, va

lid

whe

n r;

,p <

< 1

. W

ith

c 0

=

1500

m/s

we

get

a 6

c e

qual

to

1.5

m/s

usi

ng t

he i

ndic

ated

nu

mer

ical

val

ues.

At

a de

pth

equa

l to

10 e

m,

the

high

fre

quen

cy p

ulse

in th

e up

per

pane

l o

f Fi

g. 5

.3 w

ould

the

n ar

rive

aro

und

67 n

s af

ter

the

high

fre

quen

cy p

ulse

in

the

low

er

pane

l o

f th

is f

igur

e w

hich

is

abou

t on

e th

ird

of

the

peri

od o

f th

e 5

MH

z hi

gh f

requ

ency

pu

lse.

Whe

n su

btra

ctin

g th

e tw

o re

ceiv

ed s

catt

ered

pul

ses

in o

rder

to c

ance

l the

sca

tter

ed

high

fre

quen

cy t

issu

e co

mpo

nent

s, a

tim

e sh

ift

arou

nd o

ne t

hird

of

the

peri

od i

s en

ough

to

pre

vent

the

canc

ella

tion

of t

he t

issu

e si

gnal

. T

he t

ime

shif

ts b

etw

een

the

two

rece

ived

pu

lses

can

, du

e to

the

fac

t th

at t

he t

rans

mit

ted

low

fre

quen

cy p

ulse

s pr

opag

ate

mai

nly

98

Pap

er D

as p

lane

wav

es,

rela

tive

ly e

asil

y be

com

pens

ated

for

by

appl

ying

the

app

roxi

mat

ion

in

Eq.

5.7

to

calc

ulat

e th

e pr

oper

tim

e sh

ifts

and

int

rodu

cing

the

m i

n th

e re

ceiv

ed s

igna

ls

befo

re th

e su

btra

ctio

n pr

oces

s is

per

form

ed.

5.6

Con

clus

ions

The

pre

sent

pap

er h

as d

escr

ibed

a n

ew m

etho

d fo

r de

tect

ion

of

cont

rast

age

nts

util

izin

g th

e to

tal

scat

tere

d si

gnal

for

im

age

reco

nstr

ucti

on,

henc

e ov

erco

min

g th

e pr

oble

ms

in r

e­la

tion

to

harm

onic

det

ecti

on t

echn

ique

s. I

n it

s si

mpl

est e

mbo

dim

ent,

the

new

met

hod

is

perf

orm

ed b

y tr

ansm

itti

ng t

wo

dual

fre

quen

cy b

and

puls

es,

both

con

tain

ing

a lo

w f

re­

quen

cy b

and

and

a hi

gh f

requ

ency

ban

d w

hich

are

ove

rlap

ping

in t

he t

ime

dom

ain.

The

pu

rpos

e o

f th

e tr

ansm

itte

d lo

w f

requ

ency

ban

d is

to

man

ipul

ate

the

acou

stic

sca

tter

ing

prop

erti

es o

f th

e re

sona

nt c

ontr

ast b

ubbl

e at

the

tra

nsm

itte

d hi

gh f

requ

ency

ban

d, w

hich

is

use

d fo

r im

age

reco

nstr

uctio

n.

The

res

onan

t co

ntra

st b

ubbl

e w

ill

resp

ond

diff

eren

tly

on th

e tw

o tr

ansm

itte

d du

al f

requ

ency

ban

d pu

lses

rel

ativ

e to

the

non

-res

onan

t sof

t tis

sue.

T

his

is u

tili

zed

to e

ffic

ient

ly d

iffe

rent

iate

sca

tter

ed c

ontr

ast

sign

al a

nd s

catt

ered

tis

sue

sign

al in

a s

impl

e pu

lse

subt

ract

ion

proc

ess.

Mai

nly

the

line

ar a

cous

tic p

rope

rtie

s o

f th

e os

cill

atin

g re

sona

nt b

ubbl

e ar

e th

en u

tiliz

ed.

Pre

sent

ed re

sult

s sh

ow th

at th

e to

tal s

catt

ered

hi

gh f

requ

ency

sig

nal

from

the

con

tras

t bu

bble

is

pres

erve

d in

the

met

hod.

If

the

tiss

ue

elas

tici

ty i

s as

sum

ed to

res

pond

lin

earl

y to

the

tra

nsm

itte

d pr

essu

re p

ulse

s, t

he s

catt

ered

hi

gh f

requ

ency

tis

sue

sign

al c

an b

e ca

ncel

ed b

y th

e si

mpl

e pu

lse

subt

ract

ion

proc

ess.

Due

to

the

wea

k no

nlin

ear n

atur

e of

the

tissu

e el

astic

ity, s

mal

l tim

e co

mpe

nsat

ions

mus

t be

in­

trod

uced

to t

he r

ecei

ved

sign

als

befo

re p

erfo

rmin

g th

e pu

lse

subt

ract

ion

proc

ess

to e

nsur

e th

at th

e sc

atte

red

high

fre

quen

cy t

issu

e co

mpo

nent

s ar

e co

mpl

etel

y re

mov

ed.

5.7

Fur

ther

Wor

k

Bas

ed o

n nu

mer

ical

sim

ulat

ions

and

the

oret

ical

con

side

rati

ons,

the

pro

pose

d ne

w c

on­

tras

t det

ecti

on m

etho

d ap

pear

s in

tere

stin

g an

d sh

ould

be

furt

her

valid

ated

by

expe

rim

en­

tal m

easu

rem

ents

. A

pos

sibl

e an

nula

r tr

ansd

ucer

des

ign,

con

sist

ing

of d

isti

nct r

ings

wit

h va

riab

le t

hick

ness

es,

capa

ble

of

tran

smit

ting

the

dua

l fr

eque

ncy

band

pul

ses

used

is

in­

dica

ted

in r

elat

ion

to F

ig.

5.10

. It

is a

lso

poss

ible

to

use

two

sepa

rate

tra

nsdu

cers

wit

h ov

erla

ppin

g tr

ansm

it f

ield

s fo

r th

e tr

ansm

itte

d lo

w a

nd h

igh

freq

uenc

y pu

lses

. T

he r

e­su

ltin

g ph

ase

rela

tion

s be

twee

n th

e tr

ansm

itte

d lo

w f

requ

ency

and

hig

h fr

eque

ncy

puls

es

wou

ld t

hen

be s

omew

hat

mor

e co

mpl

ex t

han

for

the

tran

sduc

er i

ndic

ated

in

rela

tion

to

Fig.

5.1

0.

5.8

Ack

now

led

gmen

ts

99

5.8

Ack

now

ledg

men

ts

Thi

s w

ork

was

sup

port

ed b

y th

e R

esea

rch

Cou

ncil

of N

orw

ay.

Bib

liog

raph

y

[1]

H. A

ndre

ws.

Dig

ital

Imag

e R

esto

rati

on.

Pre

ntic

e-H

all,

New

Jer

sey,

199

2.

[2]

B.

A.

J. A

ngel

sen.

U

ltra

soun

d Im

agin

g vo

l I.

Em

ante

c,

Nor

way

, 20

00.

http

: w

ww

.ult

raso

undb

ook.

com

.

[3]

B.

A.

J. A

ngel

sen.

U

ltra

soun

d Im

agin

g vo

l II

. E

man

tec,

Nor

way

, 20

00.

http

: w

ww

.ult

raso

undb

ook.

com

.

[4]

B. A

. J.

Ang

else

n, T

. F. J

ohan

sen,

and

L.

Hof

f. S

imul

atio

n o

f gas

bub

ble

scat

teri

ng

for

larg

e m

ach-

num

bers

. In

199

9 IE

EE

Ult

raso

nics

Sym

posi

um P

roce

edin

gs,

page

s 50

5-50

8. I

EE

E,

1999

.

[5]

R.

Apf

el a

nd C

. H

olla

nd.

Gau

ging

the

lik

elih

ood

of

cavi

tati

on f

rom

sho

rt-p

ulse

, lo

w-d

uty

cycl

e di

agno

stic

ult

raso

und.

Ultr

ason

. M

ed.

Bio

i, 17

(2):

179

-185

, 19

91.

[6]

M.A

. A

verk

iou,

D. R

. R

ound

hill

, an

d J.

E. P

ower

s. A

new

im

agin

g te

chni

que

base

d on

the

non

line

ar p

rope

rtie

s o

f ti

ssue

. P

roc.

IE

EE

Ultr

ason

. Sy

mp.

, 2:

1561

-156

6,

1997

.

[7]

K.

Cai

dal,

E.

Kaz

zam

, J.

Lid

berg

, G

. N

eum

ann

And

erse

n, J

. N

orda

nsti

g, S

. R

anta

­pa

a D

ahlq

vist

, A

. W

alde

nstr

om,

and

R.

Wik

h.

New

co

ncep

ts i

n ec

hoca

rdio

­gr

aphy

: H

arm

onic

im

agin

g o

f ti

ssue

wit

hout

use

of

cont

rast

age

nts.

L

ance

t, 35

2(91

36):

126

4-12

70,

1998

.

[8]

S. C

hild

, C.

Har

tman

, L. S

cher

y, a

nd E

. C

arst

ense

n. L

ung

dam

age

from

exp

osur

e to

pu

lsed

ult

raso

und.

Ultr

ason

. M

ed.

Bio

i., 1

6(8)

:817

-825

, 19

90.

[9]

J. E

. C

hom

as,

P. D

ayto

n, J

. A

llen

, K

. M

orga

n, a

nd K

. W

. F

erra

ra.

Mec

hani

sms

of

cont

rast

age

nt d

estr

ucti

on.

IEE

E T

rans

. U

ltras

on.,

Fer

roel

ectr

., F

req.

C

ontr

., 48

(1):

232-

248,

200

1.

[10]

P.

Day

ton,

J.

S. A

llen

, an

d K

. W

. F

erra

ra.

The

mag

nitu

de o

f ra

diat

ion

forc

e on

ul

tras

ound

con

tras

t ag

ents

. J.

Aco

ust.

Soc.

Am

., 11

2(5)

:218

3-21

92, 2

002.

[11]

N

. de

Jon

g an

d R

. C

orne

t. H

ighe

r ha

rmon

ics

of

vibr

atin

g ga

s-fi

lled

mic

rosp

here

s.

Par

t one

: S

imul

atio

ns.

Ultr

ason

ics,

32:

447-

453,

199

4.

102

Bib

liog

rap

hy

[12]

N

. de

Jon

g an

d R

. C

orne

t. H

ighe

r ha

rmon

ics

of

vibr

atin

g ga

s-fi

lled

mic

rosp

here

s.

Par

t tw

o: M

easu

rem

ents

. U

ltra

soni

cs,

32:4

55-4

59,

1994

.

[13]

F.

Duc

k. P

hysi

cal P

rope

rtie

s of

Tis

sue.

Aca

dem

ic P

ress

, L

ondo

n, 1

990.

[14]

D

. H

. E

vans

, W

. N

. M

cDic

ken,

R.

Ski

dmor

e, a

nd J

.P.

Woo

dcoc

k.

Dop

pler

Ultr

a­so

und,

Phy

sics

, In

stru

men

tati

on,

and

Cli

nica

l A

ppli

cati

ons.

Jo

hn W

iley

& S

ons,

In

c.,

New

Yor

k, 1

989.

[15]

F.

For

sber

g, W

. T.

Shi

, R

. Y

. C

hiao

, ,

A.

L.

Hal

l, S.

D.

Luc

as,

and

B.

Gol

dber

g.

Impl

emen

tati

on o

f sub

harm

onic

imag

ing.

IE

EE

Ultr

ason

. Sy

mp.

, pa

ges

1673

-167

6,

1999

.

[16]

M

Ham

ilto

n an

d D

. B

lack

stoc

k. N

onli

near

Aco

usti

cs.

Aca

dem

ic P

ress

, S

an D

iego

, 19

98.

[17]

L

. M. H

inke

lman

, T. D

. Mas

t, L

.A. M

etla

y, a

nd R

. C. W

aag.

The

eff

ect o

f abd

omin

al

wal

l m

orph

olog

y on

ult

raso

nic

puls

e di

stor

tion

. I.

Mea

sure

men

ts.

J. A

cous

t. So

c.

Am

., 10

4:36

35-3

650,

199

8.

[18]

L

. H

off.

N

onli

near

res

pons

e o

f so

nazo

id,

num

eric

al s

imul

atio

ns o

f pu

lse-

inve

rsio

n an

d su

bhar

mon

ics.

In

200

0 IE

EE

Ult

raso

nics

Sym

posi

um P

roce

edin

gs,

volu

me

2,

page

s 18

85-1

888.

IE

EE

, 20

00.

[19]

L

. H

off.

A

cous

tic

Cha

ract

eriz

atio

n o

f C

ontr

ast

Age

nts

for

Med

ical

Ult

raso

und

Imag

ing.

Klu

wer

Aca

dem

ic P

ubli

sher

s, D

ordr

echt

, 20

01.

[20]

S

iem

ens

Med

ical

Sys

tem

s In

c. U

ltra

soun

d im

agin

g sy

stem

em

ploy

ing

phas

e in

ver­

sion

sub

trac

tion

to e

nhan

ce t

he i

mag

e. U

.S.

Pat.

No.

5,6

32,2

77.

[21]

S.

Kin

gsle

y an

d S.

Que

gan.

Und

erst

andi

ng R

adar

Sys

tem

s. M

cGra

w-H

ill,

Lon

don,

19

92.

[22]

J.

Kir

khor

n, P

. J.

A.

Pri

nkin

g, N

. de

Jon

g, a

nd H

. T

orp.

T

hree

-sta

ge a

ppro

ach

to

ultr

asou

nd c

ontr

ast

dete

ctio

n.

IEE

E T

rans

. U

ltras

on.,

Fer

roel

ectr

., F

req.

C

ontr

., 48

:101

3-10

22,2

001.

[23]

T.

G. L

eigh

ton.

The

Aco

usti

c B

ubbl

e. A

cade

mic

Pre

ss,

San

Die

go,

1994

.

[24]

S.

-E.

Mas

¢y,

T. F

. Jo

hans

en,

and

B.

A.

Ang

else

n.

Cor

rect

ion

of

ultr

ason

ic w

ave

aber

rati

on w

ith

a ti

me

dela

y an

d am

plit

ude

filte

r. J.

Aco

ust.

Soc.

Am

., 11

3(4)

:200

9-20

20,

2003

.

[25]

T. D

. M

ast,

L.

M.

Hin

kelm

an,

M.

J. O

rr,

and

R.

C.

Waa

g.

The

eff

ect

of

abdo

min

al

wal

l mor

phol

ogy

on u

ltra

soni

c pu

lse

dist

orti

on. I

I. S

imul

atio

ns.

J. A

cous

t. So

c. A

m.,

104:

3651

-366

4, 1

998.

Bib

liog

raph

y 10

3

[26]

D

. Mil

ler.

Ult

raso

nic

dete

ctio

n o

f res

onan

t cav

itat

ion

bubb

les

in a

flo

w t

ube

by t

heir

se

cond

har

mon

ic e

mis

sion

s. U

ltra

soni

cs,

22:2

17-2

24,

1981

.

[27]

M

. M

inna

ert.

O

n m

usic

al a

ir-b

ubbl

es a

nd s

ound

s o

f ru

nnin

g w

ater

. P

hil.

Mag

., 16

:235

-248

, 19

33.

[28]

K

. E

. M

orga

n, J

. S.

All

en,

P. A

. D

ayto

n, J

. E

. C

hom

as,

A.

L.

Kli

bano

v, a

nd K

. W

. F

erar

ra.

Exp

erim

enta

l an

d th

eore

tica

l eva

luat

ion

of m

icro

bubb

le b

ehav

ior:

Eff

ect o

f tr

ansm

itte

d ph

ase

and

bubb

le s

ize.

IE

EE

Tra

ns.

Ultr

ason

., F

erro

elec

tr.,

Fre

q. C

ontr

., 47

(6):

1494

-150

9, 2

000.

[29]

K

. E

. M

orga

n, M

. A

verk

iou,

and

K.

Fer

arra

. T

he e

ffec

t o

f th

e ph

ase

of

tran

smis

­si

on o

n co

ntra

st a

gent

ech

oes.

IE

EE

Tra

ns.

Ultr

ason

., F

erro

elec

tr.,

Fre

q.

Con

tr.,

45(4

):87

2-87

5, 1

998.

[30]

A

llan

D.

Pie

rce.

Aco

usti

cs -

An

Int

rodu

ctio

n to

Its

Phy

sica

l Pri

ncip

les

an

d A

ppli

ca­

tion

s. A

cous

tica

l Soc

iety

of A

mer

ica,

New

Yor

k, 1

991.

[31]

M

. P

less

et.

The

dyn

amic

s o

f ca

vita

tion

bub

bles

. Jo

urna

l o

f App

l. M

ech.

, 1

6:2

77

-28

2, 1

949.

[32]

J.

Pro

akis

and

D.

G.

Man

olak

is.

Dig

ital

Sig

nal P

roce

ssin

g. P

rinc

iple

s, A

lgor

ithm

s,

an

d A

ppli

cati

ons.

Pre

ntic

e-H

all,

New

Jer

sey,

199

6.

[33]

L

ord

Ray

leig

h. O

n th

e pr

essu

re d

evel

oped

in a

liq

uid

duri

ng c

olla

pse

of

a sp

heri

cal

cavi

ty.

Phi

l. M

ag.,

34:9

4-98

, 19

17.

[34]

W

. T. S

hi, F

. For

sber

g, A

. L. H

all,

R.

Y. C

hiao

, J. B

. Liu

, S. M

ille

r, K

. E. T

hom

eniu

s,

M. A

. Whe

atle

y, a

nd B

. G

oldb

erg.

Sub

harm

onic

imag

ing

wit

h m

icro

bubb

le c

ontr

ast

agen

ts:

Init

ial r

esul

ts.

Ult

raso

nic

Imag

ing,

21:

79-8

4, 1

999.

[35]

K

. S

hung

. U

ltra

soni

c co

ntra

st a

gent

s an

d ha

rmon

ic i

mag

ing.

J.

Aco

ust.

Soc

. A

m.,

10

0:26

45,

1996

.

[36]

D

. H. S

imps

on, C

. T. C

hin,

and

P. N

. Bum

s. P

ulse

inve

rsio

n do

pple

r: A

new

met

hod

for

dete

ctin

g no

nlin

ear

echo

es f

rom

mic

robu

bble

con

tras

t ag

ents

. IE

EE

Tra

ns.

Ul­

tras

on.,

Fer

roel

ectr

., F

req.

Con

tr.,

46(2

):37

2-38

2, 1

999.

[37]

P.

Son

tum

, O

sten

sen

J.,

K.

Dyr

stad

, an

d L

. H

off.

A

cous

tic

prop

erti

es o

f nc

lOO

lOO

(s

onaz

oid)

and

the

ir r

elat

ions

hip

wit

h th

e m

icro

bubb

le s

ize

dist

ribu

tion

. In

I99

9 IE

EE

Ult

raso

nics

Sym

posi

um,

volu

me

2, p

ages

174

3-17

48. I

EE

E,

1999

.

[38]

K

. S

penc

er,

J. B

edna

rz,

P. G

. R

afte

r, C

. K

orca

rz,

and

R.

M.

Lan

g.

Use

of

har­

mon

ic im

agin

g w

itho

ut e

choc

ardo

igra

phic

con

tras

t to

impr

ove

two-

dim

ensi

onal

im­

age

qual

ity.

Am

. J.

Car

diol

., 82

(6):

794-

799,

199

8.

[39]

E

inar

Str

ande

n. P

erso

nal d

iscu

ssio

n. A

ker

Hos

pita

l, O

slo.

104

Bib

liog

raph

y

[40]

C

. T

herr

ien.

Dis

cret

e R

ando

m S

igna

ls a

nd S

tati

stic

al S

igna

l P

roce

ssin

g.

Pre

ntic

e­H

all,

New

Jer

sey,

199

2.

[41]

T.

Var

slot

, T

aral

dsen

G.,

T. F

. Jo

hans

en,

and

B.

A.

J. A

ngel

sen.

C

ompu

ter

sim

u­la

tion

of

forw

ard

wav

e pr

opag

atio

n in

non

linea

r, h

eter

ogen

eous

, ab

sorb

ing

tissu

e.

In 2

001

IEE

E U

ltra

soni

cs S

ympo

sium

Pro

ceed

ings

, vo

lum

e 2,

pag

es 1

193-

1196

. IE

EE

, 20

01.

[42]

F.

M.

Whi

te.

Vis

cous

Flu

id F

low

. M

cGra

w-H

ill,

Sing

apor

e, 1

991.