optical network components

Upload: communicationriders

Post on 30-May-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Optical Network Components

    1/33

    AIHT S. Markkandan

    OPTICAL NETWORKOPTICAL NETWORK

    COMPONENTSCOMPONENTS

    : . ,redit Dr V Nagarajan.rofessor in dept of

    ,CE SSNCE

  • 8/14/2019 Optical Network Components

    2/33

    AIHT S. Markkandan

    Couplers, Splitters, Isolators,Circulators

    Filters, Gratings, Multiplexors

    Optical Amplifiers, Regenerators

    Light Sources, Tunable Lasers,Detectors

    Modulators

    Overview

  • 8/14/2019 Optical Network Components

    3/33

    AIHT S. Markkandan

    Couplers and FiltersCouplers and Filters

    What do they do?Combine wavelengths from many separatefibers into single fiber

    Coupler

    Separate wavelengths from single fiber tomany separate fibers

    Decoupler

    Highlights:

    Completely passive devicesResponse is not linear across all wavelengthsripple

    Some light power is lost wavelengths passthrough filters

    Hard & expensive to manufacture demand

  • 8/14/2019 Optical Network Components

    4/33

    AIHT S. Markkandan

    Couplers, SplittersCouplers, Splitters

    Coupler Splitter

    DWDM System use Coupler + Splitter

  • 8/14/2019 Optical Network Components

    5/33

    AIHT S. Markkandan

    Optical CouplersOptical Couplers

    Combines & splits signalsWavelength independent or selectiveFabricated using waveguides in integratedoptics = coupling ratio

    Power(Output1) = Power(Input1)Power(Output2) = (1- ) Power(Input1)

    Power splitter if =1/2: 3-dB coupler

    Tap if close to 1

    -selective if depends upon (used in EDFAs)

  • 8/14/2019 Optical Network Components

    6/33

    AIHT S. Markkandan

    CouplersCouplers (contd)(contd)

    Light couples from one waveguide to aclosely placed waveguide because thepropagation mode overlaps the twowaveguides

    Identical waveguides => complete couplingand back periodically (coupled modetheory)

    Conservation of energy constraint:Possible that electric fields at two outputs havesame magnitude, but will be 90 deg out ofphase!

    Lossless combining is not possible

  • 8/14/2019 Optical Network Components

    7/33AIHT S. Markkandan

    8x88x8 StarStar CouplerCoupler

    Power fromall inputs equallysplit amongoutputs

  • 8/14/2019 Optical Network Components

    8/33AIHT S. Markkandan

    CouplersCouplers (Contd)(Contd)

  • 8/14/2019 Optical Network Components

    9/33AIHT S. Markkandan

    Optical CouplersOptical CouplersMultiplex and demultiplex optical channels into and outof a single fiber

    One port for each DWDM channel common port to thefiber plant (outside)

    Incorporates:

    Monitoring taps for maintenance and troubleshooting

    Variable Optical Attenuators (VOA) for received poweradjustment

    Expansion ports for upgrades to add more wavelengths to asystemx1x2

    .

    .

    Rx4x5RxN

    Rx1x2Rx3

    .

    .

    .

    .

    Tx4x5TxN

    Tx3

    1 , 2 . . . N

    Tx1x2

    .

    .

    Tx1x2TxN

    Rx1x2RxN

    .

    .

    .

    .

    Rx1x2RxN

    TxN

    1 , 2 . . . N

    Unidirectionnidirectionall Bidirectionaidirectional

  • 8/14/2019 Optical Network Components

    10/33AIHT S. Markkandan

    Example: 16 DWDM CouplerExample: 16 DWDM CouplerArchitectureArchitecture

    TxTx

    Tx

    RxRx

    Rx

    Tx

    Coupler

    Tx

    and Splitting or Combining Coupler

    idirectional AmplifierRxRxRx

    TxTx

    Tx

    xpansion Ports

    Coupler

  • 8/14/2019 Optical Network Components

    11/33AIHT S. Markkandan

    8-port Splitter Made by Cascading Y-8-port Splitter Made by Cascading Y-CouplersCouplers

  • 8/14/2019 Optical Network Components

    12/33AIHT S. Markkandan

    Isolators and CirculatorsIsolators and CirculatorsExtension of coupler concept

    Non-reciprocal=> will not work same way ifinputs and outputs reversed

    Isolator: allow transmission in one direction, butblock all transmission (eg: reflection) in the other

    Circulator: similar to isolator, but with multipleports.

  • 8/14/2019 Optical Network Components

    13/33AIHT S. Markkandan

    :ecall Polarization:Polarization Time course of the direction of the electric fiel

    vector

    , , , -Linear Elliptical Circular Non polar

    Polarization plays an important role in the interaction of ligwith matter

    Amount of light reflected at the boundary between twomaterials

    , ,Light Absorption Scattering Rotation

    Refractive index of anisotropic materials depends on( )polarization Brewster s law

  • 8/14/2019 Optical Network Components

    14/33AIHT S. Markkandan

    Polarizing FiltersPolarizing Filters

    SOP change Done using crystals called dichroics

  • 8/14/2019 Optical Network Components

    15/33AIHT S. Markkandan

    Rotating PolarizationsRotating Polarizations

    Crystals called Faraday Rotators can rotate thepolarization

    without loss!

  • 8/14/2019 Optical Network Components

    16/33AIHT S. Markkandan

    ptical Isolator

  • 8/14/2019 Optical Network Components

    17/33AIHT S. Markkandan

    Polarization-dependentPolarization-dependentIsolatorsIsolators

    Limitation: Requires a particular SOP for input light signal

  • 8/14/2019 Optical Network Components

    18/33AIHT S. Markkandan

    o ar za on- n epen en-IsolatorsIsolators

    SWP: Spatial Walk-off Polarizer (using birefringent crystals)Splits signal into orthogonally polarized components

  • 8/14/2019 Optical Network Components

    19/33

    AIHT S. Markkandan

    Multiplexers, Filters,Multiplexers, Filters,

    GratingsGratings

    Wavelength selection technologies

  • 8/14/2019 Optical Network Components

    20/33

    AIHT S. Markkandan

    ApplicationsApplicationsWavelength (band) selection,

    Static wavelength crossconnects (WXCs)Equalization of gainFiltering of noise Ideas used in laser operation

    Dispersion compensation modules

  • 8/14/2019 Optical Network Components

    21/33

    AIHT S. Markkandan

    Low insertion (input-to-output) loss

    Loss independent of SOP:geometry of waveguides

    Filter passband independentof temperature

    Flat passbands

    Sharp skirts on thepassband & crosstalkrejection

    Cost: integrated opticwaveguide manufacture

    Usually based uponinterference or diffraction

    Characteristics of FiltersCharacteristics of Filters

  • 8/14/2019 Optical Network Components

    22/33

    AIHT S. Markkandan

    Device using

    interference amongoptical signals fromsame source, but withdiff. relative phaseshifts

    (i.e. different pathlengths)

    Constructive

    interference atwavelength andgrating pitch, a, if

    a[sin(i) - sin(d)] =m

    m = order of the grating

    GratingsGratings

  • 8/14/2019 Optical Network Components

    23/33

    AIHT S. Markkandan

    Transmission vs ReflectionTransmission vs ReflectionGratingGrating

    Note: etalon is a device where multipleoptical signals generated by repeatedtraversals of a single cavity

    N arrow( )slits txvs narrow

    re fle ctio nsurfaces

    ( )rx M a jo rity o f

    d e v ice sa re la tte r( )typ e rx

  • 8/14/2019 Optical Network Components

    24/33

    AIHT S. Markkandan

    Diffraction GratingsDiffraction Gratings

  • 8/14/2019 Optical Network Components

    25/33

    AIHT S. Markkandan

    Grating principles (contd)Grating principles (contd)

    Blazing: concentrating the refractedenergies at a different maxima other thanzero-th order

    Reflecting slits are inclined at an angle to

    the grating plane.

  • 8/14/2019 Optical Network Components

    26/33

    AIHT S. Markkandan

    Periodic perturbation (eg: of RI) written in thepropagation medium

    Bragg condition: Energy is coupled from incident toscattered wave if wavelength is

    0 = 2 neffwhere is period of grating If incident wave has wavelength 0, this wavelength is

    reflected by Bragg grating

    Bragg GratingsBragg Gratings

  • 8/14/2019 Optical Network Components

    27/33

    AIHT S. Markkandan

    Bragg Grating PrinciplesBragg Grating Principles

  • 8/14/2019 Optical Network Components

    28/33

    AIHT S. Markkandan

    Bragg Gratings (contd)Bragg Gratings (contd)

    Uniform vs apodizedindex profile

    Apodized: side lobes cutoff, but width of mainlobe increased

    Reflection spectrum isthe F-transform of RI-

    distribution

    B/w of grating (1 nm)inversely proportionalto grating length (few

    mm) Note: Lasers use Bragg

    gratings to achieve asingle frequencyoperation

  • 8/14/2019 Optical Network Components

    29/33

    AIHT S. Markkandan

    Fiber GratingsFiber GratingsVery low-cost, low loss, ease of coupling (to

    other fibers), polarization insensitivity, lowtemp coeff and simple packaging

    Writing Fiber Gratings: Usephotosensitivityof certain types of fibers (eg: Silica

    doped with Ge, hit with UV light => RI change) Use a phase mask (diffractive optical element)

    Short-period(aka Bragg, 0.5 m) or long-periodgratings (upto a few mm) Short-period (Fiber Bragg): low loss (0.1dB), -accuracy

    (0.05nm)

    Long-period fiber gratings used in EDFAs to provide gaincompensation

  • 8/14/2019 Optical Network Components

    30/33

    AIHT S. Markkandan

    Fiber Bragg GratingFiber Bragg Grating

    OADM El i h F BOADM El t ith F B

  • 8/14/2019 Optical Network Components

    31/33

    AIHT S. Markkandan

    OADM Elements with F-BOADM Elements with F-BGratingsGratings

  • 8/14/2019 Optical Network Components

    32/33

    AIHT S. Markkandan

    Fiber BraggFiber Bragg ChirpedChirpedGratingGrating

    (U se d in d isp e rsio n co m p e n sa tio n it)tig h te n s th e p u lse w id th

  • 8/14/2019 Optical Network Components

    33/33

    Long-period Fiber GratingsLong-period Fiber Gratings

    Prin cip le o f o p e ra tio n slig h tly d iffe re n t fro m fib e rBragg

    E n e rg y a fte r g ra tin g in te ra ctio n is co u p lin g in to otherfo rw ard p ro p a g a tin g m o d e s in th e cla d d in gin ste a d o f b e in g fu lly re fle cte d a s in Fib e r B ra g g

    C la d d in g m o d e s ve ry lo ssy a n d q u icklyattenuated=> Couple energy O U Tof a desired wavelength band