optical remote sensing air monitoring techniquesoptical remote sensing air monitoring techniques...

35
Optical remote sensing air Optical remote sensing air monitoring techniques monitoring techniques Michael Yost, MS, PhD Michael Yost, MS, PhD Optical Remote Sensing Lab Optical Remote Sensing Lab University of Washington University of Washington Seattle, WA Seattle, WA

Upload: others

Post on 05-Jan-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Optical remote sensing air Optical remote sensing air monitoring techniquesmonitoring techniques

Michael Yost, MS, PhDMichael Yost, MS, PhDOptical Remote Sensing LabOptical Remote Sensing Lab

University of WashingtonUniversity of WashingtonSeattle, WASeattle, WA

Page 2: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

OutlineOutline

nn IntroductionIntroductionnn TechniquesTechniques

•• Open Path Fourier Transform IR Open Path Fourier Transform IR OPOP--FTIRFTIR

•• Differential optical absorption spectroscopy Differential optical absorption spectroscopy (DOAS) (DOAS)

nn PM and open path sensingPM and open path sensingnn Discussion Discussion -- summarysummary

Page 3: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Introduction: Optical Remote SensingIntroduction: Optical Remote Sensingnn Optical remote sensingOptical remote sensing

•• Includes visible and invisible light (UV & IR)Includes visible and invisible light (UV & IR)•• In situIn situ measurements of a remote target or measurements of a remote target or

open path, usually in real timeopen path, usually in real time•• Detects transmission, reflection, refraction or Detects transmission, reflection, refraction or

absorption of EM energy in the atmosphere absorption of EM energy in the atmosphere

nn Spectroscopic methodsSpectroscopic methods•• Measures varying wavelengths (colors) of light Measures varying wavelengths (colors) of light

to gather information on air componentsto gather information on air components•• Sensing can be passive or activeSensing can be passive or active•• Can be broadband or narrowCan be broadband or narrow--bandband

Page 4: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Advantages with optical remote sensingAdvantages with optical remote sensing

nn MultiMulti--componentcomponentnn Line/area integratingLine/area integratingnn Sensitive (ppb levels)Sensitive (ppb levels)nn Fast Fast -- time resolutiontime resolutionnn NonNon--InvasiveInvasivenn Easily automatedEasily automated

Page 5: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Atmospheric Transmission WindowsAtmospheric Transmission Windows

nn 0.3 0.3 -- 1.1um UV, visible, near IR1.1um UV, visible, near IRnn 1.5 1.5 -- 1.8um Mid IR1.8um Mid IRnn 2.0 2.0 -- 2.4um Mid IR2.4um Mid IRnn 3.0 3.0 -- 5.0um Mid IR5.0um Mid IRnn 8.0 8.0 -- 14.0um Thermal IR (below O14.0um Thermal IR (below O33 layer)layer)nn 10.5 10.5 -- 12.5 Thermal IR12.5 Thermal IR

Page 6: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Absorption / Extinction spectroscopyAbsorption / Extinction spectroscopy

))))(((exp()()( 0 MRii cLII εελσλλ ++−= ∑Rayleigh MieAtm. gases

Light source SpectrometerI0 IC

I0

In

te

ns

it

y

Distance

Gases & particles

Colored light

L

L

D

D

Page 7: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Energy and WavelengthEnergy and Wavelengthnn In the EM spectrum the In the EM spectrum the

Wavelength, Frequency and Wavelength, Frequency and the Energy carried by the EM the Energy carried by the EM Field are directly connectedField are directly connected

λλ == c / c / υυν = λν = λ−−11

Ε = Ε = hhννnn The quantised energy carried The quantised energy carried

by the beam of light is by the beam of light is proportional to its proportional to its Wavenumber (Wavenumber (νν))

nn Absorption of light occurs Absorption of light occurs when the energy carried by when the energy carried by one or more wavelengths of one or more wavelengths of the light beam is correctly the light beam is correctly quantised to interact with the quantised to interact with the sample moleculessample molecules

nn Interaction can be from electron Interaction can be from electron transitions, molecular vibrations transitions, molecular vibrations and rotations, or band effects of and rotations, or band effects of freefree--carriers in solidscarriers in solids

nn For MidFor Mid--IR gas applications the IR gas applications the vibrations, give a specific vibrations, give a specific “fingerprint” for the molecules“fingerprint” for the molecules

nn Elevated pressure causes Elevated pressure causes collisional line broadening of IR collisional line broadening of IR features (@ 1Atm, FWHM>0.25 features (@ 1Atm, FWHM>0.25 cmcm--1)1)

Page 8: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Vibrating Molecules Vibrating Molecules –– IR lightIR light

λλ11

λλ22

E1

E2(+)

(-)

SymmetricalMolecule:

No DipoleNo Absorption

HeteronuclearMolecule

dµµ/dx � 0Absorbs Energyat νν = E2 / h

ALL atomic gas or liquid species are IR transparent eg. He, Ne, ALL atomic gas or liquid species are IR transparent eg. He, Ne, Ar, KrAr, KrALL homonuclear diatomics are also IR transparent eg. H2, N2, O2ALL homonuclear diatomics are also IR transparent eg. H2, N2, O2, F2, , F2, Cl2, Br2 but not Heteronuclear HCl, CO2, H2O, CO, NO, CH4Cl2, Br2 but not Heteronuclear HCl, CO2, H2O, CO, NO, CH4

Page 9: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Quantification: How Much?Quantification: How Much?

TransmissionTransmission%T = (I/I%T = (I/I00))

AbsorbanceAbsorbanceA = A = --log (I/Ilog (I/I00))

Absorbance = f(Absorbance = f(αα, C, l) , C, l) -- in factin factA = A = ααClCl

Chosen to linearize the relationship between the spectrum Chosen to linearize the relationship between the spectrum response, pathlength and concentration of sampleresponse, pathlength and concentration of sample

Page 10: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Flowchart of FTIR Data AnalysisFlowchart of FTIR Data Analysis

§§ FFT (Interferogram) => Single FFT (Interferogram) => Single beam spectrumbeam spectrum

§§ Ratio Sample/Background & get Ratio Sample/Background & get Transmission spectrumTransmission spectrum

§§ Compute Absorbance Compute Absorbance Abs = Abs = -- log(%Trans.) = log(%Trans.) = --aaCLCL

§§ CLS: linear regression (BeerCLS: linear regression (Beer--Lambert Law)Lambert Law)

§§ Average conc. = integrated beam Average conc. = integrated beam conc. / path length [i.e. (PPM) = conc. / path length [i.e. (PPM) = (PPM(PPM--m) /(m)]m) /(m)]

Page 11: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

IR Single Beam SpectrumIR Single Beam Spectrum

H2O

CO2

The shape of the spectrum depends on the black body emission of the source, transmission in the sample, and the detector response

Page 12: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

DoubleDouble--Beam Absorbance SpectrumBeam Absorbance SpectrumA

bs.

Wavenumber (cm-1)

CO2

300 ppm

N2O

35 ppm

2800 2600 22002400

Page 13: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

FTIR Samples from Car ExhaustFTIR Samples from Car Exhaust

.1

.15

.2

.25

.3

.35

2200 2150 2100 2050 2000

Sample spectrum

CO Library spectrum

.2

.4

.6

.8

3400 3350 3300 3250 3200

Abs

orba

nce

Wavenumber (cm-1)

Library spectrum

Sample spectrum

Carbon Monoxide in Car ExhaustCarbon Monoxide in Car Exhaust AcetyleneAcetylene in Car Exhaustin Car Exhaust

Page 14: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Advantages of FTIR spectrometersAdvantages of FTIR spectrometers

nn Good signal to noise ratios (>> 200 typical)Good signal to noise ratios (>> 200 typical)nn Both identification & quantification of samplesBoth identification & quantification of samplesnn Rapid scanning (< 1s / scan)Rapid scanning (< 1s / scan)nn High resolution (<0.1 cmHigh resolution (<0.1 cm--11 ))nn High wavelength stability & accuracyHigh wavelength stability & accuracynn High radiation throughput, no stray radiationHigh radiation throughput, no stray radiationnn DisadvantagesDisadvantages

•• ModerateModerate--low sensitivity (improves with low sensitivity (improves with √√# scans)# scans)•• Needs a fast detector : (Needs a fast detector : (TriglycineTriglycine sulfate sulfate

pyroelectric detector pyroelectric detector --TSPD; DTGS; MCT TSPD; DTGS; MCT semiconductor type semiconductor type -- LNLN22 cooled)cooled)

•• Complex interpretation of dataComplex interpretation of data

Page 15: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

FTIR sensitivy for mixturesFTIR sensitivy for mixtures

0

5

10

15

20

25

30

Aceto

ne*

Amm

onia*

Benze

ne

Freo

n 13

81*

2-But

anon

eCO

*

Dichloro

metha

ne*

Ethan

ol*

Freo

n 11

*

n-Hex

ane*

Metha

ne

Nitrog

en diox

ide*

Isop

ropa

nol*

Tolue

ne*

1,1,

1-Tr

ichloro

etha

ne

Trich

loro

ethy

lene

*

Freo

n 11

3*

m-X

ylene

*

o-Xyle

ne*

p-Xyle

ne*

Gas component

Mix

ture

LO

D (

pp

b)

Estimated LOD for mixtures based on 500m path with I min data collection at 0.5 cm-1 resolution. Based on ref: Monitoring of Gaseous Contaminants in Spacecraft Cabin Atmospheres,

Page 16: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

1012 1010 108 106 104 102 1001020 1018 1016 1014

γ γ γ γ -- raysrays XX-- raysrays UVUV IRIR micromicro--wavewave

AMAMFMFM

radio wavesradio wavesLongwaveLongwave

νννν Frequency/ HzFrequency/ Hz

electronic spectroscopy

vibrational spectroscopy

rotational spectroscopy

IRIR

nearnear mid Farmid Farmicrowavemicrowavemm.mm.

wavewave

1 GHz300 GHz1 THz

13000 cm-1 20 cm-14000 cm-1 10 cm-1

DOAS & UVDOAS & UV--VisVis spectroscopyspectroscopy

Page 17: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Visible/Ultraviolet SpectroscopyVisible/Ultraviolet Spectroscopy

Visible LightVisible Light 400400 700 nm700 nmUVUV 200200 400nm400nmVacuum UVVacuum UV 1010 200nm200nm

λλλλ (nm)(nm) νννν (Hz)(Hz) νννν (cm(cm--11)) E E (kJmol(kJmol--11))200200 1.5 1.5 ×××× 10101515 5000050000 598598400400 7.5 7.5 ×××× 10101414 2500025000 299299700700 4.3 4.3 ×××× 10101414 1428514285 171171

NB. Typical Bond dissociation energies:NB. Typical Bond dissociation energies:

C C -- CC 348 kJmol348 kJmol--11

C C -- HH 413 kJmol413 kJmol--11

C C -- II 240 kJmol240 kJmol--11

O = OO = O 496 kJmol496 kJmol--11

Page 18: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Application of Gas Phase Electronic Application of Gas Phase Electronic SpectroscopySpectroscopy

nn Molecular identificationMolecular identificationnn Molecular dynamicsMolecular dynamicsnn Molecular constantsMolecular constantsnn Gas quantification Gas quantification

•• good for good for homonuclearhomonucleardiatomicsdiatomics (N(N22, O, O22, Cl, Cl22etc) and for small etc) and for small moleculesmolecules

•• PolyatomicsPolyatomics: a little : a little more complicated.more complicated.

•• Usual broad band Usual broad band technique DOAS technique DOAS

•• uses uses XeXe lamp sourcelamp sourcerequires synthetic requires synthetic

removal of backgroundremoval of background

Benzene: Benzene: VibrationalVibrational structure for an structure for an electronic transitionelectronic transition

Page 19: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

http://www.aquila.infn.it/o3symp/paper_01/reisinger.html#experimental

DOAS for NO2

Strong bands at 420-440nm

Typical DOAS systemTypical DOAS system

Page 20: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

220m light path , 4 min measurement time. red lower curve is a laboratory NO2 cross section fitted to the ratio spectrum. The scaling factor gives an ambient mixing ratio of NO2 of 8.5 ppb.Also used for NO, SO2, O3 at ppb

(low resolution only)

Atmos turbulence = flicker

Page 21: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

DOAS measurements of HONO (nitrous acid), DOAS measurements of HONO (nitrous acid), HCHO (Formaldehyde), SOHCHO (Formaldehyde), SO22, O, O33 and NOand NO22 in in

Shanghai, NovShanghai, Nov--Dec 2002Dec 2002

011119 1200 011120 1200 011121 1200 011122 1200 011123 1200 011124 1200 011125 1200 011126 1200 011127 1200 011128 1200 011129 1200 011130 1200 011201 1200 011202 1200 011203 1200 011204 1200 011205 1200 011206 1200 011207 1200

0

1

2

3

4

5

6

011119 1200 011120 1200 011121 1200 011122 1200 011123 1200 011124 1200 011125 1200 011126 1200 011127 1200 011128 1200 011129 1200 011130 1200 011201 1200 011202 1200 011203 1200 011204 1200 011205 1200 011206 1200 011207 1200

0

20

40

60

80

100

120

011119 1200 011120 1200 011121 1200 011122 1200 011123 1200 011124 1200 011125 1200 011126 1200 011127 1200 011128 1200 011129 1200 011130 1200 011201 1200 011202 1200 011203 1200 011204 1200 011205 1200 011206 1200 011207 1200

0

20

40

60

80

100

120

011119 1200 011120 1200 011121 1200 011122 1200 011123 1200 011124 1200 011125 1200 011126 1200 011127 1200 011128 1200 011129 1200 011130 1200 011201 1200 011202 1200 011203 1200 011204 1200 011205 1200 011206 1200 011207 1200

0

20

40

60

80

100

120

011119 1200 011120 1200 011121 1200 011122 1200 011123 1200 011124 1200 011125 1200 011126 1200 011127 1200 011128 1200 011129 1200 011130 1200 011201 1200 011202 1200 011203 1200 011204 1200 011205 1200 011206 1200 011207 1200

0

10

20

30

40

Mix

ing

Rat

io /p

pb

Bei j ing T ime

H O N O

Mix

ing

Rat

io

Bei j ing T ime

N O 2

Mix

ing

Rat

io /p

pb

Bei j ing T ime

S O 2

Mix

ing

Rat

io /

ppb

Bei j ing T ime

O3

Mix

ing

Rat

io /p

pb

Bei j ing T ime

H C H O

Page 22: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

•Commercial systems

•atmospheric measurements of pollutants and trace gases

•environmental monitoring and atmospheric research

•industrial process control (e. g. on-line exhaust analyses)

•detection of inorganic trace gases: NO2, SO2, O3, HONO,

•HCHO, NO3, BrO, IO, ClO, CS2, and others

•detection of organic trace gases: benzene, toluene, phenol,

•benzaldehyde, cresols, dimethylphenols, and others

Example: http://www.hmm.de/DOAS/doas.html

DOAS applications

Page 23: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Typical Gases Measured w DOAS

5.0800 mo-Xylene

1.0800 mm-Xylene

0.5800 mp-Xylene

0.5800 mToluene

0.5800 mBenzene

0.21,000 mSulphur Dioxide

0.51,000 mOzone

0.51,000 mFormaldehyde

0.022,000 mNitrogen Trioxide

0.22,000 mNitrogen Dioxide

**LDL (ppb)Max

OpticalPath Length

Species

**Typical Lower Detection Limits (LDL's) based on 5 minute averaging time.

Page 24: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

DOAS advantages

n in-situ measurements of some highly diluted volatile gases, simultaneous measurement of several species

n high specificity and high sensitivity n "contactless" detection by optical absorption technique n good time resolution down to 30 seconds n automatic / unattended operation n “calibration free” operation n less maintenance than FTIR n adaptation to customer specifications nn Less complex spectral data interpretationLess complex spectral data interpretation

Page 25: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Particles & OPParticles & OP--methodsmethods

nn Can we measure PM?Can we measure PM?nn What range of particle sizes?What range of particle sizes?nn Can we tell soot from dust?Can we tell soot from dust?nn What assumptions are needed?What assumptions are needed?

W/ Special Thanks to Dr. Ram W/ Special Thanks to Dr. Ram HashmonayHashmonay at at ArcadisArcadis in RTP for the materials!in RTP for the materials!

Page 26: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Method OverviewMethod Overview

OPOP--FTIR is an accepted method FTIR is an accepted method for gas measurements (TOfor gas measurements (TO--16)16)

Particulate matter (PM) presence Particulate matter (PM) presence also reveals a unique baseline also reveals a unique baseline structure (see below)structure (see below)

nn Baseline structure can be Baseline structure can be predicted for a given size predicted for a given size distribution and optical distribution and optical constants using constants using MieMie theorytheory

nn We developed an inversion We developed an inversion algorithm to retrieve the algorithm to retrieve the aerosol size distribution from aerosol size distribution from extinction (scattering extinction (scattering +absorption) measurements+absorption) measurements

nn Optical properties Optical properties (constants) of specific PM (constants) of specific PM may be determined using a may be determined using a benchbench--top FTIR spectrometer top FTIR spectrometer 0

.05

.1

.15

1000 1500 2000 2500 3000 3500 4000 4500

Absorbance / Wavenumber (cm-1) Paged X-Zoom CURSOR

File # 1 : AB15_LB0605_A#22 @1250.243 Seconds 6/5/2002 11:11 AM Res=0.5cm-1

edo retro 185.32m physical west bkg

Page 27: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Atmospheric Scattering Atmospheric Scattering nn Scattering process disperses radiation in all directions Scattering process disperses radiation in all directions nn Important scattering agents include: gases, aerosols & clouds Important scattering agents include: gases, aerosols & clouds nn 3 types of atmospheric scattering are important in remote sensin3 types of atmospheric scattering are important in remote sensing:g:

nn RayleighRayleigh (molecular) scattering (molecular) scattering •• -- primarily due to oxygen and nitrogen molecules (d < 0.1 x wavelprimarily due to oxygen and nitrogen molecules (d < 0.1 x wavelength) ength) •• -- most influential in UVmost influential in UV--VisVis region at altitudes above 4.5km region at altitudes above 4.5km •• -- scattering inversely proportional to fourth power of wavelengthscattering inversely proportional to fourth power of wavelength

nn MieMie (non(non--molecular) scattering molecular) scattering •• -- occurs for particles w/ mean diameter ~0.1 to 10 times > waveleoccurs for particles w/ mean diameter ~0.1 to 10 times > wavelengthngth•• -- E.g. water vapor, smoke, dust, volcanic E.g. water vapor, smoke, dust, volcanic ejectaejecta, sea salt crystals, sea salt crystals•• -- most pronounced in lower 4.5km of atmosphere most pronounced in lower 4.5km of atmosphere •• -- wavelength dependence varies ~1/wavelengthwavelength dependence varies ~1/wavelength•• dependent on size distribution, concentration & refractive indexdependent on size distribution, concentration & refractive index

nn Nonselective scattering Nonselective scattering •• -- occurs when sufficient # of particles w/ mean diameters >10 wavoccurs when sufficient # of particles w/ mean diameters >10 wavelengthselengths•• -- E.g. larger particles, water droplets and ice crystals in cloudE.g. larger particles, water droplets and ice crystals in clouds and fogs s and fogs •• -- scattering is independent of wavelength (near UV, visible, nearscattering is independent of wavelength (near UV, visible, near infrared)infrared)•• clouds appear brilliant white clouds appear brilliant white -- colorless water drops and ice scatter all colorless water drops and ice scatter all

wavelengths equally wellwavelengths equally well

Page 28: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Light ExtinctionLight Extinction

n Bouguer’s Law

I

ILe

0

= −exp( )σ

Extinction Efficiency

particle on theincident lly geometricapower radiant particle aby absorbed and scatteredpower radiant

=eQ

Filtration of photons!

Extinction Coefficient2

4 jjj

ee dNQiji ∑=

πσ

§ σei - extinction for the ith wavelength

§ Qeij- dimensionless extinction efficiencies

§ Nj - number density for the jth aerosol size§ dj - is the aerosol jth size class (diameter)

Page 29: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

MieMie theory for scattering spherestheory for scattering spheres

Size Parameter α

d - particle diameterλ - wavelength

λπ

αd=

Complex Refractive Index

n – scattering term (refraction and reflection) k – absorption term

m(λ) = n(λ)-ik(λ)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

Size Parameter x

Ext

inct

ion

Eff

icie

ncy

m=1.13-i0.11; K=3585cm-1 m=1.46-i0.14; K=3180cm-1

m=1.29-i0.0003; K=4500cm-1 m=1.35-i0.43; K=592cm-1

§ Extinction efficiency of water in different parts of the spectrum

Page 30: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Shower Experiment Shower Experiment § OP-FTIR beam through

water condensation aerosol§ Size distribution

confirmed by aerosol probe

§ Known optical constants (see below)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

500 1000 1500 2000 2500 3000 3500 4000 4500Wavenumber [cm-1]

Co

mp

lex

Ref

ract

ive

Ind

ex

real part

imaginary part

Complex refractive index of water

Page 31: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Shower Experiment ResultsShower Experiment ResultsSpectral Fit; CCF=0.93

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

500 1500 2500 3500 4500

Wavenumber [cm-1]

Abs

orba

nce

[AU

]

Measured Spectrum

Fitted Spectrum

Spectral Fit; CCF=0.93

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

500 1500 2500 3500 4500

Wavenumber [cm-1]

Abs

orba

nce

[AU

]

Measured Spectrum

Fitted Spectrum

Reconstructed Size Distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20Particle Diameter [ µµm]

Mas

s C

once

ntra

tion

[g/m

3 /m

]

Reconstructed Size Distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20Particle Diameter [ µµm]

Mas

s C

once

ntra

tion

[g/m

3 /m

]

Spectral Fit; CCF=0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1500 2500 3500 4500Wavenumber [cm-1]

Abs

orba

nce

[AU

]

Measured Spectrum

Fitted Spectrum

Spectral Fit; CCF=0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

500 1500 2500 3500 4500Wavenumber [cm-1]

Abs

orba

nce

[AU

]

Measured Spectrum

Fitted Spectrum

Reconstructed Size Distribution

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20Particle Diameter [ µµm]

Mas

s C

once

ntra

tion

[g/m

3 /m

]

Reconstructed Size Distribution

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20Particle Diameter [ µµm]

Mas

s C

once

ntra

tion

[g/m

3 /m

]

Hashmonay & Yost, ES&T 1999

Page 32: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

0

.05

.1

.15

1000 1500 2000 2500 3000 3500 4000

0

.05

.1

.15

1000 1500 2000 2500 3000 3500 4000

Absorbance / Wavenumber (cm-1) Paged X-Zoom CURSOR

File # 1 : ABS-SMOKE-KAGAN#17 @-5.25 Wavenumber (cm-1) 1/12/2001 9:18 AM Res=None

Burn Test

Smoke PM Extinction

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

850 5000

Wavenumber [cm -1]

Extin

ctio

n [A

U]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7 8 9 10

Particles Diameter [�� m]

Mas

s Co

ncen

tratio

n [R

U]

Observed spectrum

Calculated extinction

Calculated Size distribution

Page 33: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Size Distribution, mean=4.2 micron; SD=1.0 micron

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2.5 5 7.5 10 12.5

Diameter [micron]

Mas

s C

on

cen

trat

ion

[RU

]

-0.02

0.02

0.06

0.1

0.14

0.18

0.22

800 1700 2600 3500 4400

Wavenumber [cm -1]

Ext

inct

ion

[A

U]

OP-FTIR Dust Spectrum Theoretical Dust OP-FTIR Background

Spectrum with Dust

LandfillD

ir

t

Ro

ad

OP

-FT

IR B

ea

m

Louisville Landfill Dust

Background Spectrum

Calculated Extinction

U

Page 34: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Discussion: Discussion: Where do we go from here?Where do we go from here?

n The first time we have shown an open-path optical techniques to obtain real-time sizing & concentration of fugitive dust and other aerosols like water or pesticides

n OP-FTIR can be used in field to measure multiple gases and PM concentration data simultaneously

n Extending the spectral range to the UV/VIS range will allow sizing of submicron PM (~.25 um and up)

n Research needed on practical issues: interferences, optical properties of urban aerosols, shape effects

nn Should be able to use concurrent data from point Should be able to use concurrent data from point monitoring networks to refine resultsmonitoring networks to refine results

nn Mapping and source localization also possibleMapping and source localization also possible

Page 35: Optical remote sensing air monitoring techniquesOptical remote sensing air monitoring techniques Michael Yost, MS, PhD Optical Remote Sensing Lab ... n Rapid scanning (< 1s / scan)

Questions?Questions?