on the domain of a schrödinger operator with complex ...helffer/tokyohelffernew2017.pdf · the...

48
On the domain of a Schr¨ odinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Y´ eb´ e, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ). Bernard Helffer Nantes University Emeritus Professor. Centennial Kato’s conference in Tokyo, September 2017 Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schr¨odinger operator with complex potentia

Upload: others

Post on 29-Mar-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

On the domain of a Schrodinger operator withcomplex potential – Old and New –

(After H-Nourrigat (1985), H-Mohamed,Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier,

Almog-H, H-Nourrigat (2017) ).

Bernard HelfferNantes University Emeritus Professor.

Centennial Kato’s conference in Tokyo, September 2017

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Introduction

The aim of this talk is to review and compare the spectralproperties of (the closed extension of ) −∆ + U (U ≥ 0) and−∆ + iV in L2(Rd) for C∞ potentials U or V with polynomialbehavior.The case with magnetic field is also considered. More precisely, theaim is to compare the criteria for:

I essential selfadjointness (esa) or maximal accretivity(maxacc)

I Compactness of the resolvent.

I Maximal inequalities,

for these operators.The most recent results devoted to the Schrodinger operator withcomplex potential have been obtained in collaboration with Y.Almog (2016) and J. Nourrigat (2017).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Maximal inequalities

By L2-maximal inequalities, we mean the existence of C > 0 s. t.

||u||2H2 + ||Uu||2L2 ≤ C(||(−∆ + U)u||2L2 + ||u||2L2

), ∀u ∈ C∞0 (Rd) ,

(1)or

||u||2H2 + ||Vu||2 ≤ C(||(−∆ + iV )u||2 + ||u||2

), ∀u ∈ C∞0 (Rd) .

(2)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We will also discuss the magnetic case:

PA,V = −∆A + W :=d∑

j=1

(Dxj − Aj(x))2 + W (x) ,

(with W = U + iV ) and the notion of maximal regularity isexpressed in terms of the magnetic Sobolev spaces:

||(D − A)u||2L2(Rd,Cd)

+∑

j ,` ||(Dj − Aj)(D` − A`)u||2L2(Rd )

+|| |W |u||2L2(Rd )

≤ C(||PA,Wu||2

L2(Rd )+ ||u||2

L2(Rd )

),

(3)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

The question of analyzing −∆ + iV or more generallyPA,iV := −∆A + iV appears in many situations [2, 3, 1]:

I Time dependent Ginzburg-Landau theory leads for example tothe spectral analysis of

D2x + (Dy −

x2

2)2 + iy

Here curl A = x vanishes along a line.

I Control theory (see Beauchard-Helffer-Henry-Robbiano(2015))

I Bloch-Torrey (complex Airy) equation

−∆ + ix

I Fluid dynamics

Moreover, V does not satisfy necessarily a sign condition V ≤ 0 asfor dissipative systems.Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

One origin of our problem

The physical problem is posed in a domain Ω with specificboundary conditions. We will only analyze here limiting situationswhere the domain possibly after a blowing argument becomes thewhole space (or the half-space). We work in dimension 2 forsimplification. We assume that a magnetic field of magnitude He

is applied perpendicularly to the sample and identified (via itsintensity) with a function. We denote the Ginzburg-Landauparameter of the superconductor by κ (κ > 0) and the normalconductivity of the sample by σ.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Then the time-dependent Ginzburg-Landau system (also known asthe Gorkov-Eliashberg equations) is in ]0,T [×Ω :

∂tψ + iκΦψ = ∆κAψ + κ2(1− |ψ|2)ψ ,

κ2 curl 2A + σ(∂tA +∇Φ) = κIm (ψ∇κAψ) + κ2 curl He ,

(4)where ψ is the order parameter, A the magnetic potential, Φ theelectric potential, ∇κA = ∇+ iκA and ∆κA = (∇+ iκA)2 is themagnetic Laplacian associated with magnetic potential κA. Inaddition (ψ,A,Φ) satisfies an initial condition at t = 0.

The linearization of the first line near a time-independent solutionleads to a magnetic Schrodinger operator with complex potentialiΦ and magnetic potential κA.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Our goalIt seems therefore useful to present in a unified way, what is knownon the subject. If we assume that the potential W is C∞, we knowthat

I the operator is essentially selfadjoint (esa) starting fromC∞0 (Rd) in the first situation (W = U)

and

I the operator is maximally accretive (maxacc) in the secondcase (W = U + iV with U ≥ 0).

Hence in the two cases the closed operator in consideration isuniquely defined by its restriction to C∞0 .For the oldest contributions on the subject one can mention thepapers by Ikebe-Kato (1962) [21], T. Kato (1972) [23] and thework of Avron-Herbst-Simon (1978) [5] which in particularpopularizes the question of magnetic bottles. A very completesurvey is in preparation by Barry Simon [40] (see the lectures of B.Simon in this conference).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Compactness of the resolventFor the compactness of the resolvent, outside the easy case whenU → +∞, the story starts around the eighties with the treatmentof instructive examples (Simon [39] (1983), Robert [34] (1982))and in the case with magnetic field [5] (the simplest example beingfor d = 2 and U = 0, when B(x)→ +∞).In the polynomial case, many results are deduced as a byproduct ofthe analysis of left-invariant operators on nilpotent groups (proofof the Rockland conjecture (1979)) see the book ofHelffer-Nourrigat [17] (1985), at least in the case when U is a sumof square of polynomials.Using Kohn’s type inequalities (initially developed for the proof ofhypoellipticity), B. Helffer and A. Morame (Mohamed) [15] (1988)obtain more general results which can be combined with theanalysis of A. Iwatsuka [22] (1986).

Another family of results using the notion of capacity can be foundin Kondratiev-Mazya-Shubin [27, 26]...

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Maximal regularity

T. Kato proves, as a consequence of a contractive inequality, theinequality

||∆u||L1 + ||Uu||L1 ≤ 3 ||(−∆ + U)u||L1 , ∀u ∈ C∞0 (Rd) , (5)

under the condition that U ≥ 0 and U ∈ L1loc .

The generalization to the Lp (p > 1) is only possible understronger conditions on U.We will mention some of the results with emphasis on L2 estimates.

In the case, when U =∑

j Uj(x)2, the maximal L2 estimate isobtained as a byproduct of the analysis of the hypoellipticity (seeHormander [19] (1967), Rothschild-Stein (1977) [35] and the bookby Helffer-Nourrigat [17] (including polynomial magneticpotentials) (1985) together with some idea of Folland (1977)).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

This was then generalized to the case when U is a positivepolynomial by J. Nourrigat in 1990 (unpublished) and used in thePHD of D. Guibourg [12, 13] defended in 1992, which considersthe case when the electric potential is real W = U ≥ 0 and themagnetic potential A are polynomials (or some class of polynomiallike potentials).In his thesis Zhong (1993) proves the same result by showing that∇2(−∆ + U)−1 is a Calderon-Zygmund operator.We also mention the unpublished thesis of Nourrigat’s studentMba-Yebe [28] (1995), whose techniques are re-used in our recentwork.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Z. Shen (1995) [36] generalizes the result to the case when U is inthe reverse Holder class RHq (q ≥ d

2 and d ≥ 3), a class whichcontains the positive polynomials.

Definition

For 1 < q < +∞, a locally Lq, a.e. strongly positive, function ωbelongs to RHq if∃ C > 0 s.t. for any cube Q ⊂ Rd

(1

|Q|

∫ωq dx

) 1q

≤ C

(1

|Q|

∫ω dx

).

There is a local version of this class (Shen) which could besufficient.The proof also involves techniques of C. Fefferman.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Extension to Schrodinger with magnetic field

This can be extended to the case with magnetic field.The main conditions for maximal L2-estimates are U ≥ 0 andU + | curl A| ∈ RH d

2. Additional conditions on the magnetic field

or on the structure of U are added, depending on the authors(Helffer-Nourrigat, Guibourg, Nourrigat, Shen, Auscher-Ben Ali)and on the proved result.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Kohn’s approach–ESA-caseThis approach was mainly used for getting the compactness of theresolvent. Except in a few cases, these estimates do not lead tothe maximal regularity but are enough for getting the compactness.Here we mainly refer to [15] (see also [29], [16]).We first analyze the problem for

PA,U =d∑

j=1

(Dxj − Aj(x))2 +

p∑`=1

U`(x)2 . (6)

Under these conditions, the operator is esa on C∞0 (Rd). We notealso that:

PA,U =

d+p∑j=1

X 2j =

d∑j=1

X 2j +

p∑`=1

Y 2` ,

with

Xj = (Dxj − Aj(x)) , j = 1, . . . , d , Y` = U` , ` = 1, . . . , p .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

In particular, the magnetic field is recovered by

Bjk =1

i[Xj ,Xk ] = ∂jAk − ∂kAj , for j , k = 1, . . . , d .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We start with two trivial easy cases.First we consider the case when U → +∞. In this case, it is wellknown that the operator has a compact resolvent.On the opposite, if we assume that U = 0, d = 2 andB(x) = B12 ≥ 0 , one immediately gets:∫

B(x)|u(x)|2dx ≤ ||X1u||2 + ||X2u||2 = Re 〈PA,iV u | u〉 . (7)

Under the condition that lim|x |→+∞ B(x) = +∞, this implies thatthe operator has a compact resolvent.Example:

A1(x1, x2) = −x2x21 , A2(x1, x2) = +x1x

22 .

HereB(x1, x2) = x2

1 + x22 .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

In order to treat more general situations, we introduce (keepingV = 0 for the moment) the quantities:

mq(x) =∑`

∑|α|=q

|∂αx U`|+∑j<k

∑|α|=q−1

|∂αx Bjk(x)| . (8)

It is easy to reinterpret this quantity in terms of commutators ofthe Xj ’s.When q = 0, the convention is that

m0(x) =∑`

|U`(x)| . (9)

Let us also introduce

mr (x) = 1 +r∑

q=0

mq(x) . (10)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Then a criterion (due to Helffer-Mohamed (1988)) is

Theorem

If there exists r and C s.t.

mr+1(x) ≤ C mr (x) , ∀x ∈ Rd , (11)

andmr (x)→ +∞ , as |x | → +∞ , (12)

then PA,U(h) has a compact resolvent.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

It is shown in [29], that one can get the same result under theweaker assumption

mr+1(x) ≤ C [mr (x)]1+δ , (13)

where δ = 12r+1−3

(r ≥ 1).

This result is optimal for r = 1 according to a counterexample byA. Iwatsuka [22], who gives an example of a Schrodinger operatorwhich has a non compact resolvent and s.t.

∑j<k |∇Bjk(x)| has

the same order as∑

j<k |Bjk |2.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Other generalizations are given in [36] (Corollary 0.11) .One can for example replace

∑j V

2j by U and the conditions on

the mj ’s can be reformulated in terms of the variation of U and Bin suitable balls (Reverse Holder property).In particular A. Iwatsuka [22] showed that a necessary condition is:

∫B(x ,1)

V (x) +∑j<k

Bjk(x)2

dx → +∞ as |x | → +∞ , (14)

where B(x , 1) is the ball of radius 1 centered at x .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

The accretive case : maximal accretivness andcompactness

There is there a general statement (see [16], [3]) about themaximal accretiveness of PA,W , when U ≥ 0. Moreover

PA,W = (PA,W )∗ . (15)

We can now extend the previous theorem to the family ofoperators:

PA,W =d∑

j=1

(Dxj − Aj(x))2 +

p∑`=1

U`(x)2 + iV (x) , (16)

with W = U + iV and V ∈ C∞.We introduce the new quantity:

mq(x) =∑`

∑|α|=q

|∂αx U`|+∑j<k

∑|α|=q−1

|∂αx Bjk(x)|+∑|α|=q−1

|∂αx V | .

(17)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Then the new criterion is

Theorem a la Kohn

If there exist r and C such that

mr+1(x) ≤ C0 mr (x) , ∀x ∈ Rn , (18)

then there exist δ > 0 and C1 := C1(C0) s. t.

||(mr (x))δu||2 ≤ C1

(||PA,W u||2 + ||u||2

). (19)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

The proof shows that we can take δ = 2−r which is in general notoptimal.

Corollary

If in addition

mr (x)→ +∞ , as |x | → +∞ . (20)

Then PA,W (h) has a compact resolvent.

When A = U = 0, the choice of δ can be improved(Almog-Helffer) leading to optimal regularity for r ≤ 2.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Proof of the theorem (sketch)

We can replace mr (x) by an equivalent C∞ function Ψ(x) whichhas the property that, ∃C > 0 and ∀α, ∃Cα s.t.

1C Ψ(x) ≤ mr (x) ≤ CΨ(x) ,|Dα

x Ψ(x)| ≤ CαΨ(x) .(21)

In the same spirit as in Kohn’s proof, let us introduce

Definition

For s > 0 , Ms is the space of C∞ functions T s.t. ∃Cs s.t.

||Ψ−1+sTu||2 ≤ Cs

(||PAu|| ||u||+ ||u||2

), ∀u ∈ C∞0 (Rd) . (22)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We first observe thatU` ∈ M1 , (23)

[Xj ,Xk ] ∈ M12 , ∀j , k = 1, . . . , d , (24)

andV ∈ M

12 . (25)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Another claim (integration by part) is:If T is in Ms and |∂αx T | ≤ CαΨ , then [Xk ,T ] ∈ M

s2 , when |α| = 1

or |α| = 2 .Assuming these two properties, it is clear that

Ψ(x) ∈ M2−r.

The claim and (23) lead to

∂αx U` ∈ M2−|α| ,

and we deduce:∂αx Bjk ∈ M2−(|α|+1)

.

The proof of the theorem then becomes easy.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Maximal estimates: Main assumptionsFor V ∈ C∞, we introduce:

I (H1) ∃C2 ≥ 1 and ∃r ∈ N s.t. , ∀x ∈ Rd , ∀R > 0,

1

C2sup

|y−x |≤R|V (y)| ≤

∑|α|≤r

R |α||∂αV (x)| ≤ C2 sup|y−x |≤R

|V (y)| .

I (H2(r)) ∃C0 > 0 and ∃r ∈ N s.t.

max|β|=r+1

|Dβx V (x)| ≤ C0 m(x) ,

where

m(x) := m(r)V (x) =

√∑|α|≤r

|Dαx V (x)|2 + 1 .

We note that any polynomial of degree r satisfies these conditions.With an extra effort (see [18]) we can remove (H1).Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Main theorem

Theorem (Helffer-Nourrigat 2017)

If V satisfies for some r ∈ N assumptions (H1) and (H2), thereexists C > 0 s.t. ∀u ∈ C∞0

‖Vu‖2 + ‖|V |1/2∇u‖2 ≤ C(‖PiV u‖2 + ||u||2

). (26)

One gets the complete regularity statement using the regularity ofthe Laplacian.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Hormander’s metrics and partition of unity.As in the PHD of Mba Yebe, we introduce a parameter µ ≥ 1 tobe determined later and an associate metrics.For any x ∈ Rd , ∃R > 0 unique, denoted by R(x , µ), s.t.

sup|y−x |≤R

|V (y)| =µ

R2. (27)

Proposition (slow variation)

With K = C2 2r/2,

|y − x | ≤ R(x , µ)

K=⇒ 1

K≤ R(y , µ)

R(x , µ)≤ K .

This proposition shows that the metric defined on Rd bygx(t) = |t|2/R(x , µ)2 (x ∈ Rd , t ∈ Rd), is slowly varying in thesense of Hormander.Moreover, the constant in the definition is independent of µ.Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We deduce from Lemma 18.4.4 in the book of Hormander

Proposition: Partition of unity

For any µ ≥ 1, there exist (ϕj) in C∞0 , and (xj) in Rd , s.t. :

I ∑j

ϕj(x)2 = 1 , ∀x ∈ Rd . (28)

I With K the constant of previous proposition ,

suppϕj ⊂ B(xj ,R(xj , µ)/K ) . (29)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Partition of unity (continued)

I ∀α, ∃Cα > 0, independent of µ, s.t.

∑j

|∂αϕj(x)|2 ≤ CαR(x , µ)2|α| . (30)

I ∃C > 0, independent of µ, s. t., ∀u ∈ C∞0 ,

∫Rd

|u(x)|2

R(x , µ)4dx ≤ C

‖u‖2 +∑

R(xj ,µ)≤1

∫Rd

ϕj(x)2|u(x)|2

R(xj , µ)4dx

.

(31)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Proof of Main Theorem.

Proposition

For µ ≥ 1 let (xj) be a sequence in Rd as above. ∃µ0 > 1 and ∃C3

(depending only on C0 and C2) s.t., ∀µ ≥ µ0, ∀j s.t. R(xj , µ) ≤ 1,and ∀f ∈ C∞0 supported in Bj = B(xj ,R(xj , µ)/K ),

µδ

R(xj , µ)2‖f ‖+

µδ/2

R(xj , µ)‖∇f ‖ ≤ C3 ‖PiV f ‖ , (32)

where δ > 0 (coming from Kohn’s estimate).

Idea of the proof:Apply Kohn’s like estimate with

Vj(y) = R2j V (xj + Rj y) with Rj = R(xj , µ) .

Observe that the Vj satisfy the condition for this estimate withconstants which are independent of j and that the resultingestimates are obtained with constants independent of j .Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

End of the proof of Main Theorem.

Let u ∈ C∞0 (Rd). For all µ ≥ 1, we apply (31) and obtain:∫Rd

[|u(x)|2

R(x , µ)4+|∇u(x)|2

R(x , µ)2

]dx ≤ C (‖u‖2 + ‖∇u‖2) + R ,

with

R = C∑

R(xj ,µ)≤1

‖ϕju‖2

R(xj , µ)4+‖∇(ϕju)‖2

R(xj , µ)2.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We have also used (30). For any j s.t. R(xj , µ) ≤ 1, we apply thelocal estimate (32) to f = ϕju.We get for µ ≥ µ0

R ≤ Cµ−2δ∑

R(xj ,µ)≤1 ‖PiV (ϕju)‖2

≤ Cµ−2δ‖PiV u‖2 + Cµ−2δ∑

j

[‖∇ϕj · ∇u‖2 + ‖u(∆ϕj)‖2

].

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Using (30), we obtain for a new C > 0:

R ≤ Cµ−2δ‖PiV u‖2 + Cµ−2δ

∫Rd

[|u(x)|2

R(x , µ)4+|∇u(x)|2

R(x , µ)2

]dx .

For µ ≥ µ1 (with µ1 ≥ µ0 large enough), we get for some newC > 0∫Rd

[|u(x)|2

R(x , µ)4+|∇u(x)|2

R(x , µ)2

]dx ≤ C (‖u‖2+‖∇u‖2)+Cµ−2δ‖PiV u‖2 .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Using‖∇f ‖2 ≤ ‖PiV f ‖ ‖f ‖ ,

we then get∫Rd

[|u(x)|2

R(x , µ)4+|∇u(x)|2

R(x , µ)2

]dx ≤ C‖u‖2 + C (1 + µ−2δ)‖PiV u‖2 .

Main Theorem follows by observing (see (27)) that

|V (x)| ≤ R(x , µ)−2µ .

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

It is actually possible (Helffer-Nourrigat) to extend our mainTheorem to the case with magnetic field:

W =∑`

U2` + iV ,

and the associated complex Schrodinger operator PA,W .

Main theorem with magnetic fields (Helffer-Nourrigat (2017)

Under the assumptions of the theorem ”a la Kohn”, there existsC > 0 such that, for all u ∈ C∞0 (Rd):

‖|W |u‖2 ≤ C(‖PA,W u‖2 + ||u||2

). (33)

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

We introduce, for t ∈ [0, 1] and x ∈ Rd ,

Φ(x , t) =∑

`

∑|α|≤r t |α|+1 |∂αx U`(x)|

+∑

j<k

∑|α|≤r−1 t

|α|+2 |∂αx Bjk(x)|+∑|α|≤r−1 t

|α|+2|∂αx V (x)| .(34)

This time for µ ≥ 1 we define

R(x , µ) = supt ∈ [0, 1], Φ(x , t) ≤ µ .

Then the proof goes on along the same scheme as before, withadditional technicalities.To complete the regularity result, we should use a ”self-adjoint”statement of optimal regularity for PA,|W | or for the magneticLaplacian PA,0 and use either Helffer-Nourrigat (if A is apolynomial) or Shen (see above) for more general cases.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Y. Almog, D. Grebenkov, and B. Helffer.On a Schrodinger operator with a purely imaginary potential inthe semiclassical limit.ArXiv (2017).

Y. Almog and B. Helffer.On the spectrum of non-selfadjoint Schrodinger operators withcompact resolvent.Comm. in PDE 40 (8) (2015), pp. 1441–1466.

Y. Almog, B. Helffer, and X. Pan.Superconductivity near the normal state under the action ofelectric currents and induced magnetic fields in R2.Comm. in Math. Phys. 2010, Vol. 300, Issue 1, p. 147-184.

P. Auscher and B. Ben Ali.Maximal inequalities and Riesz transform on Lp space forSchrodinger operators with non negative potentials.Ann. Inst. Fourier 57 (6) (2007) 1975–2013.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Y. Avron, I. Herbst, and B. Simon.Schrodinger operators with magnetic fields I. Generalinteractions.Duke Math. J. 45 (4), p. 847-883 (1978).

B. Ben Ali.Inegalites maximales et estimations Lp des transformees deRiesz des operateurs de Schrodinger.These de doctorat de l’universite Paris-Sud (2008).

J. Dziubanski.A note on Schrodinger operators with polynomial potentials.Colloq. Math. 78 (1998), 149-161.

J. Dziubanski and P. Glowacki.A note on Sobolev spaces related to Schrodinger operatorswith polynomial potentials.Mathematische Zeitschrift 262 (2009), 881-894.

C. Fefferman.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

The uncertainty principle.Bull. Amer. Math. Soc. 9 (1983) 129–206.

G.B. Folland.On the Rothschild-Stein lifting theorem.Comm. in PDE 212 (1977), pp. 165-191.

S. Fournais and B. Helffer.Spectral Methods in Surface Superconductivity.Progress in Non-Linear PDE 77 Birkhauser (2010).

D. Guibourg.Inegalites maximales pour l’operateur de Schrodinger,PhD Thesis, Universite de Rennes 1, 1992.

D. Guibourg.Inegalites maximales pour l’operateur de Schrodinger.CRAS 316 (1993), 249–252.

B. Helffer.Spectral Theory and its Applications.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Cambridge University Press (2013).

B. Helffer and A. Mohamed.Sur le spectre essentiel des operateurs de Schrodinger avecchamp magnetique.Ann. Inst. Fourier 38(2), pp. 95–113 (1988).

B. Helffer and F. Nier.Hypoelliptic estimates and spectral theory for Fokker-Planckoperators and Witten Laplacians.Springer Lecture Note in Mathematics 1862 (2005).

B. Helffer and J. Nourrigat.Hypoellipticite Maximale pour des Operateurs Polynomes deChamps de Vecteurs.Progress in Mathematics, Birkhauser, Vol. 58 (1985).

B. Helffer and J. Nourrigat.On the domain of a magnetic Schrodinger operator withcomplex electric potential.In preparation.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

L. Hormander.Hypoelliptic second order differential equations.Acta Math. 119 (1967), pp. 147-171.

L. Hormander.The Analysis of Linear Partial Differential Operators.Volume III, Springer, 1985.

T. Ikebe and T. Kato.Uniqueness of the self-adjoint extension of singular ellipticdifferential operators.Arch. for Rat. Mech. and Anal. 9 (1962), 77–92.

A. Iwatsuka.Magnetic Schrodinger operators with compact resolvent.J. Math. Kyoto Univ. 26, p. 357-374 (1986).

T. Kato.Schrodinger operators with singular potentials.Israel Journal of Math. 13 (1972) 135-148.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

T. Kato.Lp theory of Schrodinger operators with singular potentials.North Holland Math. Studies (1986).

J. Kohn.Lectures on degenerate elliptic problems.Pseudodifferential operators with applications, C.I.M.E.,Bressanone 1977, p. 89-151 (1978).

V. Kondratiev, V. Mazya, and M. Shubin.Gauge optimization and spectral properties of magneticSchrodinger operators.Comm. Partial Differential Equations 34 (2009), no. 10-12,1127–1146.

V. Kondratiev and M. Shubin.Discreteness of spectrum for the magnetic Schrodingeroperators.Comm. Partial Differential Equations 27 (3-4), p. 477-526(2002).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

J.T. Mba Yebe.Realisation et spectre d’operateurs de Schrodinger et deKlein-Gordon avec des potentiels irreguliers.These de Doctorat (Universite de Reims) (1995).

M. Meftah.Conditions suffisantes pour la compacite de la resolvante d’unoperateur de Schrodinger avec un champ magnetique.J. Math. Kyoto Univ. 31 (3), p. 875-880 (1991).

A. Mohamed and J. Nourrigat.Encadrement du N(λ) pour un operateur de Schrodinger avecun champ magnetique et un potentiel electrique.Journal de Mathematiques Pures et Appliquees (9) 70, no 1,87–99 (1991).

J. Nourrigat.Inegalites L2 et representations de groupes nilpotents.Journal of Functional Analysis 74. October 1987.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

J. Nourrigat.Une inegalite L2, unpublished manuscript (∼ 1990).

J. Nourrigat.L2 inequalities and representations of nilpotent groups.CIMPA School of Harmonic Analysis. Wuhan (China),April-May 1991.

D. Robert.Comportement asymptotique des valeurs propres d’operateursdu type Schrodinger a potentiel ”degenere ”.J. Math. Pures Appl. (9) 61 (1982), no. 3, 275–300 (1983).

L.P. Rothschild and E. Stein.Hypoelliptic operators and nilpotent groups.Acta Mathematica 137 (1977), pp. 248-315.

Z. Shen.Lp estimates for Schrodinger with certain potentials.Ann. Inst. Fourier 45 (1995), 513-546.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Z. Shen.Estimates in Lp for magnetic Schrodinger operators.Indiana Univ. Math. J., 45 (1996), pp. 817-841.

Z. Shen.Eigenvalue asymptotics and exponential decay ofeigenfunctions for Schrodinger operators with magnetic fields.TAMS 348, 4465-4488 (1996).

B. Simon.Some quantum operators with discrete spectrum butclassically continuous spectrum.Ann. Physics 146, p. 209-220 (1983).

B. Simon.Tosio Kato’s work on non-relativistic quantum mechanics.This conference.

J. Zhong.The Sobolev estimates for some Schrodinger type operators.

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).

Math. Sci. Res. Hot-Line 3 (1999), no. 8, p. 1–48; (andHarmonic Analysis of some Schrodinger type Operators, PhDthesis, Princeton University, 1993).

Bernard Helffer Nantes University Emeritus Professor. On the domain of a Schrodinger operator with complex potential – Old and New – (After H-Nourrigat (1985), H-Mohamed, Nourrigat, Guibourg, Mba Yebe, Shen,...,H-Nier, Almog-H, H-Nourrigat (2017) ).