on the multifractal dimensions at the anderson transition

31
Imre Varga Elmรฉleti Fizika Tanszรฉk Budapesti Mลฑszaki รฉs Gazdasรกgtudomรกnyi Egyetem, H-1111 Budapest, Magyarorszรกg Imre Varga Departament de Fรญsica Teรฒrica Universitat de Budapest de Tecnologia i Economia, Hongria On the Multifractal Dimensions at the Anderson Transition Coauthors: Josรฉ Antonio Mรฉndez-Bermรบdez, Amando Alcรกzar-Lรณpez (BUAP, Puebla, Mรฉxico) thanks to : OTKA, AvH

Upload: lela

Post on 05-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

On the Multifractal Dimensions at the Anderson Transition. Imre Varga Departament de Fรญsica Teรฒrica Universitat de Budapest de Tecnologia i Economia , Hongria. Imre Varga Elm รฉleti Fizika Tanszรฉk Budapesti Mลฑszaki รฉs Gazdasรกgtudomรกnyi Egyetem, H-1111 Budapest, Magyarorszรกg. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: On the  Multifractal  Dimensions at the Anderson Transition

Imre Varga Elmรฉleti Fizika TanszรฉkBudapesti Mลฑszaki รฉs Gazdasรกgtudomรกnyi Egyetem, H-1111 Budapest, Magyarorszรกg

Imre VargaDepartament de Fรญsica TeรฒricaUniversitat de Budapest de Tecnologia i Economia, Hongria

On the Multifractal Dimensions at the Anderson Transition

Coauthors: Josรฉ Antonio Mรฉndez-Bermรบdez, Amando Alcรกzar-Lรณpez (BUAP, Puebla, Mรฉxico)

thanks to : OTKA, AvH

Page 2: On the  Multifractal  Dimensions at the Anderson Transition

Outline Introduction

The Anderson transition Essential features of multifractality Random matrix model: PBRM

Heuristic relations for generalized dimensions Spectral compressibility vs. multifractality Wigner-Smith delay time Further tests

Conclusions and outlook

Page 3: On the  Multifractal  Dimensions at the Anderson Transition
Page 4: On the  Multifractal  Dimensions at the Anderson Transition

Andersonโ€™s model (1958) Hamiltonian

Energies en uncorrelated, random numbers from uniform

(bimodal, Gaussian, Cauchy, etc.) distribution W

Nearest-neighbor โ€žhoppingโ€ V (symmetries: R, C, Q)

Bloch states for W V, localized states for W V

W V ?

Page 5: On the  Multifractal  Dimensions at the Anderson Transition

Anderson localization

Billy et al. 2008

Hu et al. 2008

Sridhar 2000

Jendrzejewski et al. 2012

Page 6: On the  Multifractal  Dimensions at the Anderson Transition

Spectral statistics

RMT

0<๐œ’<1

๐œ’= lim๐ฟโ†’ โˆž

ฮฃ 2(๐ฟ)๐ฟ

W < Wcโ€ข extended statesโ€ข RMT-like:

W > Wc

โ€ข localized statesโ€ข Poisson-like:

W = Wcโ€ข multifractal statesโ€ข intermediate stat.

โ€˜mermaidโ€™ semi-Poisson

Page 7: On the  Multifractal  Dimensions at the Anderson Transition

Eigenstates at small and large W

Extended stateWeak disorder, midband

Localized stateStrong disorder, bandedge

(L=240) R.A.Rรถmer

Page 8: On the  Multifractal  Dimensions at the Anderson Transition

Multifractal eigenstate at the critical point

http://en.wikipedia.org/wiki/Metal-insulator_transition (L=240) R.A.Rรถmer

Page 9: On the  Multifractal  Dimensions at the Anderson Transition

Multifractal eigenstate at the critical point

Inverse participation ratio

Box-counting techniqueโ€ข fixed Lโ€ข โ€žstate-to-stateโ€ fluctuations

PDF analyzis

โ€ข higher precisionโ€ข scaling with L

Page 10: On the  Multifractal  Dimensions at the Anderson Transition

Multifractal eigenstate at the critical point

Do these states exist at all?

Yes

Page 11: On the  Multifractal  Dimensions at the Anderson Transition

Multifractal states in reality

LDOS vรกltozรกsa a QH รกtmeneten keresztรผl n-InAs(100) felรผletre elhelyezett Cs rรฉteggel

Page 12: On the  Multifractal  Dimensions at the Anderson Transition

Multifractal states in reality

LDOS fluctuations in the vicinity of the metal-insulator transition Ga1-xMnxAs

Page 13: On the  Multifractal  Dimensions at the Anderson Transition

Multifractality in general Turbulence (Mandelbrot) Time series โ€“ signal analysis

Earthquakes ECG, EEG Internet data traffic modelling Share, asset dynamics Music sequences etc.

Complexity Human genome Strange attractors etc.

Common features self-similarity across many scales, broad PDF muliplicative processes rare events

Page 14: On the  Multifractal  Dimensions at the Anderson Transition

Multifractality in general

Very few analytically known binary branching process 1d off-diagonal Fibonacci sequence Bakerโ€™s map etc

Numerical simulations Perturbation series (Giraud 2013) Renormalization group - NLM โ€“ SUSY (Mirlin)

Heuristic arguments

Page 15: On the  Multifractal  Dimensions at the Anderson Transition

Numerical multifractal analysis

Parametrization of wave function intensities |ฮจ ๐‘—|2โˆผ๐ฟโˆ’๐›ผ

The set of points where scales with ๐’ฉ๐›ผโˆผ ๐ฟ๐‘“ (๐›ผ )

Scaling:โ€ข Box size: โ€ข System size:

Averaging:โ€ข Typical: โ€ข Ensemble:

๐œ‡๐‘˜ ( โ„“ )= โˆ‘๐‘—โˆˆ box๐‘˜

|ฮจ ๐‘—|2โŸน๐ผ๐‘ž (โ„“ )=โˆ‘

๐‘˜[๐œ‡๐‘˜(โ„“) ]๐‘ž

๐ผ๐‘ž(โ„“)โˆ( โ„“๐ฟ )

๐œ (๐‘ž)

โŸน { ๐›ผ๐‘ž=๐œ โ€ฒ(๐‘ž)๐‘“ (๐›ผ๐‘ž)=๐‘ž๐›ผ๐‘žโˆ’๐œ (๐‘ž)

Page 16: On the  Multifractal  Dimensions at the Anderson Transition

Numerical multifractal analysis

Parametrization of wave function intensities |ฮจ ๐‘—|2โˆผ๐ฟโˆ’๐›ผ

The set of points where scales with ๐’ฉ๐›ผโˆผ ๐ฟ๐‘“ (๐›ผ )

โ€ข convex

โ€ข Symmetry (Mirlin, et al. 06)

Page 17: On the  Multifractal  Dimensions at the Anderson Transition

Numerical multifractal analysis

Generalized inverse participation number, Rรฉnyi-entropies

Mass exponent, generalized dimensions

Wave function statistics

โŸจ ๐ผ๐‘ž โŸฉโˆผ { ๐ฟ0

๐ฟโˆ’๐œ (๐‘ž)

๐ฟโˆ’๐‘‘(๐‘žโˆ’ 1)๐‘…๐‘ž=

11โˆ’๐‘ž

ln โŸจ ๐ผ๐‘ž โŸฉโˆผ๐ท๐‘ž ln ๐ฟ

๐œ๐‘ž=๐‘‘ (๐‘žโˆ’1 )+ฮ”๐‘žโ‰ก๐ท๐‘ž (๐‘žโˆ’1 )โŸน ฮ”๐‘ž=ฮ”1 โˆ’๐‘ž

๐’ซ(ln|๐œ“|2)โˆผ ๐ฟ๐‘“ ( ln|๐œ“|2

ln ๐ฟ )โˆ’๐‘‘parabolic og-normal

Page 18: On the  Multifractal  Dimensions at the Anderson Transition

Numerical multifractal analysis

Rodriguez et al. 2010

๐œ‡๐‘˜ ( โ„“ )= โˆ‘๐‘—โˆˆ box๐‘˜

|ฮจ ๐‘—|2

๐›ผ=ln๐œ‡ln ๐œ†

if ๐œ†=โ„“๐ฟ

๐’ซ(๐›ผ)โˆผ ๐œ†๐‘‘โˆ’ ๐‘“ (๐›ผ)

application to quantum percolation, see poster by L. Ujfalusi

Page 19: On the  Multifractal  Dimensions at the Anderson Transition

Correlations at the transition

Interplay of eigenvector and spectral correlations q=2, Chalker et al. 1995 q=1, Bogomolny 2011

Cross-correlation of multifractal eigenstates

Auto-correlation of multifractal eigenstates

๐‘ž ๐œ’+๐ท๐‘ž

๐‘‘=1

Enhanced SC Feigelโ€™man 2007Burmistrov 2011

New Kondo phaseKettemann 2007

Page 20: On the  Multifractal  Dimensions at the Anderson Transition

Effect of multifractality (PBRM)

Generalize!

Take the model of the model!

PBRM (a random matrix model)

Page 21: On the  Multifractal  Dimensions at the Anderson Transition

b

PBRM: Power-law Band Random Matrix

model: matrix,

asymptotically:

free parameters and

Mirlin, et al. โ€˜96, Mirlin โ€˜00

Page 22: On the  Multifractal  Dimensions at the Anderson Transition

PBRM 

Mirlin, et al. โ€˜96, Mirlin โ€˜00

Page 23: On the  Multifractal  Dimensions at the Anderson Transition

Mirlin, et al. โ€˜96, Mirlin โ€˜00

 

weak multifractality

strong multifractality

๐œ’ (1+๐‘Ž๐œ’ ๐‘)โˆ’ 1

Page 24: On the  Multifractal  Dimensions at the Anderson Transition

JAMB รฉs IV (2012)

Generalized dimensions

๐ท๐‘žโ‰ˆ [ 1+(๐‘Ž๐‘ž๐‘)โˆ’1 ]โˆ’ 1

๐ท๐‘ž โ€ฒ โ‰ˆ๐‘ž๐ท๐‘ž

๐‘žโ€ฒ+(๐‘žโˆ’๐‘žโ€ฒ )๐ท๐‘ž

Page 25: On the  Multifractal  Dimensions at the Anderson Transition

JAMB รฉs IV (2012)

General relations

๐‘ž๐ท๐‘ž

1โˆ’๐ท๐‘ž

โ‰ˆ const   ๐‘

Spectral statistics and

๐œ’ โ‰ˆ1โˆ’๐ท๐‘ž

1+(๐‘žโˆ’1)๐ท๐‘ž

๐ท2โ‰ˆ๐ท1

2โˆ’๐ท1

โ‰ˆ1โˆ’ ๐œ’1+๐œ’

PBRM at criticality

e.g.:

Page 26: On the  Multifractal  Dimensions at the Anderson Transition

JAMB รฉs IV (2012)

Replace ๐ท๐‘žโ†’๐ท๐‘ž

๐‘‘

For using

๐œ’ โ‰ˆ1โˆ’๐ท๐‘ž

๐‘ž (2โˆ’๐ท๐‘ž)

Higher dimensions,

2dQHT

3dAMIT

๐ท๐‘žโ‰ˆ1โˆ’ 2๐‘ž1โˆ’๐‘ž

+ ๐‘ž1โˆ’๐‘ž ( ๐ท1

1+๐‘ž (๐ท1 โˆ’1))

Page 27: On the  Multifractal  Dimensions at the Anderson Transition

JAMB รฉs IV (2013)

Different problems

Random matrix ensembles Ruijsenaars-Schneider ensemble Critical ultrametric ensemble Intermediate quantum maps Calogero-Moser ensemble

Chaos bakerโ€™s map

Exact, deterministic problems Binary branching sequence Off-diagonal Fibonacci sequence

๐‘ž๐ท๐‘ž

1โˆ’๐ท๐‘ž

โ‰ˆ const   ๐œ’ โ‰ˆ1โˆ’๐ท๐‘ž

1+(๐‘žโˆ’1)๐ท๐‘ž

Surpisingly robust and general

Page 28: On the  Multifractal  Dimensions at the Anderson Transition

Scattering: system + lead Scattering matrix

Wigner-Smith delay time

Resonance widths: eigenvalues of poles of

Page 29: On the  Multifractal  Dimensions at the Anderson Transition

JA Mรฉndez-Bermรบdez โ€“ Kottos โ€˜05 Ossipov โ€“ Fyodorov โ€˜05:

JA Mรฉndez-Bermรบdez โ€“ IV 06:

Scattering: PBRM + 1 lead

Page 30: On the  Multifractal  Dimensions at the Anderson Transition

JAMB รฉs IV (2013)

Wigner-Smith delay time

Scattering exponents

โŸจ๐œโˆ’๐‘ž โŸฉ ๐ฟโˆ’๐œŽ ๐‘žexp โŸจ ln๐œ โŸฉโˆผ ๐ฟ๐œŽ ๐œ

๐œŽ ๐œ=1โˆ’ ๐œ’ ๐œŽ ๐‘ž=๐‘ž (1โˆ’ ๐œ’ )1+๐‘ž ๐œ’

Page 31: On the  Multifractal  Dimensions at the Anderson Transition

Summary and outlook

Multifractal states in general Random matrix model (PBRM)

heuristic relations tested for many models, quantities New physics involved

Kondo, SC, graphene, etc.

Outlook Interacting particles (cf. Mirlin et al. 2013) Decoherence Proximity effect (SC) Topological insulators

Thanks for your attention