opc roadmap: performance driven innovationc2%a0cspence... · nxe:3400 high-na na+45% 436 g-line...

49
Public Chris Spence OPC Roadmap: Performance Driven Innovation Public ASML/Brion, 399 W Trimble Road, San Jose, CA 95131 IWAPS October 17-18 2019

Upload: others

Post on 11-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Chris Spence

OPC Roadmap: Performance Driven Innovation

Public

ASML/Brion, 399 W Trimble Road, San Jose, CA 95131

IWAPS October 17-18 2019

Page 2: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 2Public

Outline

Roadmap

EPE Budget

OPC Model Accuracy

EPE Metrology and Control

Summary and Conclusions

Page 3: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 3Public

Transitioning from Mobile to Ubiquitous computingDriven by an unlimited data expansion generated by > 100B products

Source: Min Cao, TSMC, “Semiconductor Innovation and Scaling, a foundry perspective”, China Semiconductor Technology Conference, Shanghai, March 2019

Today

Page 4: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Transistor density increase is still at 2x per 2 yearsMoore’s Law continues….

100

2011

Tran

sist

or d

ensi

ty [1

06/m

m2 ]

102012 2013 2014 2015 2016 2017 2018 2019 2020

Source: Mustafa Badaroglu, International Roadmap for Devices & Systems’ ‘More Moore’ briefing (November 2018)

2021

16.5

33.32

28.88

44.67 51.8252.51

37.22

61.18

101.51 100.76

22

14

14

16

1010

8

7

14++

10

October 17 2019

PublicSlide 4

nm

nm

Actual

Estimate

Page 5: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 5Public

Logic roadmap: 2D scaling for >10 years, evolving to 3DInnovation in devices continues …

Source: Mustafa Badaroglu, International Roadmap for Devices & Systems’ ‘More Moore’ briefing (November 2018)

Year of production 2018 2020 2022 2025 2028 2031 2034Poly/Metal Pitch (nm) P54M36 P48M32 P45M24 P42M21 P36M16 P36M12 P36M12

Logic ‘node range’ labeling (nm) “7” “5” “3” “2.1” “1.5” “1.5” “1.5”

Logic device structure options

FinFETFDSOI

FinFET FinFETLGAA

LGAAVGAA

LGAAVGAA

LGAAVGAA

3DVLSIVGAA

Logic mainstream device FinFET FinFET FinFET LGAA LGAA VGAA 3DVLSI

SpeculativeTrend confirmed by multiple logic customers

Page 6: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 6

Plenty of innovation in system/chip integrationExciting possibilities to improve system performance Public

J Knetchel et al, IPSJ Trans System LSI Design Methodology Vol.10 45–62 (2017)

Page 7: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

13.5, EUV

~15x

NA+67%

October 17 2019Slide 7

EUV Era Extends Lithography Roadmap R

esol

utio

n, n

m

= k

1x W

avel

engt

h/ N

A

Wavelength, nm

Production systems

XT:1400NXT:1950i

NXE:3400High-NA

NA+45%

436 g-line

13,5, EUV

1985 1990 1995 2000 2005 2010 2015 2020

KrF (248nm)

ArF (193nm)

EUV (13,5nm)

365 i-line248 KrF193 ArF

Development systems

10

100

1000

Hi-NA (13,5nm)

Public

J van Schoot et al, Proc. SPIE Vol. 11147 (2019)

”7nm” Node

Resolution Limit < 10 nm

Page 8: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 8Public

Outline

Roadmap

EPE Budget

OPC Model Accuracy

EPE Metrology and Control

Summary and Conclusions

Page 9: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019

Slide 9Public

Patterning minimum pitch is limited by EPE variationEPE is extreme value of all overlay (OL) and CD errors combined

Intended overlap

Local errors (LWR, Line Width Roughness)

Pitch

DU

VEU

VSA

DP

SAQ

PEt

ch

EPE

Pitch (P)

EPE is the relative displacement of the edges of two features from their “target position

Max EPE ≈ P/4

* Model presented by Richard Schenker at SPIE 2016

EPE= 𝝁𝑬𝑷𝑬 + 𝟑𝝈𝑬𝑷𝑬 =𝑯𝑹𝑶𝑷𝑪

𝟐+

𝟑𝝈𝑷𝑩𝑨

𝟐+

𝟔𝝈𝑳𝑾𝑹

𝟐+ (𝟑𝝈𝒐𝒗𝒆𝒓𝒍𝒂𝒚)

𝟐 +(𝟑𝝈𝑪𝑫𝑼

𝟐)𝟐

Page 10: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 10

Public

EPE Variation length scales span >30cm to <1umCD and Overlay fingerprints exist across all length scales

Wafer (30cm)

Field(3cm)

Die (8mm)

Memory Array (80um)

Device(<1um)

Lot(>30cm)

Wafer Figure from K. Kim SPIE 2016; Overall figure from Cyrus Tabery

Page 11: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 11

Public

Looking ahead: Edge Placement towards 2035The next 10 years is about 2D scaling, then evolving to 3D scaling

Source: Mustafa Badaroglu, IDRS More Moore out brief, Nov 2018, (International Roadmap for Devices and Systems)

36 3224 21

1612 12

7

5

32.1

1.5 1.5 1.5

98

6 5.254

3 3

1

10

100

2018 2020 2023 2026 2029 2032 2034

Nod

e, P

itch,

EPE

, [nm

]

Year

Metal Pitch [nm] Node name Edge Placement Error [nm]

Node, Metal Pitch and Edge Placement Error over time

Roadmap trend confirmed by multiple logic customers Speculative

CC Wei (CEO) in Q1 2019 TSMC Earnings Call, Murthy Renduchintala(Chief Engineering Officer) in Intel Investor Conference in May 2019

Page 12: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 12

Public

Outline

Roadmap

EPE Budget

OPC Model Accuracy

EPE Metrology and Control

Summary and Conclusions

Page 13: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

OPC

October 17 2019Slide 13

Public

EPE= 𝝁𝑬𝑷𝑬 + 𝟑𝝈𝑬𝑷𝑬 =𝑯𝑹𝑶𝑷𝑪

𝟐+

𝟑𝝈𝑷𝑩𝑨

𝟐+

𝟔𝝈𝑳𝑾𝑹

𝟐+ (𝟑𝝈𝒐𝒗𝒆𝒓𝒍𝒂𝒚)

𝟐 +(𝟑𝝈𝑪𝑫𝑼

𝟐)𝟐

Page 14: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 14

Public

EUV CD & EPE (2-D) ADI OPC Error Budget

*OPC ~ 25% of EPE Budget → 2 nm 3s CD target

Class OPC & Reticle ItemEUV 1.5D/2D

Budget Contribution

OPC algorithm convergence minor

ADI Model

Model form significant*

AI model accuracy significant*

Mask-Manufacturing Model Residual (MPC) significant*

Metrology Accuracy Model Residual significant*

Measurement Uncertainty significant*

Simulation Grid Dependency minor

Through Slit Corrections significant*

• This presentation focuses we will show how driving improvements in all these areas drives OPC improvement

* > 1.0 nm 3s

Page 15: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Modeling

October 17 2019Slide 15

Public

Page 16: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 16

Public

Aerial Image is starting point for OPCClever Approximations Enable Fast Accurate Simulation

P. Liu et al, Proc. SPIE Vol. 8676 (2013)

Page 17: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 17

Public

Aggressive RET on EUV Masks Increases ChallengeContinuous Innovation Required

FDTD simulator optical CD

Polygon M3D+ optical CD

Patterns

CD Error

Enhanced M3D optical CD

CD Error

0

1

2

1D Small jogs Semi 2D Contactarray w sbar

Griddedarray

Staggeredarray

Croppedcorner

Curvilinear

Polygon Enhanced

EUV Model Error RMS (nm, compared to Rigorous)

• Gridded array • Staggered array • Cropped corner• Curvilinear

Selected EUV patterns with• 1D• Small jogs• Semi 2D• Contact array with sbar

50%

80%

40%

50%

Page 18: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 18

Public

Physical Model Development Still ImportantFinite Element Models help understand Physical Shrink in NTD resists

P Liu et al., Proc SPIE Vol. 9779 (2016)

Page 19: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 19

Public

Molecular Modeling for Molecular Control Molecular Dynamics provides insights for compact models

C Batistakis et al, Intnl Conf of Photopolymer Science and Technology (2016)

Page 20: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

0.34

1.0

0.32

0.7

1D 2D

Enabled by fast e-beam metrology and physical based models

Large volume wafer metrology data, further enhanced by fast e-beam

Data-driven training based on fitting spec and wafer measurements

Accu

racy

Physical driven training using physics based lithography models

Physical Resist

Shrinkage

Data expansion through simulated

contours

Stab

ility

Resist surface stress

ASML Deep Learning model

with Deep Learning

without Deep Learning

Deep Learning Is Next Step

0.70.6

0.40.5

1D 2D

0.7

1.3

0.4

1.0

1D 2D

1.1 1.2

0.81.1

EP SET1 EP SET2

EUV Cases: 7 nm and 5 nm logic

DUV Cases: 7 nm and 5 nm logic

Slide 20Public

“EP SET1” → Edge Placement Gauge Set 1

Model Prediction Accuracy (RMS in nm)

October 17 2019

PublicSlide 20

Page 21: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 21

Public

Deep Learning for Etch Modeling

Term based EEB model

Plasma etch

Electron temp (Te)

Plasma density(

np)

Ion energy

(Ei)

Neutral/ion ratio

Wafer temp

Chemistry

Tachyon Effective Etch Bias (EEB) models

Real etch process • Etching and passivation

mechanisms coupled together• Complicated etch behavior

Deep learning • Capture unknown &

complicated etch physics• Learn from wafer contour

𝑏𝑖𝑎𝑠

=

𝑖

𝑐𝑖𝑇𝑒𝑟𝑚_𝑏𝑖𝑎𝑠𝑖 + 𝑐𝑜𝑛𝑠𝑡 _𝑏𝑖𝑎𝑠

Page 22: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

SEM Metrology

October 17 2019Slide 22

Public

Page 23: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019

Public

OPC Metrology has Large DiversityChallenge to derive ACCURATE measurements for all gauges

Orthogonal cuts

AR = 1

Staggered cuts AR = 1

Orthogonalcuts

AR ~ 2Staggered cuts AR ~ 2 Staggered cuts AR >3

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 23

Page 24: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

An example of shape-fit algorithm differences:long axis ellipse-to-slot transition

Mean shape-fit shift: 3.4 nm (in transitional region)Range of shape-fit shift: 3.6 nm (transitional region inter-pattern bias range)Shape fits can create algorithm-based CD offsets between very similar features

TransitionalMost Elliptical Most slot-like

CD

del

ta (E

llipse

–Sl

ot)

Pattern numberBest algorithm for

‘most elliptical’ shapes

Best algorithm for ‘most slot-like’

shapes

Y-CDs▪ Ellipse CD▪ Slot CD

October 17 2019

Public

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 24

Page 25: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Resist charging disproportionately affects 2D measurements and algorithms

Charging is due to basic physics of e-beam:resist interactionCharging distortions are dynamic and depend on interaction of SEM scan and pattern shape

e-beam scan

direction

Charging bands can be partially mitigated by

scan rotation

Charging bands distort contours and measurements

October 17 2019

Public

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 25

Page 26: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

2D SEM damage evolution26

8 nm

October 17 2019

Public

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 26

Page 27: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Aspect ratio bias becomes larger as damage increases

(Cutline averaging width: 3 pixels) CD

offs

et v

s. P

OR

CD

(nm

)

Electron dose (e- / nm2)

CD(n) = CD(o) + A·exp(-g·n) – A

POR SEM dose

October 17 2019

Public

▪ Short axis DCD▪ Long axis DCD

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 27

Page 28: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Aspect ratio bias becomes larger as damage increases

(Cutline averaging width: 3 pixels)

Electron dose (e- / nm2)

CD(n) = CD(o) + A·exp(-g·n) – A

POR SEM dose

CD

offs

et v

s. e

st. C

D(o

) (nm

)

October 17 2019

Public

▪ Short axis DCD▪ Long axis DCD

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Slide 28

Page 29: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

SEM Metrology Distorts PatternsErrors are significant part of overall OPC Model Error Budget

October 17 2019Slide 29

T. Wallow et al., Proc. SPIE Vol. 10145 (2017)

Page 30: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

`

Design Pattern Averaged Image Precise ContourImages Edge Placement (EP) Gauges

MXP provides accurate contour metrology for OPC model calibration and verification

AverageRaw

`

Random noise reduction Shape fitting improvementCD-SEM

Systematic fitting errorMXP

Direct measurement

# of raw SEM images averaged

1 si

gma

(nm

)

Slide 30Public

October 17 2019

Contour Based metrology Improves Model AccuracyReduces Random Noise, Shape Fitting and EP Gauges

Page 31: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Mask

October 17 2019Slide 31

Public

Page 32: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 32

Public

Smaller mask CD for EUV MasksIncreases impact of Mask Proximity Effects

-8

-6

-4

-2

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

Pro

xim

ity

Effe

ct (

nm

)

Feature Size (nm)

Hole Array Proximity Effects

CD error (Measured - Design)

DUV ViaEUV Via

-8

-6

-4

-2

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200

Pro

xim

ity

Effe

ct (

nm

)

Feature Size (nm)

Hole Array Proximity Effects

CD error (Measured - Design) Corrected error (Measured - Simulated)

DUV ViaEUV Via

T. Wallow et al, Proc. SPIE Vol. 11147 (2019)

Page 33: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 33

Public

EUV 2D patterning will include patterns with MEEF > 4Small mask errors may have big impact on wafer

1

2 3

45

6

123

45

6789

1011

iN5 Metal 32nm Pitch (Rio et al. BACUS 2018)T. Wallow et al, Proc. SPIE Vol. 11147 (2019)

Page 34: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

MPC model calibration test case

~4000 patterns; mix of 1D, 1.5D (‘density’) and 2DFull image set is measured using different metrology methods

IMEC ‘Genesis’ EUV reticle

line/space(8%)

density(79%)

holes and pillars(3%)

line-end and space-end(10%)

October 17 2019Slide 34

Public

Page 35: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Metrology method overview

POR methods typically use integrated vendor-supplied solutions

Measurement definition

(Design-based metrology)

bitmaps

‘How to image’

SEM‘How to measure’

CD-SEM CDs

1

bitmaps

‘How to image’

SEM‘How to measure’

MXP

CD-SEM CDs Contour-based CDs Sampled contour EPs

‘How to measure’

1 2 3

MXP provides a contour-based measurement solutionEach method yields method-specific measurements.

bitmaps

‘How to image’

MXP Unit cell averaging

SEM‘How to measure’ ‘How to

measure’

CD-SEM CDs Contour-based CDs Sampled contour EPs

Contour-based CDs

Sampled contour EPs

1 2 3 4

October 17 2019Slide 35

Public

T. Wallow et al, Proc. SPIE Vol. 11147 (2019)

Page 36: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Co-improvement of metrology and MPC model

~30% overall model accuracy improvement from iterative process

Metric Value (nm)

rms error 1.43

error range 17.5 Co-improvement cycles

POR MPC calibrationMetric Value (nm) Improve-

ment (%)

rms error 1.01 29

error range 9.9 43

Improved MPC calibration

Metrology(algos & contouring)

(70%)

MPC model(25%)

statistical sampling

(5%)

October 17 2019Slide 36

Public

T. Wallow et al, Proc. SPIE Vol. 11147 (2019)

Page 37: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 37

Public

Outline

Roadmap

EPE Budget

OPC Model Accuracy

EPE Metrology and Control

Summary and Conclusions

Page 38: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Contours are aligned and stacked to draw an Edgeposition probability map

ContourEach picture contains238 unit cells

38

Picture

For every unit cell contours are extractedand converted to labeled polygons

1455 images x 238 unit cellscontours are stacked(about 350k unit cells)

Public B Le-Gratiet et al, Proc. SPIE Vol. 10959 (2019)

Page 39: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

PublicB Le-Gratiet et al, Proc. SPIE Vol. 10959 (2019)

EPE analysis (2 layers) 39

Unit cell images

Gray level linear scalestacked map

Probability map(of edge)

Public

Reminder: Contact profile are taken post Contact Etch (TOP).In product contact edges are critical at « mid height » post CMP and W-fill➔ smaller CD’s

Page 40: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

PublicB Le-Gratiet et al, Proc. SPIE Vol. 10959 (2019)

EPE analysis (2 layers) 40

Edge variability : Edge location variation of a single edge

Margin variability : Variation in distance between two Edges.

X distance (a.u.)

Gateedge

Contact edge

Space distance (a.u.)

Position distribution of both Contact &

Gate edges

Computed distribution of Contact & Gate

distance

Public

Page 41: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

EPE analysis - reminder 41

Real criticalCD for contact

Measured CD for contact after etchbefore W-fill and

CMP

Measured CD for gate

Public B Le-Gratiet et al, Proc. SPIE Vol. 10959 (2019)

Page 42: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 42

Public

Programmed overlay and CD variations modulate VCIntra test mark design variation can allow EPE inference from VC signal

Prior layer

Current layer

Voltage contrast response

Top View

Cross section View

Programmed Overlay Shift

DVC BVC

Bottom layer CD

Top layer CD

Floating metal is dark (DVC)Grounded metal is bright (BVC)

C.Tabery et al, Proc. SPIE Vol. 10959 (2019)

Page 43: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

PublicC.Tabery et al, Proc. SPIE Vol. 10959 (2019)

October 17 2019

40 um FOV @10nm pixels

Slide 43Public

2 Layer continuously varying bias shows LCDU impact

VC bit yield vs OV can be visualized directly with ebeam inspection imagePitch difference gives Moiré fringe Vernier with 1nm OV Steps

Systematic OVdriven opens

LCDU

BVC OV margin

Top pitch 96nm, bottom pitch 193nm (2x+d)

+1nm +1nm +1nm overlay

Note imperfect process with 2% yield loss @ PW center

Page 44: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

OV Estimate

LCDUleft

OV margin

Yield Max

LCDUright

x observed bit yield

Model fit October 17 2019Slide 44

VC bit yield fitting enables EPE EstimationExample modeling shown with logistic regression

VC Bit Yield Model =𝑌0

1+𝑒𝑆𝐿(𝑂𝑉−𝐿)-

𝑌0

1+𝑒𝑆𝑅(𝑂𝑉−𝑅)

Abbrivation MetricY0 Yield at PW center

LLeft Overlay transistion

point

RRight overlay

transistion pointSL Shape factor leftSR Shape factor right

Programmed Overlay (nm)

VC B

it Yi

eld

Analytic solution if Margin >> LCDU, else numeric root finding to estimate overlay and OV margin.

Y1(+)

Y0(+)

Y1(-)

Y0(-)

Public

C.Tabery et al, Proc. SPIE Vol. 10959 (2019)

Page 45: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Lithography supports correction of the patterning at all length scales

October 17 2019Slide 45

Public

Feature-Scale Correction with OPC

m-scale mm-scale nm-scale

Page 46: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

Feedback and Feedforward

Measurements made at multiple steps in Patterning flow to enable optimal correction

October 17 2019

PublicSlide 46

Adaptive learning

Image Processing

Design Awareness

Internal Sensors

Internal Sensors

Lots of Computing

Metrology

Metrology

Metrology

Page 47: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 47

Public

Outline

Roadmap

EPE Budget

OPC Model Accuracy

EPE Metrology and Control

Summary and Conclusions

Page 48: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 48

Public

Conclusions

• Semiconductor Innovation Continues on Multiple Fronts• Lithography tools continue to push resolution → k1*l/NA

• Combined with known Multiple Patterning Techniques resolution (min CD/Pitch) is not limiting

• EPE Control is key for HVM• Comprehensive EPE budget

• Account for all contributors, length scales and frequency of occurrence

• Design-Aware budgeting – not just generic features• Fantastic challenges to create the tools, metrology, models and control

systems to enable new technologies• Need to create data analytics to support Real-Time, Design-Aware

control of complete patterning process to meet EPE budgets

Page 49: OPC Roadmap: Performance Driven InnovationC2%A0CSPENCE... · NXE:3400 High-NA NA+45% 436 g-line 13,5, EUV 1985 1990 1995 2000 2005 2010 2015 2020 KrF(248nm) ArF(193nm) EUV (13,5nm)

Public

October 17 2019Slide 49

Public

Acknowledgements

Many thanks to colleagues at ASML and others for helpful discussions and allowing me to use their slides, especially:Bernard le Gratiet (ST), Adam Lyons, Chrysostomos Batistakis, Cyrus Tabery, Fuming Wang, Jan Mulkens, Jan van Schoot, Jen-Shiang Wang, Michael Lercel, Rachit Gupta, Stefan Hunsche, Tom Wallow, Ton Kiers, Yiqiong Zhang