olav gaute hellesø university of tromsø norway¸_presentati… · waveguide propulsion of red...

23
Optical trapping on waveguides Olav Gaute Hellesø University of Tromsø Norway

Upload: others

Post on 07-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Optical trapping on waveguides

Olav Gaute Hellesø University of Tromsø

Norway

Page 2: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Outline

• Principles of waveguide propulsion

• Simulation of optical forces: Maxwell stress tensor vs. pressure

• Squeezing of red blood cells on a waveguide

• Trapping in a waveguide gap: Interference & levitation

• Phase-change due to trapped particle: S-parameters

• Summary

2

Page 3: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Waveguide propulsion

• Transparent microparticles are attracted by strong field gradient (evanescent field).

• Radiation pressure propels particles along the waveguide.

Fscat y

x

Fgra

d 200 nm

1.5 μm

Field distribution Top view of waveguide (Ta2O5)

3

Page 4: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Waveguide propulsion

• Transparent microparticles are attracted by strong field gradient (evanescent field).

• Radiation pressure propels particles along the waveguide.

z

x

Fgra

d

Fscat

200 nm

Propagating field Top view of waveguide (Ta2O5)

4

Page 5: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

CCD camera

X-Y-Z Translation

Stage

Piezoelectric Controller

High N.A. 80X Objective lens

20X Long WD Objective Lens

Micro-chamber with cells

X-Y-Z Translation

Stage

40X Objective Lens Waveguide

Fiber Laser 5W@ 1070nm

Vaccum Suction

IR Filter

Waveguide propulsion– experimental setup

5

Page 6: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Waveguide propulsion – on straight waveguide

• Waveguides made of Ta2O5 (n = 2.1) • Red blood cells: 6 µm/s (in sucrose), Polystyrene microparticles: 50 µm/s,

Nanowires: > 500 µm/s !

Waveguide propulsion of red blood cells

Photon. Tech. Letters, 21, 1408, (2009)

Optics Express,18, 21053, (2010)

Optics Letters, 36, 3347–3349 (2011)

Waveguide propulsion of nanowires

6

Page 7: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

y

x z

Simulation of optical forces with Comsol

• Define geometry

• Define mesh

• Set boundary conditions

• Find waveguide mode

• Propagate through geometry

• Find forces by integrating Maxwell’s Stress Tensor over the surface of the particle

• Memory-intensive, using e.g. 8x128 GB on a cluster

7

Page 8: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Simulation of optical forces with Comsol

• Forces by integrating Maxwell’s stress tensor (MST) over surface of particle:

– Comsol: emw.unTx, unTy & unTz

• Optical pressure given by field (ref. Brevik & Kluge, JOSA B, 1999): can also be integrated over surface to give force:

Fgrad

Fscat

s AM =1

4e0nw

2 nc

2

nw

2-1

æ

èç

ö

ø÷ Et

2 +nc

2

nw

2Er

ëê

ù

ûú

a-

,

F = T ×n̂daSò , T ij =e

0er EiE j -

1

2dijE

èç

ö

ø÷+

1

m0

BiB j -1

2dijB

èç

ö

ø÷

Fx = s AMnx daS

ò

8

Page 9: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Simulation of optical forces with Comsol Force from MST vs. from optical pressure

n V/m

Zoom

Water

Thus:

• MST gives error for small index difference

• And for high???

Cause of error:

• Triangular mesh on spherical surface?

• MST subtracting large numbers?

• Error in Comsol for MST?

Polystyrene

9

Page 10: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Optical pressure

• Can be found from:

– The field using the expression of Brevik & Kluge, sAM

– Difference in diagonal radial components of MST on the two sides of a surface

kPa/W

Laser

Laser

10

Page 11: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Pressure (Pa) and direction a) From bottom, through w.g. b) Cross-section

Forces & pressure on red blood cells (RBC)

11 Analyst, 2015,140, 223-229

Page 12: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Force & torque on RBC

12 Analyst, 2015,140, 223-229

Page 13: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Squeezing of red blood cells on tapered waveguide

13 Analyst, 2015,140, 223-229

Page 14: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Loop with a gap: Transport & stable trapping

• On a waveguide, particles are continuously propelled forward

• Alternative: loop with intentional gap on the far side

• Particle is stably trapped in the gap by the counter-propagating fields

Laser

(a) (b)

Lab Chip, 12(18), 3436-40, 2012

Waveguide loop with a 2μm gap

14

Page 15: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Trapping in waveguide gap: Simulation of 2mm gap

• Symmetric about centre of

waveguide

Simulate half the problem

• Interference fringes caused by the

two counter-propagating beams

a) 3D-model

b) Field, side-view

c) Field, top-view

15 Lab Chip, 12(18), 3436-40, 2012

Page 16: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Trapping in waveguide gap: Simulation of 2mm gap

Horizontal and vertical

forces as sphere is

moved across gap:

Transversal and vertical

forces as sphere is

moved sideways out of

the gap:

16 Lab Chip, 12(18), 3436-40, 2012

Page 17: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Trapping in waveguide gap: Optical levitation?

Gap (10 μm)

Waveguide ends

Polystyrene sphere,

2 mm dia., fluorescent Water

Silica

Simulation frame

-1400

-1200

-1000

-800

-600

-400

-200

0

200

0,000 2,000 4,000 6,000 8,000 10,000

Vert

icalµf

orceµ(

fN)

Distanceµfromµwaveguideµendµ(µm)

-50

0

50

3,000 4,000 5,000 6,000 7,000

(a)

-20

-10

0

10

20

30

40

50

60

0,000 0,500 1,000 1,500 2,000 2,500 3,000 3,500 4,000Vert

ical

forc

e (fN

)Vertical position (µm)

(c)

• 2mm gap = tight trapping

• 10mm gap = levitation?

Positive values

= pushing up!

17 Optics Express, 6601-6612 (2015)

Page 18: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Trapping in waveguide gap: Optical levitation!

0 5 10 15 20 25−10

0

10

0 5 10 15 20 25−5

0

5

Rel

ativ

eve

rtica

ldis

plac

men

t(µm

)

Time(s)

2.17μm

Laserµoff

zµ=µ5.98μm

Rel

ativ

eµz-

posi

tionµ

(μm

)

Rel

ativ

eµve

rtica

lµpos

itionµ(μ

m)

z

In gap On waveguide Laser off, leaves gap

x

18 Optics Express, 6601-6612 (2015)

Page 19: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

On-chip phase measurement

19

Measurement set-up:

Waveguide Young interferometer

Simulation using PMLs, input and

output ports.

Phase and transmission found from

S-parameters. Lab Chip, 2015,15, 3918-3924

Page 20: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

On-chip phase measurement

20

Measured Simulated

Resonances!

(not measured)

Lab Chip, 2015,15, 3918-3924

Page 21: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Summary

• Comsol works fine to find the field around nano- and microparticles on waveguides – But memory-hungry: Up to 1TB RAM

• Optical forces: Problem with Maxwell’s stress tensor • Optical pressure: Can be combined with mechanical model? • Interference and resonances require tight sampling • Critical to avoid reflection from PML at end of waveguide • Use PML with slit port excitation for counter-propagating

beams

21

Page 22: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Thanks to:

• Balpreet Singh Ahluwalia, Per Jakobsen, Pål Løvhaugen, Firehun Tsige Dullo and Øystein Helle

• Waveguide fabrication at the Optoelectronics Research Centre, Southampton, UK: James Wilkinson and Ananth Subramanian (now Ghent)

• Cell work: Thomas Huser (Bielefeld), Ana Oteiza and Peter McCourt (UiT)

• Funding: Research Council of Norway

• Computer resources: Notur - The Norwegian metacenter for computational science

22

Page 23: Olav Gaute Hellesø University of Tromsø Norway¸_presentati… · Waveguide propulsion of red blood cells Photon. Tech. Letters, 21, 1408, (2009) Optics Express,18, 21053, (2010)

Squeezing of red blood cells on narrow waveguide

Squeezed

Cell

Laser on Laser off

Waveguide

(a) (b)

• RBCs are squeezing on waveguides < 6µm wide

• RBC regains shape when laser is switched-off

• No permanent loss of RBC elasticity was observed

3 µm ~3 µm

~6 µm

Laser On

Laser Off

(a)

(b)

Waveguide

23