operon in citrobacter sp. l17 -...

21
DETECTION AND AMPLIFICATION OF PUTATIVE HYDROGENASE 3 OPERON IN CITROBACTER SP. L17 NAGLEA A.E LAGEHR UNIVERSITI TEKNOLOGI MALAYSIA

Upload: others

Post on 17-Oct-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

1

DETECTION AND AMPLIFICATION OF PUTATIVE HYDROGENASE 3

OPERON IN CITROBACTER SP. L17

NAGLEA A.E LAGEHR

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

4

DETECTION AND AMPLIFICATION OF PUTATIVE HYDROGENASE 3

OPERON IN CITROBACTER SP. L17

NAGLEA A.E LAGEHR

A dissertation submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science(Biotechnology)

Faculty of Biosciences and Medical Engineering

UniversitiTeknologi Malaysia

JANUARY2015

Page 3: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

iii

I would like to dedicate this thesis to my beloved people; my father, my

mother, my sisters and brothers for their endless love, prayers and encouragement.

Also not forgetting my father, mother and sisters in-law.

My special dedication goes to my husband who always cheering me up and

for his patience, sacrifices that he has made for me.

Finally, to those who indirectly contributed in this thesis, your kindness

means a lot to me. Thank you very much.

Page 4: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

iv

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing

this thesis.

Special appreciation goes to my supervisor, Dr Mohd Firdaus Abdul Wahab,

for his supervision and constant support. His valuable help of constructive

comments and suggestions throughout the experimental and thesis works have

contributed to the success of this research.

My acknowledgement also goes to all the technicians and office staffs of

Faculty of Bioscience and Medical Engineering for their co-operations. I am

sincerely grateful to them for sharing their truthful and illuminating views on a

number of issues related to the thesis.

Sincere thanks to all my friends and others for their kindness and moral

support during my study. Thanks for the friendship and memories.

Page 5: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

v

ABSTRACT

Our ultimate dependence on fossil fuels will lead to dramatic depletion of

these limited resources. Some developed countries have started to use renewable

energy, which efficiently utilizes physical or environmental resources. Hydrogen has

been expected to be the energy carrier of the future to replace fossil fuels. Hydrogen

can currently be produced using many methods, most of which use fossil fuels.

Biological hydrogen production is gaining wider interest now due to the cleaner

production process. Hydrogenase is among the main enzymes involved in bacterial

hydrogen production. Among the four types of hydrogenases reported, hydrogenase

3 is considered as the enzyme responsible for hydrogen production only. The others

are involved in hydrogen production and utilization. In this research, Citrobacter sp.

strain L17 was used. 15 genes in the putative hydrogenase 3 operon of this particular

bacterial strain have been successfully detected and amplified. All the clustered

genes have been predicted to be coded by 13,456 nucleotides. It has been predicted

to be translated into 15 different proteins of 4,485 amino acids. EXPASY

TRANSLATE was used to predict the amino acid sequence of the proteins coded by

the hydrogenase 3 operon. The results of this study will guide future research of

biohydrogen generation by Citrobacter sp. L17, in terms of maximizing biohydrogen

yield via metabolic engineering.

Page 6: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

vi

ABSTRAK

Kebergantungan mutlak kita kepada bahan api fosil akan membawa kepada

pengurangan dramatik sumber-sumber yang terhad.Beberapa negara maju telah mula

menggunakan tenaga boleh diperbaharui, yang menggunakan sumber fizikal atau

alam sekitar dengan efisien.Hidrogen telah dijangkakan menjadi pembawa tenaga

masa depan bagi menggantikan bahan api fosil. Hidrogen kini boleh dihasilkan

menggunakan banyak kaedah, yang kebanyakannya menggunakan bahan api

fosil.Kini, pengeluaran hidrogen biologi semakin menarik minat ramai kerana proses

pengeluaran yang lebih bersih.Enzim hydrogenase adalah antara enzim utama yang

terlibat dalam pengeluaran hidrogen oleh bakteria.Antara empat jenis hydrogenase

yang dilaporkan, hydrogenase 3 dianggap sebagai enzim yang bertanggungjawab

untuk pengeluaran hidrogen sahaja.Hidrogenase jenis lain terlibat dalam kedua-dua

pengeluaran hidrogen dan penggunaannya. Dalam kajian ini, Citrobacter sp. strain

L17 telah digunakan.15 gen dalam operon yang dianggap hydrogenase 3 bagi strain

bakteria tertentu ini telah berjaya dikesan dan dibesarkan.Kesemua gen yang

dikelompokkan telah diramal untuk dikodkan oleh 13,456nukleotida.Ianya telah

diramal untuk diterjemahkan kepada 15 protein yang berbeza daripada 4485 asid

amino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino

yang dikodkan oleh operon hydrogenase 3.Keputusan kajian ini akan membimbing

penyelidikan masa depan bagi penjanaan biohidrogen oleh Citrobacter sp. L17 dari

segi memaksimumkan hasil biohidrogen melalui kejuruteraan metabolik.

Page 7: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Problem Statement 2

1.3 Objective of Study 3

1.4 Scope of Study 3

1.5 Significance of Study 4

2 LITERATURE REVIEW 5

2.1 Fuel Problems 5

2.2 Biohydrogen Production 8

2.2.1 Biophtolysis of Water using Algea and

Cynobacteria 9

Page 8: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

viii

2.2.2 Photo-decomposition of Organic

Compounds by Phtosynthetic Bacteria 10

2.2.3 Dark Fermentation 11

2.2.4 Hybrid System Photosynthetic and

Fermintation Bacteria 11

2.3 Hydrogenases 12

2.3.1 Diversity of Hydrogenases 13

2.3.2 [NiFe] Hydrogenases 14

2.3.3 Classification of [NiFe] Hydrogenases 15

2.3.4 Bacterial [NiFe] Hydrogenases Operons 18

2.3.5 Maturation of [NiFe] hydrogenases 21

3 MATERIALS AND METHODS 24

3.1 Preparation of Bacterial Culture 24

3.2 Media 25

3.2.1 Nutrient Agar Media 25

3.2.2 P5 Broth Media 25

3.3 Hyd-3 operon Genes Detection 26

3.4.1 Bacterial Genomic DNA Extraction 27

3.4.2 Measurement of DNA Concentration 28

3.4.3 Agarose Gel Electrophoresis 28

3.4.4 Primers Design 30

3.4.5 Polymerase Chain Reaction 31

3.4.6 PCR Product Purification 31

3.4.7 DNA Sequencing 31

3.5 Bioiformatics Analysis 31

3.6 Methodology Overview 32

4 RESULTS AND DISCUSSION 33

4.1 Bacterial Single Colonies 33

4.2 Bacteril Cultivation 34

4.3 Detection And Amplification Of Hyd-3 Operon

Genes 34

Page 9: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

ix

4.3.1 Extraction Of Genomic DNA 34

4.3.2 PCR 35

4.3.3 Agarose Gel Electrophoresis 36

4.4 Bioinformatics Analysis 37

5 CONCLUSION AND FUTURE WORK 45

5.1 Conclusion 45

5.2 Future Work 46

REFERENCES 47

APPENDICES 51

Page 10: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

x

LIST OF TABLES

TABLE NO TITLE PAGE

1.1 Comparsion of potential bio-hydrogen production

processes 9

2.1 [NiFe] hydrogenase classification 16

3.1 Constituents of P5 broth medium 26

3.2 List of designated primers with some parameters

used for amplification and sequencing of hyd-3

operon genes 29

3.3 Reactions of PCR setup 30

3.4 Thermocycling conditions for PCR reactions 30

3.5 Online bioinformatics tools 32

4.1 Primers annealing temperature used to amplify hyd-3

genes 36

4.2 Hyd-3 proteins in Citrobacter sp. L17 38

Page 11: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

xi

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Approaches of bio-hydrogen production 8

2.1 Overall function of hydrogenase enzyme in

metabolism 12

2.2 The overall configuration of oxidized model of

[NiFe] hydrogenase 15

2.3 The genes encode hyd-3 20

2.4 Maturation pathway of hydrogenase 22

3.1 Methodology flow 32

4.1 Colonies of Citrobacter sp. L17 on Nutrient Agar

media 34

4.2 Gel electrophoresis result of Citrobacter sp. L17

extracted genomic DNA 36

4.3 Gel electrophoresis result of PCR products of hyd-

3 operon genes in Citrobacter sp. L17 38

4.4 Nucleotides and deduced amino acid sequences of

hyd-3 operon genes in Citrobacter sp. L17 39

4.5 Model of transcription unit of hyd-3 operon 42

Page 12: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

xii

LIST OF ABBREVIATIONS

°C - Degree Centigrade Celsius

CN - Cyanide

CO - Carbon monoxide

ETBR - ethedium bromide

Fe-S - Iron-Sulfur

FHL - Formate Hydrogen Lyase

HYD-1,2,3,4 - Hydrogenase 1,2,3,4

KDa - Kilodalton

mg - Milligram

mg/L - Milligram/Liter

min - Minute

Ml - Milliliter

mM - Millimol

NA - Nutrient Agar

NiFe - Nickel-Iron

PCR - Polymerase Chain Reaction

w/v - weight/volume

μL - Microliter

Page 13: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A CLUSTALW alignment result 51

Page 14: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

1

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Energy has been playing a main role in global prosperity, but the excessive

reliance on fossil fuels as the basic source of energy can lead to global warming,

environmental issues and health complications (Levinet al., 2004). Over the past few

years, further considerations have been taken towards hydrogen gas and its powerful

applications in transport and electrical generation. This is basically due to hydrogen

being an unpolluting gas, renewable energy source, have high ratio of energy product

and does not lead to greenhouse gas effect (Agrawal et al., 2008).

Generally, hydrogen gas can be produced by several ways such as electrolysis

of water, thermocatalytic reformation of organic materials and biological processes

(termed biohydrogen) (Mielenz et al., 2007). There are two main mechanisms to

produce biohydrogen: sunlight microbial photosynthetic mechanism, which utilizes

water or organic substrate; and dark fermentations by heterotrophic bacteria using

starch, sugar and other substrates. Biohydrogen production mechanisms are primarily

based on hydrogen producing enzyme, hydrogenase (Hallenbeck et al., 2002).

Page 15: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

2

Hydrogenase is an essential enzyme that can oxidise molecular hydrogen (H2)

reversibly in various microorganisms. These microorganisms have four kinds of

hydrogenases. E. coli carries many hydrogenases operons, for example hyaABCDEF

which encodes for hydrogenase 1(hyd-1), hybABCDEFG encodes for hydrogenase 2

(hyd-2) (Richard et al., 1999), hycABCDEFGHI encodes for hydrogenase 3(hyd-3)

(Bagramyan et al., 2003), and hyfABCDEFGHIR encodes for hydrogenase 4 (hyd-4)

(Andrews etal., 1996). Hyd-1 and hyd-2 are hydrogen consuming only, hyd-4 has

investigated to be inactive, and hyd-3 has both activity of hydrogen production and

consumption (Maeda et al., 2008).

Hydrogenase 3 (hyd-3) is a [NiFe]-type of hydrogenase which has hydrogen

synthesis activity (Rossmann et al., 1994). hycABCDEFGHI operon encodes the

seven subunits of hyd-3 (Sauter et al., 1992). hycB and hycF genes encode small

subunits thought to have role in transferring the electron within the FHL complex,

hycE genes encodes the hydrogenase large subunit that contains the Ni–Fe center

while hycG encodes the hydrogenase small subunit, and the hycC and hycD genes

encode polytopic membrane proteins. The hycH gene encodes a hydrophilic protein,

which probably to include a portion of the hyd-3 complex. hycA encodes a repressor

(anti-activator) of the hyc operon, and hycI encodes a protease that is essential for

maturation of the hyd-3 large subunit (Dragal et al., 1998; Magalon etal., 2000,

Bagramyan et al., 2002).

1.2 Problem Statement

Hydrogen production pathway in Citrobactersp. L17 is not understood yet. In

addition, most studies have focused on understanding the biochemical and molecular

aspects of hydrogenase 1 and 2. This study was performed to characterize the operon

encoding hyd-3 structural components that is responsible for biohydrogen uptake and

production by extracting the Citrobactersp. L17 genome, amplifying the operon

Page 16: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

3

encoding hydrogenase 3 structural components and finally sequencing the hyd-3

subunit genes and accessory proteins.

1.3 Objective of Study

The objectives of this study are:

1. To extract the genomic DNA of Citrobacter sp. L17.

2. To amplify the genes coding for hyd-3 enzyme subunits and accessory

genes by PCR.

3. To sequence the amplified genes and to verify the identity of hyd-3 by

using bioinformatics analysis.

1.4 Scope of Study

This study was conducted to characterize genes for hyd-3 operon Citrobacter

sp. strain L17. The whole genome of this particular bacterial strain has been

extracted. The gene coding the hyd-3 operon has been amplified using polymerase

chain reaction (PCR). Finally the sequencing of these genes has been performed,

followed by bioinformatics analysis.

Page 17: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

4

1.5 Significance of Study

Hydrogenase is an important enzyme which has hydrogen synthesis activity

(Rossmann etal., 1994). Hydrogen considers as one of the most powerful and

unpolluted carrier of energy (Thompson et al., 2008). By utilizing the fuel cell,

hydrogen can be improved to electricity, which is recently applied in developed

countries (Nakada et al., 1999). This study will focus on molecular characterization

of the subunits and accessory genes of hyd-3 in Citrobacter sp. L17. And the

knowledge will be used in the knock-out study to understand biohydrogen production

by Citrobacter sp. L17.

Page 18: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

51

REFERENCES

Agrawal, P., Hema, R., & Kumar, S. M. 2012. Experimental Investigation

onBiological Hydrogen Production Using Different Biomass. Jurnal

Teknologi, 47(1), 13–24

Akella, A. K., Saini, R. P., & Sharma, M. P. 2009. Social, Economical and

Environmental Impacts of Renewable Energy Systems. Renewable Energy,

34(2), 390-396.

Bagramyan, K., & Trchounian, A. 2003. Structural and Functional Features of

Formate Hydrogen Lyase, An enzyme of Mixed-acid Fermentation from

Escherichia coli. Biochemistry (Moscow), 68(11), 1159-1170.

Carere, C. R., Sparling, R., Cicek, N., & Levin, D. B. 2008. Third Generation

Biofuels via Direct Cellulose Fermentation. International Journal of

Molecular Science, 9(7), 1342-1360.

Casalot, L., & Rousset, M. 2001. Maturation of the [NiFe] Hydrogenases. Trends In

Microbiology, 9(5), 228-237.

Cassidy, D. P., Hirl, P. J., & Belia, E. 2008. Methane Production from Ethanol Co-

products in Anaerobic SBRs. Water Science Technology, 58(4), 789–793.

Das, D., & Veziroǧlu, T. N. (2001). Hydrogen Production by Biological Processes: A

survey of Literature. International Journal of Hydrogen Energy, 26(1), 13-28.

Demirbas, Ayhan. 2009. Biohydrogen: For Future Engine Fuel

Demands.Springer:London

Demirbas, Ayhan. 2000. Recent Advances in Biomass Conversion Technologies.

Energy Education Science Technology, 6, 19-41.

Forzi, L., & Sawers, R. G. 2007. Maturation of [NiFe]-hydrogenases in

Escherichiacoli. Biometals, 20(3-4), 565-578.

Page 19: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

52

Garibyan, L. andAvashia, N. 2013. Polymerase Chain Reaction. Journal of

Investigative Dermatology 133.

Hallenbeck, P. C., & Benemen, J. R. 2002. Biological Hydrogen Production.

International journal of Hydrogen Energy, 1359–1365.

Kim, D. H., & Kim, M. S. 2011. Hydrogenases for Biological Hydrogen Production.

Bioresource Technology, 102(18), 8423-8431.

King, P. W., & Przybyla, A. E. 1999. Response of Hya Expression to External pH in

Escherichia coli. Journal of Bacteriology, 181(17), 5250-5256.

Leach, M. R., & Zamble, D. B. 2007. Metallocenter Assembly of The Hydrogenase

Enzymes. Current Opinion in Chemical Biology, 11(2), 159-165.

Liu, X., Ren, N., Song, F., Yang, C., & Wang, A. 2008. Recent Advances in

8Fermentative Biohydrogen Production. Progress in Natural Science, 18(3),

253-258.

Levin, D. B., Pitt, L., & Love, M. 2004. Biohydrogen Production: Prospects and

Limitations to Practical Application.International Journal of Hydrogen

Energy,29(2), 173-185.

Lubitz, W., Ogata, H., Rüdiger, O., & Reijerse, E. 2014. Hydrogenases. Chemical

reviews, 114(8), 4081.

Lutz, S., Böhm, R., Beier, A., & Böck, A. 1990. Characterization of Divergent NtrA-

dependent Promoters in The Anaerobically Expressed Gene Cluster Coding

for Hydrogenase 3 Components of Escherichia coli. Molecular

Microbiology, 4(1), 13-20.

Maeda, T., Sanchez-Torres, V., & Wood, T. K. 2007. Escherichia coli Hydrogenase

3 is a Reversible Enzyme Possessing Hydrogen Uptake and Synthesis

Activities. Applied Microbiology and Biotechnology, 76(5), 1035-1042.

Maeda, T., Sanchez-Torres, V., & Wood, T. K. 2008. Protein Engineering of

Hydrogenase 3 to Enhance Hydrogen Pproduction. Applied Microbiology and

Biotechnology, 79(1), 77-86.

Magalon, A., & Böck, A. (2000). Analysis of the HypC-HycE Complex, a Key

Intermediate in the Assembly of the Metal Center of the Escherichia coli

Hydrogenase 3.Journal of Biological Chemistry, 275(28), 21114-21120.

Mielenz, J.R., Klasson, K.Th, Adney, W.S., McMillan, J.D (Eds.) 2007.

Biotechnology for Fuels and Chemicals. Denver, Colorado: Humana Press

Page 20: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

53

Meher kotay, S., & Das, D. 2008. Biohydrogen as a Renewable Energy Resource-

Prospects and Potentials. International Journal of Hydrogen Energy, 33(1).

Meuer, J., Kuettner, H. C., Zhang, J. K., Hedderich, R., & Metcalf, W. W. 2002.

Genetic Analysis of the Archaeon Methanosarcina Barkeri Fusaro Reveals a

Central role for Ech Hydrogenase and Ferredoxinin Methanogenesis and

Carbon Fixation. Proceedings of the National Academy of Sciences, 99(8),

5632-5637.

Nath, K., & Das, D. 2004. Improvement of Fermentative Hydrogen Production:

Various Approaches. Applied Microbiology and Biotechnology, 65(5), 520-

529.

Nakada, E., Nishikata, S., Asada, Y., & Miyake, J. 1999. Photosynthetic Bacterial

Hydrogen Production Combined with a Fuel Cell. International Journal of

Hydrogen Energy, 24(11), 1053-1057.

Richard, D. J., Sawers, G., Sargent, F., McWalter, L., & Boxer, D. H. 1999.

Transcriptional Regulation in Response to Oxygen and Nitrate of the Operons

encoding the [NiFe] Hydrogenases 1 and 2 of Escherichia coli. Microbiology,

145(10), 2903-2912.

Rossmann, R., Maier, T., Lottspeich, F., & Böck, A. 1995. Characterisation of a

Protease from Escherichia coliI in Hydrogenase Maturation. European

Journal of Biochemistry, 227(1‐2), 545-550.

Rychlik, W. J. S. W., Spencer, W. J., & Rhoads, R. E. 1990. Optimization of the

Annealing Temperature for DNA Amplification In-vitro.Nucleic Acids

Research, 18(21), 6409-6412.

Sauter, M., Böhm, R., & Böck, A. 1992. Mutational Analysis of the Operon (hyc)

Determining Hydrogenase 3 Formation in Escherichia coli. Molecular

Microbiology, 6(11), 1523-1532.

Schlensog, V., Lutz, S., & Böck, A. 1994. Purification and DNA-binding Properties

of FHLA, the Transcriptional Activator of the Formate Hydrogenlyase

System from Escherichia coli. Journal of Biological Chemistry, 269(30),

19590-1959.

Thompson, L. J., Gray, V. M., Kalala, B., Lindsay, D., Reynolds, K., & von Holy, A.

2008. Biohydrogen Production by Enterobacter cloacae and Citrobacter

freundii in Carrier Induced Granules. Biotechnology Letters, 30(2), 271-274.

Page 21: OPERON IN CITROBACTER SP. L17 - eprints.utm.myeprints.utm.my/id/eprint/54590/25/NagleaAELagehrMFBME2015.pdfamino.EXPASY TRANSLATE telah digunakan untuk meramal jujukan asid amino yang

54

Van Ginkel, S. W., & Logan, B. 2005. Increased Biological Hydrogen Production

with Reduced Organic Loading. Water Res, 39(16), 3819-3826.

Vignais, P. M., Billoud, B., & Meyer, J. 2001.Classification and Phylogeny of

Hydrogenases1. FEMS Microbiology Reviews, 25(4), 455-501.

Vignais, P., & Colbeau, A. 2004. Molecular Biology of Microbial Hydrogenases.

Current Issues in Molecular Biology, 6(2), 159-188.

Vignais, P. M., & Billoud, B. 2007. Occurrence, Classification, and Biological

Function of Hydrogenases: an overview. Chemical Reviews, 107(10), 4206-

4272.

Vignais, P. M. 2008. Hydrogenases and H+-reduction in Primary Energy

Conservation, Bioenergetics,45, 223-252.

Weiland, P. 2010. Biogas Production: Current State and Perspectives. Applied

Microbiology and Biotechnology, 85(4), 849-860.