opportunities and challenges for urban air mobility

29
Professor R. John Hansman Director, MIT International Center for Air Transportation [email protected] Opportunities and Challenges for Urban Air Mobility

Upload: others

Post on 09-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Opportunities and Challenges for Urban Air Mobility

Professor R. John Hansman Director, MIT International Center for Air Transportation

[email protected]

Opportunities and Challenges for Urban Air Mobility

Page 2: Opportunities and Challenges for Urban Air Mobility

MITICAT

•  On Demand Air Mobility motivated by growing surface congestion, success of TNCs and perceived technology transfer from electric vehicles, UAVs and automation

Urban Air Mobility

Page 3: Opportunities and Challenges for Urban Air Mobility

MITICAT

•  UAM Markets –  Intra-Urban –  Inter-Urban

Urban Air Mobility

Intra-Urban

Inter-Urban

Page 4: Opportunities and Challenges for Urban Air Mobility

MITICAT UAM Vehicles

vs.

Page 5: Opportunities and Challenges for Urban Air Mobility

MITICAT UAM Vehicles

vs.

Page 6: Opportunities and Challenges for Urban Air Mobility

MITICAT

Over 2001 announced vehicle concepts (of varying credibility)

UAM Aircraft Development

1.TheVerticalFlightSociety,TheElectricVTOLNewsWorldeVTOLDirectory.October2019

AirbusA^3Vahana OpenerBlackfly

PipistrelRolls-Royce

Karem Bell

EmbraerJauntAirMobility

OtherAdvancedDevelopmentsVerticalAerospaceSeraph

BetaTechnologiesAvaXC

AstroAerospaceElroyeHang216

Volocopter2x

KittyHawkHeaviside

JobyAviationS4

KittyHawkCora

WorkhorseSurefly AirbusCityAirbus

BoeingPAV LiliumLiliumJetLIFT

HEXA

ExampleFlyingFull-ScalePrototypes

ManyAdditionalVehicleConcepts

Page 7: Opportunities and Challenges for Urban Air Mobility

MITICAT

Case Study Approach to Identify UAM Operational Constraints (LAX, BOS, DFW)

2.DefinedReferenceMissions

3.AppliedNotionalConOps*toEachMission1.IdentifiedPromisingMarkets

•  Currenthelicoptercharterservices

•  UScensusandcommutingdata

•  Housingmarketdata

4.IdentifiedOperationalChallengesinMissionswww.trulia.com

USCensusBureauOnTheMap

Nelson&Rae

O – Malibu origin X – Century City destination

Figure 1. Malibu to Century City flight profile development.

O – Malibu origin X – Century City destination n water route n direct route n increased speed route

©2016GoogleDataLDEO-Columbia,NSF,NOAASIO,NOAA,U.S.Navy,NGA,GEBCOImageLandsat/Copernicus

*ConOpsassessedconventionaltechnologiesaswellaselectricpropulsionandpilotautomation

Page 8: Opportunities and Challenges for Urban Air Mobility

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

Page 9: Opportunities and Challenges for Urban Air Mobility

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

Page 10: Opportunities and Challenges for Urban Air Mobility

MITICAT

Challenge to Site Infrastructure Near Demand Existing aviation infrastructure in Boston

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

Page 11: Opportunities and Challenges for Urban Air Mobility

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

Page 12: Opportunities and Challenges for Urban Air Mobility

MITICAT

Current ATC Procedures Will Not Scale Controller Workload Constraint

São Paulo “helicontrol” Area –  limited to 6 simultaneous helicopter

operations15

–  designated entry points and routes

SãoPaulo

CommuterMissionsAirTaxiMissionsControlMissions

Boston Logan Controlled Airspace –  additional controller staffed for >3

operations

–  designated helicopter routes

Page 13: Opportunities and Challenges for Urban Air Mobility

MITICAT ATC Surface Controlled Airspace BOS

Page 14: Opportunities and Challenges for Urban Air Mobility

MITICAT ATC Surface Controlled Airspace BOS

Page 15: Opportunities and Challenges for Urban Air Mobility

MITICAT

Special Use Airspace Red Sox Game Example

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

Page 16: Opportunities and Challenges for Urban Air Mobility

MITICAT

ATC Separation Standards For Terminal Area Operations

AircraftInvolved LateralSeparationReq. VerticalSeparationReq. Longitudinal

SeparationReq.

IFRtoIFRAllclasses

IFRtoVFRClass:B,C

IFRtoObstruction N/A

TowerorPilotVisualSeparationClass:B,C,D

“passwellclear”“seeandavoid”

“passwellclear”“seeandavoid” “seeandavoid”

3NM

1000ftupto8NM

RadarTargetResolution

500ft upto8NM

3NM

1000ft

Page 17: Opportunities and Challenges for Urban Air Mobility

MITICAT BOS Runway 4R IFR Separation Zone

PrivateHeliportMedicalHeliportAirport

WBZ

HerbChambers

BostonGlobe

Logan

MassGeneral

Tufts

BostonMedicalCenter

Brigham&Womens/BethIsrael

Page 18: Opportunities and Challenges for Urban Air Mobility

MITICAT

Controlled Airspace Cutout Example New York SFRA Example

NewYorkAirspaceCutout

Page 19: Opportunities and Challenges for Urban Air Mobility

MITICAT

Impact of ATC Scenarios on Magnitude of Constraint San Francisco MSA

StaticVFRCutout&SUAAccess

FullySegregated

AccessiblePopulation:48%AccessibleCommuterResidences:57%AccessibleCommuterWorkplaces:24%

AccessiblePopulation:86%AccessibleCommuterResidences:90%AccessibleCommuterWorkplaces:86%

Page 20: Opportunities and Challenges for Urban Air Mobility

MITICAT

ATC Restriction Analysis of US Major Metropolitan Statistical Areas

PhDThesisofParkerVascik

Page 21: Opportunities and Challenges for Urban Air Mobility

MITICAT

ATC Restriction Analysis of US Major Metropolitan Statistical Areas

PhDThesisofParkerVascik

PopulationCoverage

WorkplaceCoverage

Page 22: Opportunities and Challenges for Urban Air Mobility

MITICAT

UAM Operational Constraints Identified from City Case Studies

Constraints1 AircraftNoiseandCommunityAcceptance2 AvailabilityofTakeoffandLandingAreas(TOLAs)3 ScalabilityofAirTrafficControl(ATC)4 SafetyandCertificationofElectricAircraftOperations5 LogisticsofNetworkOperations6 PilotAvailabilityandAdvancedAutonomy7 All-WeatherOperation

SummaryofCaseStudyResults:•  P.D.VascikandR.J.Hansman,“ConstraintIdentificationinOn-DemandMobilityforAviationthroughanExploratoryCaseStudyofLosAngeles,”in17th

AIAAAviationTechnology,Integration,andOperationsConference,2017.•  P.D.Vascik,R.J.Hansman,andN.S.Dunn,“AnalysisofUrbanAirMobilityOperationalConstraints,”ManuscriptSubmittedforPublication,2018.

Page 23: Opportunities and Challenges for Urban Air Mobility

MITICAT

Over 2001 announced vehicle concepts (of varying credibility)

UAM Aircraft Development

1.TheVerticalFlightSociety,TheElectricVTOLNewsWorldeVTOLDirectory.October2019

AirbusA^3Vahana OpenerBlackfly

PipistrelRolls-Royce

Karem Bell

EmbraerJauntAirMobility

OtherAdvancedDevelopmentsVerticalAerospaceSeraph

BetaTechnologiesAvaXC

AstroAerospaceElroyeHang216

Volocopter2x

KittyHawkHeaviside

JobyAviationS4

KittyHawkCora

WorkhorseSurefly AirbusCityAirbus

BoeingPAV LiliumLiliumJetLIFT

HEXA

ExampleFlyingFull-ScalePrototypes

ManyAdditionalVehicleConcepts

Page 24: Opportunities and Challenges for Urban Air Mobility

MITICAT Broad Range of Vehicle Architectures

Rotorcraft

Rotor Lift Actuating Hybrid

Lift Static Hybrid

Lift Wing Lift

Few Propulsors (1-3)

Many Propulsors (4+)

Helicopter Tilt-lift

DEP Tilt-lift Multirotor Stopped Rotor DEP Fixed Wing

Fixed Wing Static Hybrid

Multirotor DEP Powered Lift Fixed Wing

MultirotorandDEPPoweredLiftmostwidelyproposedforUAMapplications

aurora.aero

pipistrel.si

jobyaviation.comvolocopter.com nasa.gov

cartercopters.comelytronaircraft.comgoogle.com

Page 25: Opportunities and Challenges for Urban Air Mobility

MITICAT

Certification Challenges for Electric UAM Configurations

Hazard Description Multirotor DEP Powered Lift Rotorcraft Fixed Wing

Common Mode Power Failure

(Low-/High-Altitude) High/High High/Medium Medium/Medium

Medium/ Medium

Battery Thermal Runaway High High High High

Battery Energy Uncertainty High High Medium Medium

Fly-By-Wire System Failure High High* Low** Low

Bird Strike Medium Medium Medium Medium

High-Level Autonomy Failure High High High High

Risk Severity= Probability x Consequence High, Medium, Low

The severity of some challenges changes with configurations

Page 26: Opportunities and Challenges for Urban Air Mobility

MITICAT Hybrid Electric SSTOL Alternative

Uber2019ElevateConf.

30% scale flight demonstrator of a 4 passenger, 2700 lb blown wing aircraft with <100 ft takeoff/landing distance

DistributedElectricPropulsionBlownWingforHighCL

HybridElectricBatteriesSizedforTO&LSurgeEngineSizedforCruise

UnblownStallSpeed<60kts

TakeoffLandingDistance<100ft

Page 27: Opportunities and Challenges for Urban Air Mobility

MITICAT MIT Beaverworks Prototype

Vehicledesignedandbuiltby16.82classinSY2018-2019

Page 28: Opportunities and Challenges for Urban Air Mobility

MITICAT Subscale SSTOL Protoype

Flightdemonstratorshowsthathighlift(CL>10)isachievableinreal-worldflightenvironmentbutthattherearecontrolchallengestobeaddressed.

Page 29: Opportunities and Challenges for Urban Air Mobility

MITICAT UAM V1