on fractional pid controllers a frequency domain approach

22
IEEE CDC 2002 T W: Fractional Calculus Applications in Automatic Control and Robotics On Fractional PID Controllers: A Frequency Domain Approach Blas M. Vinagre Escuela de Ingenierías Industriales, UEX, Badajoz, Spain I. Podlubny, L. Dorcak BERG Faculty, Technical University of Kosice, Kosice, Slovak Rep. V. Feliu E. T. S. Ingenieros Industriales, UCLM, Ciudad Real, Spain

Upload: zia-sheikholeslami

Post on 29-Oct-2015

27 views

Category:

Documents


2 download

DESCRIPTION

On Fractional PID Controllers a Frequency Domain Approach

TRANSCRIPT

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

On Fractional PID Controllers:A Frequency Domain Approach

Blas M. VinagreEscuela de Ingenierías Industriales, UEX, Badajoz, Spain

I. Podlubny, L. DorcakBERG Faculty, Technical University of Kosice, Kosice, Slovak Rep.

V. FeliuE. T. S. Ingenieros Industriales, UCLM, Ciudad Real, Spain

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional Calculus Fundamentals (I)

■ Fractional integral (Riemann-Liouville)

■ Fractional derivative (Riemann-Liouville)

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional Calculus Fundamentals (II)

■ Fractional Derivative (Gründwald-Letnikov)

■ Laplace Transforms

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Classical PID

■ Equations

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Classical PID

■ Frequency response

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional PID

■ Equations

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional PID

■ Frequency response

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional PID

■ Fractional ID controller

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Fractional PID

■ PID plane

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Illustrative examples

■ Example 1– Real system transfer function

– Approximated transfer function

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Illustrative examples

■ Example 1– Fractional PD controller

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Illustrative examples

■ Example 1– PD controller

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Example 1■ Step responses

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Illustrative examples

■ Example 2: DC Motor– Transfer function:

– Specifications: Phase Margin=60º, independent of the payload changes.

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Example 2

■ Fractional controller

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Example 2■ Step response

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Ideas for further work

■ On tuning– Generalize some methods for using the

new possibilities■ On realizations:

– The problem of memory

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

On realizations

■ Analog realizations– Partial fractions expansions, continued

fractions expansions, etc.– Rational function interpolation– Fitting or identification

■ Analog circuit

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Digital realizations

■ The “short memory” principle

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Digital realizations

■ The “short memory” principle

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Digital realizations■ Other approximations

– Gründwald-Letnikov, equivalent to

– Using TR and CFE

IEEE CDC 2002 T W: Fractional Calculus Applications in

Automatic Control and Robotics

Conclusions

■ Advantages of fractional PID– Better for fractional systems– Similar simplicity and compactness– More general structure: added flexibility

■ Problems– Realizations

■ Work in progress– Lab prototypes of fractional operators, analog and

digital, working fine.