operational amplifiers chapter 2 - mcgill universitygrober4/pdfs/ecse330/2. op amp...op amp...

135
© 2009 G. W. Roberts Op Amp Circuits, slide 1 304-330 Introduction To Electronic Circuits Operational Amplifiers Chapter 2

Upload: others

Post on 28-Jan-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 1

304-330 Introduction To Electronic Circuits

Operational Amplifiers Chapter 2

Page 2: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 2

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 3: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 3

304-330 Introduction To Electronic Circuits

The Universal Analog Building Block: Main Terminals

The op amp shown connected to dc power supplies (with noise decoupling capacitors).

C

C

(C)

The Op Amp Symbol

Three terminals shown plus power supply connections. Op amps have other terminals that is used to tuned

its non-ideal behavior.

Page 4: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 4

304-330 Introduction To Electronic Circuits

Electrical Equivalent Op Amp Circuit

•  Input/Output Impedance:

=

Zin− =

v1

i1= ∞ Zin

+ =v2

i2= ∞ Zout =

voio v1 −v2 =K

io = ix

= 0

Output impedance is derived by setting the input sources to some constant value, and a current into the output port and deriving the corresponding output voltage.

vout= f v1,v2( )

Page 5: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 5

304-330 Introduction To Electronic Circuits

Electrical Equivalent Op Amp Circuit

•  One output, two inputs:

–  If circuit is linear, then

=

vout = f v1,v2( )

vout = A2v2 + A1v1

A1v1 + A2v2

Page 6: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 6

304-330 Introduction To Electronic Circuits

Equivalent Signal Representation:CM and DM Signals

•  Any two node voltages (relative to analog ground) can be expressed as a linear combination of their corresponding DM & CM signal components.

v1 = vI ,cm −vI ,d2

v2 = vI ,cm +vI ,d2

v1

v2

Node voltages:

Solving For CM & DM signals:

vI ,cm =v1 + v22

vI ,d = v2 − v1

Page 7: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 7

304-330 Introduction To Electronic Circuits

Creating The Differential Source Arrangement

•  Op Amp circuits must be driven with the source arrangement shown here.

A1v1 + A2v2

Page 8: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 8

304-330 Introduction To Electronic Circuits

Creating The Differential Source Arrangement

•  By design, A1= -A2 = A:

vout =A2v2 +A1v1 v1=vI ,cm−vI ,d 2v2=vI ,cm+vI ,d 2

= A1+A2( )vI ,cm +12A1−A2( )vI ,d

vout = 0 ⋅vI ,cm + A1 ⋅vI ,d = A v2 − v1( )

Amplification depends only on the DM signal and not the CM signal

A1v1 + A2v2

Page 9: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 9

304-330 Introduction To Electronic Circuits

Creating The Differential Source Arrangement

vout = 0 ⋅vI ,cm + A2 ⋅vI ,d = A2 v2 − v1( )

Amplification depends only on the DM and not the CM signal: A 2-input system becomes a 1-input system.

A1v1 + A2v2

vout = A1v1 + A2v2= A1 vI ,cm − vI ,d 2( ) + A2 vI ,cm + vI ,d 2( )

= A1 + A2( )vI ,cm +12A2 − A1( )vI ,d

By design, A1= -A2 :

Page 10: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 10

304-330 Introduction To Electronic Circuits

Op Amp Internal Architecture•  Example: Calculate the output

voltage as a function of the input v1 and v2 using the following parameters:

•  Solution: €

Gm = 10mAV, R = 10 kΩ, µ = 100

A1 =vov1 v2 =0

= −µGmR = −104 VV

A2 =vov2 v1 =0

= µGmR = 104 VV

∴vO = 104 v2 − v1( ) VV

Page 11: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 11

304-330 Introduction To Electronic Circuits

A1v1 + A2v2

Common-Mode Rejection Ratio CMRR Measure Of Gain Balance

•  In practice, achieving balanced gains A1=-A2 is difficult.

•  Define the gains

•  A m e a s u r e o f t h e g a i n imbalance can be described as

Design Goal:

CMRR ≡ AdAcm

We want large CMRR (Ad>>Acm) for 2 input system to become a 1

input system.

vout = A1 + A2( )vI ,cm +12A2 − A1( )vI ,d

vout = AcmvI ,cm + AdvI ,d

Acm = A1 + A2 Ad =A2 − A1

2

where

Page 12: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 12

304-330 Introduction To Electronic Circuits

CMRR Example•  The gain from the + and –

input terminals of the op amp was found to be

•  What is the CM and DM gains? Write an equation describing the input-output behavior and compute the CMRR.

Solution:

A1v1 + A2v2

A1 = −10,000 VV

A2 = +10,500 VV

Acm = A1 + A2 = −10,000 +10,500 = 500 VV

Ad =12A2 − A1( ) =

12

10,500 +10,000( ) = 10,250 VV

vout = −10,000 ⋅v1 +10,500 ⋅v2 or

vout = 500 ⋅vI ,cm +10,250 ⋅vI ,d

CMRR =10,250

500= 20.5

Page 13: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 13

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 14: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 14

304-330 Introduction To Electronic Circuits

The Inverting Configuration•  Op amps are not used on their own; rather, they

are used in some form of feedback arrangement.

R1 & R2 close feedback around op amp

Page 15: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 15

304-330 Introduction To Electronic Circuits

Analysis Of The Inverting Configuration

•  According to op amp behavior:

•  By KCL at the negative input terminal of op amp we can write:

•  Feedback structure:

vo = −Av1

vI − v1R1

+vO − v1R2

= 0

⇒ v1 =R2

R1 + R2vI +

R1R1 + R2

vO

R1R1 + R2

−A+

R2R1 + R2

vI

vOv1

Page 16: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 16

304-330 Introduction To Electronic Circuits

Analysis Of The Inverting Configuration

•  Solv ing fo r input -output transfer function:

•  In the limit, as A -> ∞, we write

•  Also note that in the limit we have a virtual short to ground,

G =vOvI

=−R2 R1

1+ 1+ R2 R1( ) A

G =vOvI

= −R2R1

v2 − v1 =vOA A→∞

= 0

Page 17: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 17

304-330 Introduction To Electronic Circuits

Quick Ideal Analysis Of Op Amp Circuits

•  Using the virtual short concept, we can rapidly derive the input-output transfer function of op amp circuits.–  C i r c l e d n u m b e r s

i n d i c a t e a n a l y s i s sequence.

•  Note that the virtual short concept arrives because of the negative feedback principle; it is not a function of the op amp itself.

Page 18: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 18

304-330 Introduction To Electronic Circuits

Accounting For Finite Open Loop Gain

•  Direct circuit analysis reveals

•  Solving, we write

G =vOvI

=−R2 R1

1+ 1+ R2 R1( ) A

v1 = −vOA

(1)

i1 =vI − −vO A( )

R1(2)

i2 = i1 (3)

vO = −vOA−R2R1

vI +vOA

# $ %

& ' (

(4)•  As long as

the open loop gain has little effect on the closed loop gain and we get

1+ R2 R1( ) A << 1

G ≈ −R2 R1

Page 19: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 19

304-330 Introduction To Electronic Circuits

Why Construct Amplifiers Using Amplifiers?

•  Op amps (an amplifier) are used to construct other amplifiers as this arrangement provides a level of manufacturing robustness that is needed for mass production.–  This is an example of

negative feedback.Amplifier (op amp)

Amplifier

Page 20: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 20

304-330 Introduction To Electronic Circuits

Example: Open Loop Gain Dependence

•  Let us investigate the relative CL gain error for the inverting amplifier as a function of op amp gain:

ε =Gactual − Gideal

Gideal

×100%

A |Gideal| |Gactual| ε v-

103 100 90.83 -9.17% -9.08 mV104 100 99.00 -1.00% -0.99 mV105 100 99.90 -0.10% -0.10 mV∞ 100 100 0% 0

R1 = 1 kΩ

R1 = 100 kΩ

v −

Page 21: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 21

304-330 Introduction To Electronic Circuits

Example: Open Loop Gain Dependence

This example illustrates how robust the closed loop amplifier gain is to changes in the op amp gain.

A |Gactual|A 105 99.90

A-A/2 105-105/2 99.80Δ -105/2 -0.1% -50% -0.1%

R1 = 1 kΩ

R1 = 100 kΩ

v −

A -50% change in op amp gain lead to relatively small change -0.1% in the closed loop gain.

Page 22: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 22

304-330 Introduction To Electronic Circuits

Input / Output Resistance

Rin =vIi1

=vI

vI R1= R1

Rout = vO ix= 0

With vI=0, v2-v1=0, vo= A(v2-v1)=0 then

Rout = 0ix

= 0

Page 23: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 23

304-330 Introduction To Electronic Circuits

Example: Inverting AmplifierCalculate the currents in the op amp circuit shown to the right assuming the circuit is driven by a 1 V source.Solution:

v1 = 0 V

i1 = 1 V1 kΩ = 1 mA

i2 = i1 = 1 mAvO = −i2 ×10 kΩ = −10 V

iL = −10 V1 kΩ = −10 mA

iO = iL − i2 = −10 mA−1 mA = −11 mA

vovI

=−10 V

1 V= −10 V

V iL

i1=−10 mA

1 mA= −10 A

A PL

PI=−10 V( ) −10 mA( )

1 V( ) 1 mA( )= 100 mW

mW

Note the op amp output current; comes from supplies.

Page 24: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 24

304-330 Introduction To Electronic Circuits

Design An Amplifier For A Microphone Application

•  Provide a simple electrical model of a microphone assuming the source impedance is 1 MΩ:

Page 25: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 25

304-330 Introduction To Electronic Circuits

Design An Amplifier For A Microphone Application

•  Select the values of the feedback resistors so that the magnitude of the gain is 100 V/V:

Page 26: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 26

304-330 Introduction To Electronic Circuits

Large Resistor Values•  Resistor values larger than 10

MΩ are impractical.•  Must select resistors values from

a standard set for cost reasons:–  see EIA (Electronic Industries

Associat ion) STANDARD RESISTOR VALUES listings.

•  Resistors are not made exact, they are made within a tolerance (0.1%, 1%, 5%, 10% and 20%)–  The smaller the tolerance, the

greater the cost.

Page 27: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 27

304-330 Introduction To Electronic Circuits

Creating Resistors With Precise Values

•  When precise resistor values are required, we connect in series or parallel, standard low cost components.

series/parallel combination

Page 28: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 28

304-330 Introduction To Electronic Circuits

Can You Design an Amplifier With A Gain Magnitude of 100 V/V Using

Small Resistor Values? •  Student Solution:

•  What is the cost of this design versus the previous design with a large resistor value?−  Assume each op amp cost $5 and resistors cost $0.5 each.

Page 29: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 29

304-330 Introduction To Electronic Circuits

High Input Impedance With Small Feedback Resistors

•  In some sensor applications, amplification is required but the amplifier must have a large input resistance (say 1 MΩ).

•  This, in turn, causes the feedback resistors to be impractical or unrealizable if the gain is 10 or greater, i.e.,

•  Need a new design.

Rin = R1

G = −R2R1

R2 = G × Rin

Page 30: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 30

304-330 Introduction To Electronic Circuits

High Input Impedance With Small Feedback Resistors

•  As the input resistance is established by R1, the design choices for the feedback resistance becomes

Rin = R1

G = −R2R1

1+R4R2

+R4R3

#

$ %

&

' (

R2 1+R4R2

+R4R3

"

# $

%

& ' = G × Rin

Page 31: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 31

304-330 Introduction To Electronic Circuits

High Input Impedance With Small Feedback Resistors

•  Reducing the number of degrees of freedom, select:

•  This results in the following for the remaining resistor:

•  Here we see R3 is less than that required by the input resistance condition.

R4 = R2 = R1 = Rin

R3 =Rin

G − 2

Page 32: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 32

304-330 Introduction To Electronic Circuits

Current Amplifier WithFloating Load

•  A current amplifier pushes a current through the load resistor independent of the load resistance.

Load is floating: No terminals

connected to ground.

Rin = 0Rout = ∞

H =i4iI

= 1+R2R3

"

# $

%

& '

Page 33: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 33

304-330 Introduction To Electronic Circuits

A Digital Calculator

Page 34: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 34

304-330 Introduction To Electronic Circuits

An Analog Calculator

Page 35: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 35

304-330 Introduction To Electronic Circuits

The Weighted Summer Circuit

vo = −Rf

R1v1 +

Rf

R2v2 + +

Rf

Rn

vn#

$ %

&

' (

•  A weighted summer is made possible by the virtual ground at the input of the op amp. –  Multiple currents are combined.

Page 36: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 36

304-330 Introduction To Electronic Circuits

A Dual-Sign Weighted Summer

•  Cascading two multiple-inverter amplifiers enables the sign of the signal weight to be positive or negative depending on where the input is applied.€

vo =Ra

R1

Rc

Rb

v1 +Ra

R2

Rc

Rb

v2 −Rc

R3v3 −

Rc

R4v4

Page 37: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 37

304-330 Introduction To Electronic Circuits

Assignment #2 (partial) •  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41

Page 38: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 38

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 39: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 39

304-330 Introduction To Electronic Circuits

The Noninverting ConfigurationInput is applied to + op amp terminal:

Circuit Analysis

vO = 1+R2R1

"

# $

%

& ' vI

Page 40: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 40

304-330 Introduction To Electronic Circuits

The Noninverting ConfigurationKCL at – op amp terminals:

R1R1 + R2

−A+

1

vI

vO

−v1R1

+vO − v1R2

= 0⇒ v1 =R1

R1 + R2vO

v1

op amp behavior:

vO = −A v1 − vI( )

Feedback structure:

Page 41: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 41

304-330 Introduction To Electronic Circuits

The Noninverting ConfigurationInput / Output Impedance

Input Impedance:

Output Impedance:

Rin = ∞

Rout = 0

Rin

Rout

Page 42: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 42

304-330 Introduction To Electronic Circuits

Example: Noninverting AmplifierCalculate the currents in the op amp circuit shown to the right assuming the circuit is driven by a 1 V source.Solution:

v1 = vI = 1 ViI = 0 A

i1 = 1 V1 kΩ = 1 mA

i2 = i1 = 1 mAvO = 1 V + i2 × 9 kΩ = 10 V

iL = 10 V1 kΩ = 10 mA

iO = iL + i2 = 10 mA +1 mA =11 mA

vovI

=10 V1 V

= 10 VV

iLiI

=10 mA

0 A= ∞

AA

PLPI

=10 V( ) 10 mA( )

1 V( ) 0 A( )= ∞

mWmW

Page 43: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 43

304-330 Introduction To Electronic Circuits

The Voltage Follower

•  The voltage follower circuit is a special case of the noninverting configuration; all of the output signal is feedback to the op amp input.

•  As the name implies, the voltage gain is unity.

Page 44: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 44

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 45: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 45

304-330 Introduction To Electronic Circuits

Electronics To Aid Patient Care

Page 46: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 46

304-330 Introduction To Electronic Circuits

Body Sensors For Medical Monitoring

Page 47: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 47

304-330 Introduction To Electronic Circuits

ECG Heart Monitoring Transducers

Page 48: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 48

304-330 Introduction To Electronic Circuits

Common-Mode Level Problem

•  The human body can charge up to static voltage levels as high as 15,000 volts by simply walking across a carpeted floor, or 5,000 volts by walking across a linoleum floor.

•  The potential difference between a charged human body and an object retaining an insignificant charge can range from a few hundred volts to as high as 30,000 volts.

•  To amplify body signals, one cannot use a straightforward amplifier approach.

~

± 10,000 V

10 mV

vIN

t 0

10,000 V

10 mV vo

t 0 VCC

VDD VDD

VDD << 10,000 V

Page 49: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 49

304-330 Introduction To Electronic Circuits

Difference Amplifier

Difference amplifier is a combination of inverting and noninverting amplifier.

Inverting amplifier

Noninverting amplifier

Difference amplifier

vO1 = −R2R1vI1

vO2 = 1+R2R1

"

# $

%

& ' vI 2

vo =α vI 2 − vII( )

Page 50: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 50

304-330 Introduction To Electronic Circuits

Analyzing The Difference Amplifier

•  Set vI2=0 and solve for output in terms of input vI1.

•  Set vI1=0 and solve for output in terms of input vI2.

vO1 = −R2R1vI1

vO2 = 1+R2R1

"

# $

%

& '

R4R3 + R4

"

# $

%

& ' vI 2

•  Using superposition, we can write:

vO = vO1 + vO2 = −R2R1vI1 + 1+

R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' ( vI 2

Page 51: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 51

304-330 Introduction To Electronic Circuits

Difference Amplifier With DM & CM Signals

vO = −R2R1vI1 + 1+

R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' ( vI 2

vI1 = vI ,cm −vI ,d

2 and vI 2 = vI ,cm +

vI ,d

2

⇒ vO = −R2R1

vI ,cm −vI ,d2

$ % &

' ( ) + 1+

R2R1

$

% &

'

( )

R4R3 + R4

$

% &

'

( ) vI ,cm +

vI ,d2

$ % &

' ( )

∴vO = −R2R1

+ 1+R2R1

$

% &

'

( )

R4R3 + R4

$

% &

'

( )

+

, -

.

/ 0 vI ,cm +

12R2R1

+ 1+R2R1

$

% &

'

( )

R4R3 + R4

$

% &

'

( )

+

, -

.

/ 0 vI ,d

Page 52: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 52

304-330 Introduction To Electronic Circuits

Goal Of A Difference Amplifier

•  The goal of a difference amplifier is to have Acm = 0 while producing a non-zero Ad.

•  This means the first term above must equate to 0, i.e.

vO = −R2R1

+ 1+R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' (

)

* +

,

- . vI ,cm +

12R2R1

+ 1+R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' (

)

* +

,

- . vI ,d

−R2R1

+ 1+R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' ( = 0

⇒R2R1

= 1+R2R1

#

$ %

&

' (

R4R3 + R4

#

$ %

&

' (

∴R1R2

=R3R4

vO = 0 ⋅vI ,cm +R2R1vI ,d

•  Substituting back into the above equation we get:

Page 53: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 53

304-330 Introduction To Electronic Circuits

Input Resistance Of Difference Amplifier

•  With R3=R1 and R4=R2, the input resistance is

•  The feedback resistor can be found form the gain

•  As before, a large voltage gain and a large input resistance signifies a large feedback resistor, which in turn limits its practicality.

•  Once again, we need a new circuit where the DM gain and input resistance is decoupled (Instrumentation Amplifier).

Rid = 2R1

R2 =12Rid ×G

Page 54: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 54

304-330 Introduction To Electronic Circuits

Difference Amplifier With BufferBuffer (Av=1)

Difference amplifier has unity gain and provide difference

function only.

Adding buffers to front-end increases input resistance of diff. amp.

Page 55: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 55

304-330 Introduction To Electronic Circuits

Instrumentation Amplifier First Step In Evolution

Noninverting amplifier provides high-impedance input and additional gain.

CM signal is also amplified making the diff amp work harder.

Difference amplifier has unity gain and provide difference

function only.

Page 56: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 56

304-330 Introduction To Electronic Circuits

Instrumentation Amplifier Second Step In Evolution

•  Floating the shared resistor R1 eliminates any matching concerns associated with the front-end amplifiers.

Removing the GND connection

eliminates CM signal

component.

Page 57: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 57

304-330 Introduction To Electronic Circuits

Instrumentation Amplifier Ideal Op Amp Analysis

Page 58: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 58

304-330 Introduction To Electronic Circuits

Instrumentation Amplifier Design Goal

•  Typically, instrumentation amplifier is designed with all the gain in the front-end stage and the difference amplifier having a gain of unity.

R

R

R

R€

R

R

vO = 1+RR1

"

# $

%

& ' vId

=

vId = vI 2 − vI1

-

+ +

-

Page 59: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 59

304-330 Introduction To Electronic Circuits

Assignment #2 (partial) •  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41–  2.44, 2.50, 2.51, 2.53, 2.60, 2.72, 2.74

Page 60: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 60

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 61: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 61

304-330 Introduction To Electronic Circuits

The Inverting Configuration With General Impedances

•  Replacing R1 and R2 in the inverting amplifier with general impedance allows for the development of several other interesting amplifier structures.

Vo

VI

s( ) = −Z2 s( )Z1 s( )

Page 62: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 62

304-330 Introduction To Electronic Circuits

Example

Vo

VI

s( ) = −Z2 s( )Z1 s( )

•  Consider the general form of the TF of the inverter:

•  If

•  then

Z1 s( )=R1 Z2 s( )=1

1R2+sC2

VoVI

s( )=−Z2 s( )Z1 s( )

=−

11R2+sC2

R1

=−R2 R1

1+sC2R2

⇒K =−R2 R1 ω3−dB =1

C2R2

Page 63: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 63

304-330 Introduction To Electronic Circuits

The Inverting Integrator Time-Domain Description

•  Replacing Z1 and Z2 by R and 1/sC, respectively, leads to a very important circuit called the Miller Integrator.

•  This circuit has the ability to integrate an input signal.

Add vO(0-) term if nonzero.

Page 64: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 64

304-330 Introduction To Electronic Circuits

The Inverting Integrator Frequency Domain Description

•  For physical frequencies, replace s by jω and write

•  The magnitude and phase can then be written as

or, in dB we write

Vo

VI

s( ) = −1sCR

→s= jω

Vo

VI

jω( ) = −1

jωCR

Vo

VI

jω( ) =1

ωCR ∠Vo

VI

jω( ) = +90

dB = 20log10Vo

VI

jω( ) = 20log101

ωCR

dB = 20log101CR

− 20log10ω

ω t =1CR

Page 65: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 65

304-330 Introduction To Electronic Circuits

The Inverting Integrator Frequency Domain Description

•  We also see that a pole exists at DC, i.e.,

•  What does this mean in terms of the circuit?–  Feedback path opens on

account of the capacitor acts as an open circuit.

–  Op amp is operated in open loop, where the gain is assume infinite (ideal).

•  Circuit is not usable in its present form! must be fixed.

Vo

VI

s( ) = −1sCR

→s=0

Vo

VI

s( ) = ∞

- +

R

C

vO± vI

- +

R

vO± vI

DC Equivalent Model

Miller Integrator

Any input will experience infinite gain.

Page 66: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 66

304-330 Introduction To Electronic Circuits

Differential Equation Solver:The Analog Computer

•  Op amps circuits (even before the invention of transistors) were used to solve differential equations.

Page 67: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 67

304-330 Introduction To Electronic Circuits

Differential Equation Solver:The Analog Computer

•  Can you see the application of the integrator in this circuit?

- +

C1

R1 - +

R5

R5 - +

C2

R4

R3 R2

x t( )

y t( )

αd2y t( )dt 2

+ βdy t( )dt

+ γy t( ) + ρdx t( )dt

= 0

Page 68: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 68

304-330 Introduction To Electronic Circuits

The Miller Integrator With Damping•  Connecting a feedback resistor in parallel with

C can help to eliminate the effects of a pole at DC and the instabilities associated with it.

•  Consider the circuit transfer function:

•  A pole is now located at

•  A small value of RF places the pole at a large frequency, reducing the range of integrator operation; however, a large RF introduces a larger offset due to op amp offset and bias currents.–  Trade off between AC and DC operation.

Vo

VI

s( ) = −RF R

1+ sCRF

s = −1

CRF

ω0 1

RF R

Vo

VI

ω p =1

CRF€

ω t =1CR€

DC ∝ RF

Page 69: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 69

304-330 Introduction To Electronic Circuits

Compare Ideal Vs Damped Integrator Operation

•  Physical frequencies larger than ωp will be correctly integrated by the damped integrator.

•  Frequencies less than ωp will be amplified, not integrated.

ω0

RF R

Vo

VI

ω p =1

CRF

ideal Int.

damped Int.

ω t =1CR

Page 70: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 70

304-330 Introduction To Electronic Circuits

Integration Compare In Time Domain

Ideal Integrator

Damped Integrator

Step Input

Page 71: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 71

304-330 Introduction To Electronic Circuits

Integration Compare In Time Domain

•  For error less than 1%, a damped integrator will correctly integrate a signal over a time span between 0 and CRF/10 seconds.

•  How does this result compare with the result we found in the frequency domain?

t vo

ideal Int.

damped Int.

τ I ,max =CRF10

about 1% error

Page 72: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 72

304-330 Introduction To Electronic Circuits

The Op Amp Differentiator

•  Rearranging the position of the R and C changes the circuit to a differentiator.

Page 73: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 73

304-330 Introduction To Electronic Circuits

The Op Amp Differentiator Frequency Domain Description

•  For physical frequencies, replace s by jω and write

•  The magnitude and phase can then be written as

or, in dB we write

Vo

VI

s( ) = −sCR →s= jω

Vo

VI

jω( ) = − jωCR

Vo

VI

jω( ) =ωCR ∠Vo

VI

jω( ) = −90

dB = 20log10Vo

VI

jω( ) = 20log10ωCR

dB = 20log10CR + 20log10ω

ω t =1CR

Page 74: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 74

304-330 Introduction To Electronic Circuits

Assignment #2 (partial) •  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41–  2.44, 2.50, 2.51, 2.53, 2.60, 2.72, 2.74 –  2.79, 2.80, 2.85, 2.89

Page 75: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 75

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 76: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 76

304-330 Introduction To Electronic Circuits

The Many Layers Of Analog DesignAmplifier Topology, Diff Gain & CM Gain

Slew-Rate, large-signal bandwidth

DC Offsets

3-dB Bandwidth (small-signal)

•  High-performance analog design is the result of correcting many small errors along the way.

Input Bias Currents

Large-signal opertion

Page 77: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 77

304-330 Introduction To Electronic Circuits

Voltage Transfer Characteristic

+ - +

-

vO = VO,OFF

VDD

VSS

+ -

±

+-

VDD

VSS

vO = 0

−VOS

vId

VSS

VDD

vO

0,0

vI,max vI,min vId

VSS

VDD vO

0,0

vI,max vI,min

Ideal Nonideal

-VOS

Offset Present Removing Offset With Series V

Note sign change!

VO,OFF A

A

−VOS =VO,OFFA

Page 78: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 78

304-330 Introduction To Electronic Circuits

Some Facts About Op Amp Offset Voltage

•  Over mass production, the offset is not fixed or constant, rather will vary over a range of values.–  It is a random variable and is not known before

manufacture.•  Offset is an important measurement of the repeatability of a

manufacturing process.

vId

VSS

VDD vO

0,0 measure

Page 79: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 79

304-330 Introduction To Electronic Circuits

Op Amp Voltage Offset Model

•  The offset associated with an op amp is modeled with a voltage source VOS placed in series with the +ve terminal of the op-amp.

•  An external voltage source of –VOS can be used to cancel the effect of the offset.

+ -

±

VDD

VSS

vO = 0

VOS±

−VOS Actual Op Amp

Offset-Free Op Amp

+ -

vId

VSS

VDD vO

0,0 -VOS

VO,OFF

A

Page 80: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 80

304-330 Introduction To Electronic Circuits

Impact Of Offsets On CL Circuit

•  The effect of offsets on the closed-loop circuit behavior can be derived using circuit analysis.–  Set the input equal to zero and calculate output behavior.

•  Here we see the offset is amplifier by the gain of the circuit; a 5 mV offset can be increase by a factor as large as 1000, resulting in an output of +5V.

vI

VSS

VDD

vO

0,0 -VOS

VO,OFF

CL Slope=(1+R2/R1)

OL Slope=A

Page 81: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 81

304-330 Introduction To Electronic Circuits

Impact Of Offsets On CL Circuit

•  Input signal conditions are set by the system design and cannot be changed.

•  Offsets reduce the dynamic range of a circuit.–  In order to obtain a distortion less

sinusoidal signal (symmetrical swing), the input signal amplitude must be reduced to compensate for the shift in the output DC level.

vI

VSS

VDD

vO

0,0

VO,OFF

vO

t

t

vI

Page 82: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 82

304-330 Introduction To Electronic Circuits

Offset Trimming•  Offsets can be removed by

trimming each and every op amp circuit.

•  One technique is to use the offset-nulling terminals of an op amp.

•  Typically, a potentiometer is connected across the offset-nulling terminals and tuned so that the output offset voltage is eliminated (set to zero).

Page 83: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 83

304-330 Introduction To Electronic Circuits

Capacitively Coupled Circuit

•  Another approach in which to minimize the DC offset effect on a closed-loop circuit is to connect a capacitor in series with the input terminals.

•  At DC, the op amp circuit behaves as a unity gain follower, hence the offset does not experience any signal gain at the output.

•  The drawback of this approach is the noninverting amplifier takes on a high-pass response with the 3-dB break point located at 1/CR1.

–  Input signals must therefore be above this break frequency to prevent any unexpected attenuation.

VoVI

=sCR21+ sCR1

Page 84: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 84

304-330 Introduction To Electronic Circuits

Input Bias Currents•  Due to the electronic nature

of an op amp, two separate currents are pulled (or pushed) into the op amp input terminals.–  These currents are

essential for the op amp operation; they cannot b e b l o c k e d b y a capacitor.

•  This is modeled by two current sources IB1 and IB2.

Page 85: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 85

304-330 Introduction To Electronic Circuits

Input Bias Currents•  Op amp data sheets usually

specify the average value of these two bias currents as well as there expected difference:

Input bias current:

Input offset current:

IB =IB1 + IB 22

IOS = IB1 − IB 2

Page 86: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 86

304-330 Introduction To Electronic Circuits

Calculating Bias Current Impact On Closed-Loop Operation

•  Analysis of the CL behavior reveals that the bias current creates a DC offset at the output given by

VO = IB1R2

Page 87: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 87

304-330 Introduction To Electronic Circuits

Series Resistor Compensation

•  The effect of the DC bias current can be reduced by the addition of a series compensation resistor R3. –  R3 has no effect on the signal transfer function but lowers

the virtual ground level by -IB2xR3.

VO = −IB 2R3 + R2 IB1 − IB 2R3R1

#

$ %

&

' (

Add compensation

resistor

Page 88: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 88

304-330 Introduction To Electronic Circuits

Series Resistor Compensation

•  Next, let us consider IB1 and IB2 are equal to the average bias current IB, we write

•  The offset voltage can be made to go to zero if and only if

VO = −IB 2R3 + R2 IB1 − IB 2R3R1

#

$ %

&

' (

IB1 = IB 2 = IB

⇒VO = IB −R3 + R2 −R2R3R1

#

$ %

&

' (

R3 =R1R2R1 + R2

•  The compensation resistor R3 should be set to the parallel equivalent of the DC resistance connect to the inverting input terminal.

Page 89: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 89

304-330 Introduction To Electronic Circuits

Series Resistor Compensation•  Now, let us consider the the

impact of the di f ference between IB1 and IB2 are on the offset voltage, we write

•  Now with the previous result,

•  We obtain the offset voltage as

VO = −IB2R3 + R2 IB1 − IB2R3R1

⎛⎝⎜

⎞⎠⎟

IB1 = IB + I OS 2IB2 = IB − I OS 2

⇒VO = − IB − I OS 2( )R3 + IB + I OS 2( )R2 − IB − I OS 2( ) R2R3R1

R3 =R1R2R1 + R2

•  As IOS is generally quite small, we see that the resultant offset due to bias currents can be kept quite low.

VO = IOSR2

Page 90: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 90

304-330 Introduction To Electronic Circuits

Bias Current Compensation Example

•  Decoupling a bias path eliminates the dependency of the offset on the resistance in that signal path.

•  Recall that a DC bias path is essential for op amp operation - be careful with C.

C blocks IB trough R1 C blocks IB trough R1

Page 91: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 91

304-330 Introduction To Electronic Circuits

Effects Of Op Amp Offset Voltage On Miller Integrator Operation

•  An op amp offset excites the pole at DC and causes the output to build towards infinity.

•  Output will therefore saturate at VDD.

Page 92: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 92

304-330 Introduction To Electronic Circuits

Effects Of Input Bias and Offset Currents On Miller Integrator Operation

•  Input bias current also excite the pole at DC causing the output to ramp towards VDD.

Page 93: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 93

304-330 Introduction To Electronic Circuits

Assignment #2 (partial) •  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41,–  2.44, 2.50, 2.51, 2.53, 2.60, 2.72, 2.74, –  2.79, 2.80, 2.85, 2.89,–  2.98, 2.104, 2.106,

Page 94: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 94

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 95: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 95

304-330 Introduction To Electronic Circuits

Transient / Frequency Response

+ - ± +

-

Step-Response

+ - ± +

-

Sinusoidal-Response

vO

ωo

Decay rate related to op amp parameters

vO

ω

ω3dB

A jω( )

3-dB BW related to op amp parameters

vO t( )

t

Page 96: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 96

304-330 Introduction To Electronic Circuits

Response To A Sinusoidal Input

•  Linear system behavior can be measured through the application of a sinusoidal signal.–  If linear, only the amplitude and phase of the

sinusoidal signal will change as it passes through a system.

–  If nonlinear, the shape of the sinusoidal will change.»  We’ll return to this idea a bit later.

G(s) +

- ~ vi(t) vo(t)

Ain sin ωot +ϕ in( )

Aout sin ωot +ϕout( )A1 sin ωot +ϕout( )+ A2 sin 2ωot +ϕout( )+…

Aout sin ωot +ϕout( )

Page 97: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 97

304-330 Introduction To Electronic Circuits

Frequency Response

•  As the input frequency changes, so too does the amplitude of the output signal.

•  The amplitude and phase of the output signal are related according to:

Ain = 1.0 V Fin = 1 kHZ Ain = 1.0 V Fin = 2 kHZ Ain = 1.0 V Fin = 3 kHZ Ain = 1.0 V Fin = 4 kHZ Ain = 1.0 V Fin = 5 kHZ

Aout = 1.0 V Fout = 1 kHZ Aout = 1.0 V Fout = 2 kHZ Aout = 0.7 V Fout = 3 kHZ Aout = 0.6 V Fout = 4 kHZ Aout = 0.5 V Fout = 5 kHZ

Aout = G s( ) s= jω Ain = G( jω) Ain

ϕout =ϕin +∠G s( ) s= jω =ϕin +∠G jω( )

G(s) +

- ~ vi(t) vo(t)

Page 98: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 98

304-330 Introduction To Electronic Circuits

System Step Response

•  Electronic circuits are also designed with a desired step response in mind.

G(s) +

- ± u(t) vo(t)

vo(t) = L−1 L u t( )"# $%×L g t( )"# $%{ }= L−1 1s ×G s( )

'()

*+,

Page 99: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 99

304-330 Introduction To Electronic Circuits

Frequency Description Of Op Amp Response

•  Due to op amp finite gain and bandwidth, the basic op amp circuits shown previously deviate from their expected or ideal behavior.

•  Depending on region of operation (i.e. frequencies) we can use different models of operation.

A(s) Vo Vi

+

-

ω0 ωb

1

AO

ωt

A s( ) =Vo

Vi

=AO

1+ sωb

A jω( ) = A s( )s= jω

=AO

1+ jωωb

A jω( ) ≈ AOωb

ω≡ωt

ω

A jω( ) = 1@ω ≈ω t

Page 100: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 100

304-330 Introduction To Electronic Circuits

Piecewise Approximate Op Amp Frequency Response Behavior

A(s) Vo Vi

+

- ω

0 ωb 1

AO

ωt

A jω( ) =AO ω ≤ωb

AOωb

ωω >ωb

⎨⎪

⎩⎪

=AO ω ≤ωb

ω t

ωω >ωb

⎨⎪

⎩⎪

A jω( ) ≈ AOωb

ω≡ωt

ω

A jω( ) = 1@ω ≈ω t

A jω( ) ≈ AO for ω <ωb

Page 101: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 101

304-330 Introduction To Electronic Circuits

Op Amp Equivalent CircuitOne Pole Model

A(s) Vo Vi

+

- = Vi

Vo

R

C AOVi

+

-

+

- ±

ω0

1

AO

Vo

Vi

ωb =1RC

ω t =AORC

A s( ) =Vo

Vi

=AO

1+ sωb

=AO

1+ sRC

A jω( ) ≈ AOωRC

for ω >>ωb

A jω( ) ≈ AO for ω <ωb

± v1

+

- v1

Page 102: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 102

304-330 Introduction To Electronic Circuits

Frequency Response Of The 741 General Purpose Internally Compensated Op Amp

Op amps single-pole response have very little

3-dB bandwidth!

3-dB BW Unity-gain frequency

DC Gain

A s( ) =105

1+ s2π ×10

Page 103: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 103

304-330 Introduction To Electronic Circuits

Frequency Response Of A Closed-Loop Amplifier

•  The frequency response behavior of an op amp will influence the circuit in which it is configured.–  The overall closed-loop effect will be different

depending on circuit configuration.

Inverting amplifier Noninverting amplifier €

vO1 = −R2R1vI1

vO2 = 1+R2R1

"

# $

%

& ' vI 2

Page 104: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 104

304-330 Introduction To Electronic Circuits

Frequency Response Of A Inverting Amplifier

Recall from an earlier analysis,

Substituting

We will get

Now, for AO >> 1+ R2/R1, we write

VOVI

s( ) =−R2 R1

1+ 1+ R2 R1( ) A s( )

A s( )= AO1+s ωb

;ωt =AOωb

VOVI

s( )= −R2 R1

1+1+R2 R1( )

AO+s 1+R2 R1( )

AOωb

VOVI

s( )= −R2 R1

1+s 1+R2 R1( )

ωt

When compared to single-pole model,

We get the model parameters:€

Af s( ) =ADC

1+ s ω3−dB

ADC = −R2 R1

ω3−dB =ω t1+ R2 R1( )

ω0 1

ADC

w3-dB

Page 105: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 105

304-330 Introduction To Electronic Circuits

Frequency Response Of A Noninverting Amplifier

Recall from an earlier analysis,

Substituting

We will get

Now, for AO >> 1+ R2/R1, we write

VOVI

s( ) =1+ R2 R1( )

1+ 1+ R2 R1( ) A s( )

VOVI

s( )=1+R2 R1( )

1+1+R2 R1( )

AO+s 1+R2 R1( )

AOωb

VOVI

s( )=1+R2 R1( )

1+s 1+R2 R1( )

ωt

When compared to single-pole model,

We get the model parameters:€

Af s( ) =ADC

1+ s ω3−dB

ADC =1+ R2 R1

ω3−dB =ω t1+ R2 R1( )

ω0 1

ADC

w3-dB

A s( )= AO1+s ωb

;ωt =AOωb

Page 106: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 106

304-330 Introduction To Electronic Circuits

Frequency response of an amplifier with a nominal gain of +10 V/V.

Frequency Response Behavior Of Two Amplifiers In Closed Loop

Noninverting amplifier Inverting amplifier

ADC =1+ R2 R1

ω3−dB =ω t1+ R2 R1( )

ADC = −R2 R1

ω3−dB =ω t1+ R2 R1( )

Page 107: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 107

304-330 Introduction To Electronic Circuits

Gain-BW Trade-off Rule

Unity-gain frequency

DC Gain 1

3-dB BW 1

DC Gain 1 x 3-dB BW 1 DC Gain 2 x 3-dB BW 2

DC Gain 2

3-dB BW 2

Page 108: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 108

304-330 Introduction To Electronic Circuits

Closed-Loop Gain - BW Trade-Off(linear scale)

BW0 0 ω t

Gain ⋅BW =ω t

ω t10

Gain

110

100

ω t100

Page 109: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 109

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 110: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 110

304-330 Introduction To Electronic Circuits

Op Amp Output DC Limits

•  Op amps, like all electronic devices operate over a range of input signals, then saturates or ceases to operate in the intended fashion.–  The output has both voltage and current limits.–  The user must stay below these limits if the expected

behavior is to be obtained.

DC Sweep Input DC Transfer Characteristic

+ - ± +

-

vO

VDD

VSS

vIN vIN vO,MIN

vO,MAX vO

0,0 vIN,max vIN,min

vO

IMIN

IMAX iO

0,0

vO,max

iOvO,min

Page 111: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 111

304-330 Introduction To Electronic Circuits

Op Amp Input/Output DC Limits

•  As a simplified rule of thumb, the output voltage will saturate when the input exceeds the range given by

vIN ,min,vIN ,max{ } < VSSAo,VDDAo

⎧⎨⎩

⎫⎬⎭

vIN

VSS

VDD

vO

0,0 vIN,max

vIN,min Slope=Ao

DC Transfer Characteristic

Page 112: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 112

304-330 Introduction To Electronic Circuits

741 Op Amp Input/Output Limits

•  The 741 op amp has a nominal DC gain of 105 V/V.•  For ±15 V supplies, the input limits are:

vI

-15 V

15 V

vO

0,0 vIN,max vIN,min

vIN ,min,vIN ,max{ } < −15105 , 15

105⎧⎨⎩

⎫⎬⎭= −150 µV,+150 µV{ }

Slope=Ao=105

Page 113: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 113

304-330 Introduction To Electronic Circuits

Modeling Op-amp Large-Signal Operation

•  When op amps are used in a feedback configuration, the output op amp limits translate to the input terminals of the circuit.

•  Consider the -10 V/V inverting amplifier:–  Here the output is shown to saturate at ±13 V; –  The amp. input limits are therefore ±13 V / 10 = ±1.3 V.

+13V

−13V

+1

Page 114: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 114

304-330 Introduction To Electronic Circuits

Hard-Limit Versus Soft-Limit

•  Op-amps generally have a soft-limiting behavior instead of a hard limit.

•  The soft limiting behavior causes a light amount of distortion at the output of an amplifier.–  More realistic.

vO,min

vO,max

vIN,max

vIN,min

vIN

vO

Hard Limit

vIN

vO

Soft Limit

vO,max

vIN,min

vO,min

vIN,max

Page 115: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 115

304-330 Introduction To Electronic Circuits

Step Response Of Linear 1st-Order CL System

•  The step response of a linear system follows a predictable behavior set by the system poles and zeros.–  Doubling the input level, doubles the output

response.

vO,1(t) = 1− e−ω tt( ) ⋅V

vO,2 (t) = 1− e−ω tt( ) ⋅2V

V

0

2V

A(s) ≈ ω t

s

Page 116: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 116

304-330 Introduction To Electronic Circuits

Step Response Of Actual 1st-Order CL System

•  When the input exceeds the system input limit, the output no longer follows the expected linear behavior.

•  Instead, one will observe that the output is constrained by

–  This maximum limit is called the amplifier slew-rate (SR).

dvO t( )dt

≤ SR

vO,1(t) = 1− e−ω tt( ) ⋅V

vO,2 (t) = 1− e−ω tt( ) ⋅2V

V

0

2V

vO t( ) ≈ SR ⋅ t

A(s) ≈ ω t

s

Page 117: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 117

304-330 Introduction To Electronic Circuits

What Causes Slew-Rate Limiting?

•  If the input differential level exceeds some level, say VIN,max, then the following amplifier stage see a constant input level of VIN,max, regardless of other changes at the input.

•  The input maximum can be expressed in terms of two op amp parameters, ωt and SR, i.e.,

V

0

2V

VIN ,max =SRω t

vO,1(t) = 1− e−2π fbwt( ) ⋅V

vO t( ) ≈ SR ⋅ tVIN ,max

A(s) ≈ ω t

s

VIN ,max

−VIN ,max+

- +1

Page 118: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 118

304-330 Introduction To Electronic Circuits

Large-Signal Sinusoidal Response

•  If then

Linear response

SR Limited response

1 fM

dvO t( )dt max

≤ SR ⇒ ddt

V̂ sin 2π fMt( )⎡⎣ ⎤⎦max

≤ SR

vIN t( ) = V̂ sin 2π fMt( ) vO t( ) =vIN t( ) , dvo t( )

dt max

≤ SR

triangle vIN t( )⎡⎣ ⎤⎦ , dvo t( )dt max

> SR

⎪⎪

⎪⎪

vO t( ) = V̂ sin 2π fMt( )

∴2π fM ⋅V̂ ≤ SR

Page 119: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 119

304-330 Introduction To Electronic Circuits

Large-Signal Sinusoidal Response

•  For a sine wave input, we see the conditions for linear operation must satisfy the following

–  The larger the amplitude, the lower the frequency that can be applied to the amplifier input.

•  For a fixed amplitude, fM is called the full-power bandwidth.

Linear response

SR Limited response

1 fM

vIN t( ) = V̂ sin 2π fMt( ) vO t( ) =vIN t( ) 2π fM ⋅V̂ ≤ SR

triangle vIN t( )⎡⎣ ⎤⎦ 2π fM ⋅V̂ > SR

⎧⎨⎪

⎩⎪

2π fM ⋅V̂ ≤ SR

Page 120: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 120

304-330 Introduction To Electronic Circuits

Output Voltage Level – Gain and BW Trade-Off

BW0 0 ω tω t10

Gai

n

1

10

100

ω t100

Gain ⋅BW =ω t

Page 121: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 121

304-330 Introduction To Electronic Circuits

Max. Output Voltage Level, Gain and BW Trade-Off

BW0 0 ω tω t10

Gai

n

1

10

100

ω t100

Gain ⋅BW =ω t

Max

. Out

put V

olta

ge

Leve

l

V̂1

V̂100

V̂10

V̂ ⋅BW = SR

Page 122: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 122

304-330 Introduction To Electronic Circuits

Maximum Input Condition

BW0 0 ω tω t10

ω t100

Gain ⋅BW =ω t

Max

. Inp

ut V

olta

ge

Leve

l

VIN ,max

V̂ ⋅BW = SRVIN ,max =

SRω t

When combined, one gets

Independent of frequency!

Page 123: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 123

304-330 Introduction To Electronic Circuits

Assignment #2 (partial) •  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41,–  2.44, 2.50, 2.51, 2.53, 2.60, 2.72, 2.74, –  2.79, 2.80, 2.85, 2.89,–  2.98, 2.104, 2.106,–  2.107, 2.109, 2.112, 2.115, 2.119, 2.126

Page 124: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 124

304-330 Introduction To Electronic Circuits

Outline•  The Ideal Op Amp•  The Inverting Configuration•  The Noninverting Configuration•  Difference Amplifiers•  Integrators and Differentiators•  DC Imperfections•  Effects of Finite Open-Loop Gain and Bandwidth

on Circuit Performance•  Large-Signal Operation of Op Amps•  Simulating Op Amp Circuits With SPICE•  Summary

Page 125: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 125

304-330 Introduction To Electronic Circuits

Op Amp Model(VCVS Model)

•  A SPICE simulation of any op amp circuit begins by replacing the op amp by the simple VCVC equivalent representation.

A(s) vo

+

- =

Aovi

+

- ± vo

+

- vi vi

+

-

Page 126: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 126

304-330 Introduction To Electronic Circuits

Inverting Amplifier Example

•  Here a transfer function (.TF) analysis is requested.–  A .TF command determines the 2-port representation of

the circuit at DC.

Op Amp Circuit

SPICE Input Deck

Inverting Amplifier Configuration

** Circuit Description **

* signal sourceVi 3 0 DC 1v* inverting amplifier circuit descriptionR1 3 2 1kR2 2 1 10kEopamp 1 0 0 2 1e6

** Analysis Requests **.TF V(1) Vi

** Output Requests *** none required

.end

- +

1 kΩ

vO± vI

12

3

10 kΩ

Page 127: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 127

304-330 Introduction To Electronic Circuits

Inverting Amplifier Example

.TF Analysis Output

vI 1 kΩ+

- ± vo +

- -10vi

Op Amp Circuit

- +

1 kΩ

vO± vI

12

3

10 kΩ

Page 128: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 128

304-330 Introduction To Electronic Circuits

Subcircuits In SPICE

•  Subcircuits are used in SPICE to simplify coding.•  Subcircuits act as subroutines in SPICE.

Calling Statement In Main Routine

Subcircuit Description

Inverting Amplifier Configuration

** Circuit Description **

* signal sourceVi 3 0 DC 1v* inverting amplifier circuit descriptionR1 3 2 1kR2 2 1 10kXop 1 0 2 opamp

** Analysis Requests **.TF V(1) Vi

** Output Requests *** none required

.end

* op-amp subcircuit.subckt opamp 1 2 3* connections: | | |* output | |* +ve input |•  -ve input

Eoutput 1 0 2 3 1e6

.ends opamp

Page 129: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 129

304-330 Introduction To Electronic Circuits

Op Amp Model(VCVS Model With Input and Output Loading Effects)

•  To account for op amp loading effects, we can add input and output resistances as shown above.

•  Input offset voltage effects can also be included in the model.

A(s) vo

+

- =

Aovi

+

- ± vo

+

- vi vi

+

- Rin

Rout - +

Voffset

Page 130: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 130

304-330 Introduction To Electronic Circuits

Op Amp Model(Finite Bandwidth Model)

A(s) vo

+

- = v1

R

C Aovi

+

-

+

- ±

ω0

1

AO

Vo

Vi

ωb =1RC

ω t =AORC

A s( ) =Vo

Vi

=AO

1+ sωb

=AO

1+ sRC

A jω( ) ≈ AOωRC

for ω >>ωb

± vo +

- vi v1

vi

+

-

Page 131: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 131

304-330 Introduction To Electronic Circuits

Subcircuit For BW Limited Op Amp

Subcircuit

Subcircuit Description

* op-amp subcircuit.subckt opamp 1 2 3* connections: | | |* output | |* +ve input |•  -ve input

E1 4 0 2 3 1e6E2 1 0 5 0 1R 4 5 1e3C 5 0 1e-6

.ends opamp

12

3

4 5

v1

1 kΩ

1 mF 106 vi

+

-

+

- ± ±

vo +

- vi v1

Page 132: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 132

304-330 Introduction To Electronic Circuits

Op Amp Model(Finite Bandwidth & Output Limited)

A(s) vo

+

- =

v1

R

C Aovi

+

-

+

- ± ±

vo +

- vi v1

vi

+

-

± ±

1 Ω

vo,max

vi

vo,max vO

0,0

Ao

vo,max

-vo,max

−vo,maxAo

vo,maxAo

Ideal Diode (more next chapter)

Page 133: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 133

304-330 Introduction To Electronic Circuits

Op Amp Model(Slew-Rate / BW Model)

A(s) vo

+

- = vi

+

-

v2

R

C Aov1

+

-

+

-± ±

vo

+

-vi

v2

± ±

1 Ω

vo,max

vi

vO

0,0

Ao

±v1

+

-vi

± ±

1 Ω

SR = Ao ⋅1RC

⋅ v1,max ⇒ v1,max = SR× R×CAo

=SR

Ao ×ωb

=SRωt

vo,max

vo,max

-vo,max

v1,max v1,max

−v1,maxv1,max

Page 134: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 134

304-330 Introduction To Electronic Circuits

Assignment #2 (complete)•  Sedra/Smith:           

–  2.5, 2.6, 2.8, 2.9, 2.12, 2.15, 2.20, 2.34, 2.41,–  2.44, 2.50, 2.51, 2.53, 2.60, 2.72, 2.74, –  2.79, 2.80, 2.85, 2.89,–  2.98, 2.104, 2.106,–  2.107, 2.109, 2.112, 2.115, 2.119, 2.126

•   Roberts/Sedra:   –  2.5, 2.6, 2.7, 2.8, 2.9

Page 135: Operational Amplifiers Chapter 2 - McGill Universitygrober4/PDFs/ECSE330/2. Op Amp...Op Amp Circuits • Using the virtual short concept, we can rapidly derive the input-output transfer

© 2009 G. W. Roberts Op Amp Circuits, slide 135

304-330 Introduction To Electronic Circuits

Summary•  The op amp is a versatile circuit building block. It is

easy to apply and the performance of op amp circuits closely matches theoretical predictions.

•  The ideal op amp responds only to the difference input signal (v2-v1) and provides at the output w.r.t. ground a signal A(v2-v1), where A is the open loop gain.

•  Op amps circuit work because of negative feedback.