oppurtunistic localization

Upload: airbilal

Post on 05-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Oppurtunistic Localization

    1/58

    Opportunistic AUV Localization using SurfaceDrifters

    Sami El-Ferik, Bilal A. Siddiqui

    Department of Systems EngineeringKing Fahd University of Petroleum and Minerals

    Dhahran 31261

    [email protected]

    February, 2011

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    2/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Outline

    1 Introduction

    2 Literature Review

    3 Opportunistic Localization

    4 Iterative Cramer Rao Lower Bound

    5 EKF-MLDA

    6 Simulation Results

    7 Conclusion

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    3/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Underwater Localization Challenges

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    http://goforward/http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    4/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Underwater Localization Challenges

    EM Attenuation in H20 GPS unavailable 10m deep.GPS signals attenuate by 50 dB @ 1 m depth.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    5/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Underwater Localization Challenges

    EM Attenuation in H20 GPS unavailable 10m deep.GPS signals attenuate by 50 dB @ 1 m depth.

    IMU integration drifts DR becomes inaccurate with time.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    O C S

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    6/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Underwater Localization Challenges

    EM Attenuation in H20 GPS unavailable 10m deep.GPS signals attenuate by 50 dB @ 1 m depth.

    IMU integration drifts

    DR becomes inaccurate with time.We have better maps of Mars, Venus and the Moon than wehave of the Earths oceans. There is also a lack of features.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    I d i Li R i O i i L li i I i C R L B d EKF MLDA Si l i R l

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    7/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Underwater Localization Challenges

    EM Attenuation in H20 GPS unavailable 10m deep.GPS signals attenuate by 50 dB @ 1 m depth.

    IMU integration drifts

    DR becomes inaccurate with time.We have better maps of Mars, Venus and the Moon than wehave of the Earths oceans. There is also a lack of features.

    Acoustic Communication is most suitable for underwaterapplications, but medium (seawater) is non-homogeneous.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    I t d ti Lit t R i O t i ti L li ti It ti C R L B d EKF MLDA Si l ti R lt

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    8/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Common Localization Algorithms

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    9/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOA

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    10/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOADead reckoning (DR)with onboard sesnorse.g., Doppler velocitylogs (DVL), compass and

    inertial measurementunit (IMU)

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    11/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF MLDA Simulation Results

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOADead reckoning (DR)with onboard sesnorse.g., Doppler velocitylogs (DVL), compass and

    inertial measurementunit (IMU)

    Statistical estimationtools.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    12/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF MLDA Simulation Results

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOADead reckoning (DR)with onboard sesnorse.g., Doppler velocitylogs (DVL), compass and

    inertial measurementunit (IMU)

    Statistical estimationtools.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    13/58

    pp

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOADead reckoning (DR)with onboard sesnorse.g., Doppler velocitylogs (DVL), compass and

    inertial measurementunit (IMU)

    Statistical estimationtools.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    14/58

    Common Localization Algorithms

    GPS receivers andlong/short baseline(L/SBL) transponders toget position fix by

    TOA/TDOADead reckoning (DR)with onboard sesnorse.g., Doppler velocitylogs (DVL), compass and

    inertial measurementunit (IMU)

    Statistical estimationtools.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    15/58

    Literature Review

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    16/58

    Literature Review

    (CRLB) can be used to find the optimal topology of LBLtransponders, dead-reckoning precision and update raterequired for specified navigation performance [Bingham2009]

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    17/58

    Literature Review

    (CRLB) can be used to find the optimal topology of LBLtransponders, dead-reckoning precision and update raterequired for specified navigation performance [Bingham2009]

    AUVs and GPS enabled buoys resolve the inter-node rangesbased on the travel time, without the need for AUVs tosurface [Xiang2007]

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    18/58

    Literature Review

    (CRLB) can be used to find the optimal topology of LBLtransponders, dead-reckoning precision and update raterequired for specified navigation performance [Bingham2009]

    AUVs and GPS enabled buoys resolve the inter-node rangesbased on the travel time, without the need for AUVs tosurface [Xiang2007]

    Kruger [Kruger2009] compared grid filters, particle filters and

    Multiple Analytical Digital Filter (MADF) position estimatesby combining DR, GPS and LBL (using WHOI micro-modems)

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    19/58

    Problem Statement

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    20/58

    Problem Statement

    This work follows [Arrichiello2012] where the problem ofopportunistic localization is studied.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    21/58

    Problem Statement

    This work follows [Arrichiello2012] where the problem ofopportunistic localization is studied.

    Drifting buoys and surface vessels can be used for localization.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    22/58

    Problem Statement

    This work follows [Arrichiello2012] where the problem ofopportunistic localization is studied.

    Drifting buoys and surface vessels can be used for localization.Drifter positions are assumed to be known.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    23/58

    Problem Statement

    This work follows [Arrichiello2012] where the problem ofopportunistic localization is studied.

    Drifting buoys and surface vessels can be used for localization.Drifter positions are assumed to be known.

    The task is to use range and bearing information from driftersfor localization.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    24/58

    Problem Statement

    This work follows [Arrichiello2012] where the problem ofopportunistic localization is studied.

    Drifting buoys and surface vessels can be used for localization.Drifter positions are assumed to be known.

    The task is to use range and bearing information from driftersfor localization.

    This requires data association and data fusion

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    25/58

    Mathematical Model

    State vector of the vehicle in planar motion:

    xk= xk1 yk1 k1 xk yk k where, x=North position, y=East position, and =bearing, while kis the time index. XD represents the drifters position, xR and the range and bearing from drifter respectively.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    26/58

    State Space Model

    Discrete-time nonlinear model of motion:

    xk+1 = Axk + B(xk) uk + F (xk) wk (1)

    with input u = [v], v=commanded forward velocity and omega =commanded turn rate.Process noise w is zero mean white Gaussiannoise with covariance R

    wand T is the sampling time.

    A =

    03x3 I3x303x2 I3x3

    ; B =

    03x1 03x1cos(k)T 0sin(k)T 0

    0 T

    ; (2)

    F =

    03x1 03x1cos(k) 0sin(k) 0

    0 1

    ; Rw =

    2w,v 0

    0 2w,

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    27/58

    Sensor Models

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    28/58

    Sensor Models

    Digital CompassOutput Equation and linearized output matrix are

    ycomp = k + comp; Ccomp =

    0 0 0 0 0 1

    (3)

    where comp N(0, 2comp) and R() is 2D rotation matrix.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    29/58

    Sensor Models

    Digital CompassOutput Equation and linearized output matrix are

    ycomp = k + comp; Ccomp =

    0 0 0 0 0 1

    (3)

    where comp N(0, 2comp) and R() is 2D rotation matrix.

    Doppler Velocity Log (DVL) and Inertial sensors (IMU)

    yDVL =

    xk xk1 yk yk1 k k1T

    + DVL (4)

    CDVL =

    I3x3 I3x3

    ; DVL N(0, R

    2DVL)

    RDVL =

    R(k)

    2DVL,x 0

    0 2DVL,y

    RT(k) 0

    0 2DVL,

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    30/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

  • 7/31/2019 Oppurtunistic Localization

    31/58

    Sonar Range and Bearing from Drifters

    Range from ith Drifter

    yrange = XD XR + range (5)

    Crange = 0 0 0 xkxDXDXR

    ykyDXDXR

    0

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    32/58

    Sonar Range and Bearing from Drifters

    Range from ith Drifter

    yrange = XD XR + range (5)

    Crange = 0 0 0 xkxDXDXR

    ykyDXDXR

    0

    Bearing from ith Drifter

    ybear = k + bear = tan1 yD yk

    xD xk k + bear (6)

    Cbear =

    0 0 0 ykyDXDXR

    xkxDXDXR

    1

    The noise processes are zero-mean Gaussian.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    33/58

    Iterative Posterior Cramer Rao Lower Bound

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    34/58

    Iterative Posterior Cramer Rao Lower Bound

    We use an iterative formulation of PCRLB for our system thatgives the performance limits for any unbiased estimator.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    35/58

    Iterative Posterior Cramer Rao Lower Bound

    We use an iterative formulation of PCRLB for our system thatgives the performance limits for any unbiased estimator.

    For measurements Yk = (y0, y1 . . . yk), states Xk and their

    estimatesXk, error covariance of any unbiased estimator bebetter than:

    E

    Xk Xk

    Xk Xk

    T J1 (Xk) (7)

    J(Xk) = E

    2

    XkXklog p(Xk; Yk)

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    36/58

    PCRLB

    [Arrichiello2012] give an elegant recursive formulation to obtain Jkfor some appropriate matrices A and C, Rw being the noisecoviariance of all sensors. Note that, terms of eqn 8 are

    expectations, hence a closed form formulation and we have toresort to Monte Carlo simulations.

    Jk+1 = R1k,w + E

    CTk+1R

    1k+1,Ck+1

    R1k,wEAk Jk + EATk R1k,wAkEATk R1k,w(8)

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    37/58

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

  • 7/31/2019 Oppurtunistic Localization

    38/58

    Extended Kalman Filter with Maximum Likelihood DataAssociation (EKF-MLDA)

    Data from different sensors are combined using EKF

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    39/58

    Extended Kalman Filter with Maximum Likelihood DataAssociation (EKF-MLDA)

    Data from different sensors are combined using EKF

    When multiple drifters are simultaneously in the AUVsvisibility range, data association problems could arise. Weneed to associate range/bearing readings with correct drifters.

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    40/58

    Extended Kalman Filter with Maximum Likelihood DataAssociation (EKF-MLDA)

    Data from different sensors are combined using EKF

    When multiple drifters are simultaneously in the AUVsvisibility range, data association problems could arise. Weneed to associate range/bearing readings with correct drifters.

    Hence, we add another step inside the EKF by using MaximumLiklihood (ML) data associator. Let P denote the errorcoviarance, and let the AUV have ND drifters in its visibilityrange, x is the estimate before measurement yk update.

    yk =

    yTDVL yTcomp yTD,1 . . . yTD,ND

    (9)

    yD,j =

    yrange

    XD,j, x

    k+1

    ybear

    XD,j, x

    k+1

    ; CD,j =

    Crange

    XD,j, x

    k+1

    Cbear

    XD,j, x

    k+1

    (10)

    Sami El-Ferik, Bilal A. Siddiqui KFUPMOpportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    41/58

    EKF-MLDA Algorithm

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    42/58

    EKF-MLDA Algorithm

    EKF Time Update of State and Covariance

    xk+1 = Ax+k + B(x

    +k )uk; P

    k+1 = AP

    +k A

    T + F(x+k )RwF(x+k )

    T(11)

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    43/58

    EKF-MLDA Algorithm

    EKF Time Update of State and Covariance

    xk+1 = Ax+k + B(x

    +k )uk; P

    k+1 = AP

    +k A

    T + F(x+k )RwF(x+k )

    T(11)

    Modified Maximum Likelihood Data Association

    for j = 1 ND do

    Sj = CD,jP+k C

    TD,j + Rv (12)

    end for

    do Associate measurement with most likely drifter

    iM = arg maxj

    1

    2 |Sj|e 1

    2 (yD,iyD,j)S1

    j (yD,iyD,j)T

    (13)

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    44/58

    EKF-MLDMeasurement Update for EKF

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    45/58

    EKF-MLDMeasurement Update for EKF

    Data Associated output matrix

    C =

    CTDVL CTcomp C

    TD,1M

    . . . CTD,ND,M

    (14)

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    http://find/
  • 7/31/2019 Oppurtunistic Localization

    46/58

    EKF-MLDMeasurement Update for EKF

    Data Associated output matrix

    C =

    CTDVL CTcomp C

    TD,1M

    . . . CTD,ND,M

    (14)

    Then, the update is:

    Kk+1 = Pk+1C

    T

    C Pk+1CT + R

    1(15)

    yk+1 = yk h

    x

    k+1, XD1,M, ....XDND

    ,M

    (16)x+k+1 = x

    k+1 + Kk+1yk+1 (17)

    P+k+1 =

    I Kk+1C

    xk+1

    Pk+1 (18)

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    R d i i E i Ab f D if

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    47/58

    Reduction in Error in Absence of Drifter

    Trajectory and Error Covariance Ellipses of AUV in

    the absence of drifter measurements

    Error metrics in the absence of drifter

    measurements. (a) EKF estimation error, (b)

    distance from drifter, and (c) eigenvalues of J1k

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    G h f E i P f Si l D if

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    48/58

    Growth of Error in Presence of Single Drifter

    Trajectory and Error Covariance Ellipses of AUV in

    the presnce of drifter measurements

    Error metrics in the presnce of drifter

    measurements. (a) EKF estimation error, (b)

    distance from drifter, and (c) eigenvalues of J1k

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    I P f 5 D if

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    49/58

    In Presence of 5 Drifters

    Figure : Trajectory and Navigational Error of AUV in the presence of a 5

    randomly placed drifters.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    F t W k

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    50/58

    Future Work

    Future Work

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    F t W k

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    51/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Future Work

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    52/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Realistic fading model of acoustic signals

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Future Work

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    53/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Realistic fading model of acoustic signalsM-ary detection decisions based on multiple drifters

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Future Work

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    54/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Realistic fading model of acoustic signalsM-ary detection decisions based on multiple drifters

    Asynchronous drifter measurements

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Future Work

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    55/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Realistic fading model of acoustic signals

    M-ary detection decisions based on multiple drifters

    Asynchronous drifter measurements

    Advanced particle and unscented filters

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    Future Work

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    56/58

    Future Work

    Future Work

    Adding uncertainty in drifter position and dynamics

    Realistic fading model of acoustic signals

    M-ary detection decisions based on multiple drifters

    Asynchronous drifter measurements

    Advanced particle and unscented filters

    Cooperative localization.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Introduction Literature Review Opportunistic Localization Iterative Cramer Rao Lower Bound EKF-MLDA Simulation Results

    References

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    57/58

    References

    F. Arrichiello, H. Heidarsson, and G. Sukhatme Submitted to.

    opportunistic localization of underwater robots using drifters and boats.In IEEE International Conference on Robotics and Automation, 2012.

    B. Bingham.

    Underwater Vehicles, chapter Navigating Autonomous Underwater Vehicles, pages 3350.

    In-Tech, 2009.

    D. Kruger.

    Path Planning and Localization of a UUV in a High Speed Estuarine Current Environment.PhD thesis, Steven Institute of Technology, Hoboken, NJ, 2009.

    X. Xiang, Z. Xiao G. Xu, and X. Huang.

    Coordinated control for multi-auv systems based on hybrid automata.In IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007.

    Sami El-Ferik, Bilal A. Siddiqui KFUPM

    Opportunistic AUV Localization using Surface Drifters

    Thank You

    http://find/http://goback/
  • 7/31/2019 Oppurtunistic Localization

    58/58

    http://find/http://goback/