optics slides

Upload: saikat-payra

Post on 04-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Optics Slides

    1/94

    P. Ewart

    The science of light

  • 7/29/2019 Optics Slides

    2/94

    Lecture notes: On web site

    NB outline notes!

    Textbooks:

    Hecht, Optics

    Klein and Furtak, OpticsLipson, Lipson and Lipson, Optical Physics

    Brooker, Modern Classical Optics

    Problems: Material for four tutorials plus pastFinals papers A2

    Practical Course: Manuscripts and Experience

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    3/94

    Structure of the Course

    1. Geometrical Optics

    2. Physical Optics (Interference)

    Diffraction Theory (Scalar)

    Fourier Theory

    3. Analysis of light (Interferometers)

    Diffraction Gratings

    Michelson (Fourier Transform)

    Fabry-Perot

    4. Polarization of light (Vector)

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    4/94

    Electronics

    Optics

    Quantum

    Electronics

    QuantumOptics

    Photonics

    10-7 < T < 107 K; e- > 109 eV; superconductor

    Electromagnetism

  • 7/29/2019 Optics Slides

    5/94

    Oxford Physics: Second Year, Optics

    Astronomical observatory, Hawaii, 4200m above sea level.

  • 7/29/2019 Optics Slides

    6/94

    Oxford Physics: Second Year, Optics

    Multi-segmentObjective mirror,

    Keck Obsevatory

  • 7/29/2019 Optics Slides

    7/94

    Oxford Physics: Second Year, Optics

    Hubble Space Telescope, HST,

    In orbit

  • 7/29/2019 Optics Slides

    8/94

    Oxford Physics: Second Year, Optics

    HST Deep Field

    Oldest objects

    in the Universe:

    13 billion years

  • 7/29/2019 Optics Slides

    9/94

    Oxford Physics: Second Year, Optics

    HST Image: Gravitational lensing

  • 7/29/2019 Optics Slides

    10/94

    Oxford Physics: Second Year, Optics

    SEM Image:

    Insect head

  • 7/29/2019 Optics Slides

    11/94

    Oxford Physics: Second Year, Optics

    Coherent Light:

    Laser physics:

    Holography,

    Telecommunications

    Quantum optics

    Quantum computingUltra-cold atoms

    Laser nuclear ignition

    Medical applications

    EngineeringChemistry

    Environmental sensing

    Metrology etc.!

  • 7/29/2019 Optics Slides

    12/94

    Oxford Physics: Second Year, Optics

    CD/DVD Player: optical tracking assembly

  • 7/29/2019 Optics Slides

    13/94

    Astronomy and Cosmology

    Microscopy Spectroscopy and Atomic Theory

    Quantum Theory

    Relativity Theory

    Lasers

    Oxford Physics: Second Year, Optics

    Optics in Physics

  • 7/29/2019 Optics Slides

    14/94

    Geometrical Optics

    Ignores wave nature of light

    Basic technology for optical instruments

    Fermats principle:

    Light propagating between two points

    follows a path, or paths,for which the time taken is an extremum

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    15/94

    Ray tracing - revision

    axis

    Focal point

    Focal point

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    16/94

    Simple magnifier

    Object

    at near point

    a

    Virtual image

    at near point

    b

    Short focal length

    lens

    Magnifier:

    angular magnification

    = b/a

    Eyepiece of

    Telescopes,

    Microscopes etc.

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    17/94

    Oxford Physics: Second Year, Optics

    P1

    First

    PrincipalPlane

    Back

    FocalPlane

    Location of

    equivalent thin lens

    Thick lens or

    compound lens

  • 7/29/2019 Optics Slides

    18/94

    Oxford Physics: Second Year, Optics

    2

    SecondPrincipalPlane

    FrontFocalPlane

    Thick lens or

    compound lens

  • 7/29/2019 Optics Slides

    19/94

    Oxford Physics: Second Year, Optics

    PrincipalPlane

    FocalPlane

    fT

    Telephoto lens

    Equivalent thin lens

  • 7/29/2019 Optics Slides

    20/94

    Oxford Physics: Second Year, Optics

    rncpaPlane

    ocaPlane

    fW

    Wide angle lens

  • 7/29/2019 Optics Slides

    21/94

    Oxford Physics: Second Year, Optics

    fO fE

    b

    angular magnification = b/a

    Astronomical Telescope

    = fo/fE

  • 7/29/2019 Optics Slides

    22/94

    Oxford Physics: Second Year, Optics

    angular magnification = b/a

    Galilean Telescope

    =

    fo/fE

  • 7/29/2019 Optics Slides

    23/94

    Oxford Physics: Second Year, Optics

    b

    fo

    fE

    angular

    magnification

    = b/a

    Newtonian Telescope

    = fo/fE

  • 7/29/2019 Optics Slides

    24/94

    Oxford Physics: Second Year, Optics

    The compound microscope

    Objective magnification = v/uEyepiece magnifies real image of object

  • 7/29/2019 Optics Slides

    25/94

    Oxford Physics: Second Year, Optics

    Image o o ect vein eyepiece

    Aperture stop

    What size to make the lenses?

    Eye piece ~ pupil size

    Objective: Image in eye-piece ~ pupil size

  • 7/29/2019 Optics Slides

    26/94

    Oxford Physics: Second Year, Optics

    (a) (b)

    Field stop

  • 7/29/2019 Optics Slides

    27/94

    Oxford Physics: Second Year, Optics

    ILLUMINATION OFOPTICAL INSTRUMENTS

    f/no. : focal lengthdiameter

  • 7/29/2019 Optics Slides

    28/94

    Oxford Physics: Second Year, Optics

    Lecture 2: Waves and Diffraction

    Interference

    Analytical method Phasor method

    Diffraction at 2-D apertures

  • 7/29/2019 Optics Slides

    29/94

    Oxford Physics: Second Year, Optics

    u

    t, x

    T

    Time

    or distanceaxis

    t,z

    u

    Phase change of 2p

  • 7/29/2019 Optics Slides

    30/94

    Oxford Physics: Second Year, Optics

    dsinq

    d q

    r1

    r2

    P

    D

  • 7/29/2019 Optics Slides

    31/94

    Oxford Physics: Second Year, Optics

    Real

    Imaginary

    u

    Phasor diagram

  • 7/29/2019 Optics Slides

    32/94

    Oxford Physics: Second Year, Optics

    /u /roup

    u /ro

    Phasor diagram for 2-slit interference

    uo

    r

    uor

  • 7/29/2019 Optics Slides

    33/94

    Oxford Physics: Second Year, Optics

    ysinq

    +a/2

    -a/2

    q r

    r y+ sinq

    P

    D

    dy

    Diffraction from a single slit

  • 7/29/2019 Optics Slides

    34/94

    Oxford Physics: Second Year, Optics

    -10 -5 0 5 10

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    pp p ppp

    sinc2(b)

    b

    Intensity pattern from

    diffraction at single slit

  • 7/29/2019 Optics Slides

    35/94

    Oxford Physics: Second Year, Optics

    asinq

    +a/2

    -a/2

    qr

    P

    D

  • 7/29/2019 Optics Slides

    36/94

    Oxford Physics: Second Year, Optics

    q0

    q0/

    RO

    R

    R =

    P

    P

    Phasors and resultant

    at different angles q

  • 7/29/2019 Optics Slides

    37/94

    Oxford Physics: Second Year, Optics

    RR

    P

    /

    R sin /2

    R

  • 7/29/2019 Optics Slides

    38/94

    Oxford Physics: Second Year, Optics

    Phasor arc tofirst minimum

    Phasor arc tosecond minimum

  • 7/29/2019 Optics Slides

    39/94

    Oxford Physics: Second Year, Optics

    y

    x

    z

    q

  • 7/29/2019 Optics Slides

    40/94

    Diffraction from a rectangular aperture

  • 7/29/2019 Optics Slides

    41/94

    Oxford Physics: Second Year, Optics

    Intensity

    y

    x

    Diffraction pattern from circular aperture

    Point Spread Function

  • 7/29/2019 Optics Slides

    42/94

    Diffraction from a circular aperture

  • 7/29/2019 Optics Slides

    43/94

    Diffraction from circular apertures

  • 7/29/2019 Optics Slides

    44/94

    Oxford Physics: Second Year, Optics

    Dust

    pattern

    Diffraction

    pattern

    Basis of particle sizing instruments

  • 7/29/2019 Optics Slides

    45/94

    Oxford Physics: Second Year, Optics

    Lecture 3: Diffraction theory

    and wave propagation

    Fraunhofer diffraction

    Huygens-Fresnel theory of

    wave propagation

    Fresnel-Kirchoff diffraction

    integral

  • 7/29/2019 Optics Slides

    46/94

    Oxford Physics: Second Year, Optics

    y

    x

    z

    q

  • 7/29/2019 Optics Slides

    47/94

    Diffraction from a circular aperture

  • 7/29/2019 Optics Slides

    48/94

    Oxford Physics: Second Year, Optics

    Fraunhofer Diffraction

    How linear is linear?

    A diffraction pattern for which the

    phase of the light at the

    observation point is a

    linear function of the positionfor all points in the diffracting

    aperture is Fraunhofer diffraction

  • 7/29/2019 Optics Slides

    49/94

    Oxford Physics: Second Year, Optics

    R

    R R

    R

    a a

    r r

    diffractingaperture

    source observingpoint

    r < /0

  • 7/29/2019 Optics Slides

    50/94

    Oxford Physics: Second Year, Optics

    Fraunhofer Diffraction

    A diffraction pattern formed in the image

    plane of an optical system is

    Fraunhofer diffraction

  • 7/29/2019 Optics Slides

    51/94

    Oxford Physics: Second Year, Optics

    O

    P

    A

    BC

    f

  • 7/29/2019 Optics Slides

    52/94

    Oxford Physics: Second Year, Optics

    u v

    Equivalent lenssystem

    Fraunhofer diffraction: in image plane of system

    Diffractedwaves

    imaged

  • 7/29/2019 Optics Slides

    53/94

    Oxford Physics: Second Year, Optics

    (a)

    (b)

    O

    O

    P

    P

    Equivalent lens system:

    Fraunhofer diffraction is independent of aperture position

  • 7/29/2019 Optics Slides

    54/94

    Oxford Physics: Second Year, Optics

    Fresnels Theory of wave propagation

    O ti

  • 7/29/2019 Optics Slides

    55/94

    Oxford Physics: Second Year, Optics

    dS

    n

    r

    P

    z-z 0

    Plane wave

    surface

    Huygens secondary sources on wavefront at -z

    radiate to point P on new wavefront atz = 0

    unobstructed

    Oxford Physics: Second Year Optics

  • 7/29/2019 Optics Slides

    56/94

    Oxford Physics: Second Year, Optics

    rn

    q

    rn

    P

    Construction of elements of equal area on wavefront

    rn

    q

    rn

    O ti

  • 7/29/2019 Optics Slides

    57/94

    Oxford Physics: Second Year, Optics

    (q+ /2)

    q

    rp

    Rp

    First Half Period Zone

    (q+/2)

    q

    rp

    Rp

    Resultant,Rp, represents amplitude from 1st

    HPZ

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    58/94

    Oxford Physics: Second Year, Optics

    rp

    /2

    q

    q

    P

    O

    Phase difference of/2

    at edge of 1st HPZ

    O

  • 7/29/2019 Optics Slides

    59/94

    Oxford Physics: Second Year, Optics

    As na infinity resultanta diameter of 1st HPZ

    Rp

    O ti

  • 7/29/2019 Optics Slides

    60/94

    Oxford Physics: Second Year, Optics

    Fresnel-Kirchoff diffraction integral

    ikrop e

    rSuiu )rn,(d

    O ti

  • 7/29/2019 Optics Slides

    61/94

    Oxford Physics: Second Year, Optics

    Babinets Principle

    O ti

  • 7/29/2019 Optics Slides

    62/94

    Oxford Physics: Second Year, Optics

    Lectures 1 - 3: The story so far

    Geometrical optics

    No wave effects

    Scalar diffraction theory:

    Analytical methods

    Phasor methods

    Fresnel-Kirchoff diffraction integral:

    propagation of plane waves

    O ti

  • 7/29/2019 Optics Slides

    63/94

    Oxford Physics: Second Year, Optics

    Gustav Robert Kirchhoff

    (18241887)

    Joseph Fraunhofer

    (1787 - 1826)

    Augustin Fresnel

    (1788 - 1827)

    Fresnel-Kirchoff Diffraction Integral

    ikrop e

    r

    Suiu )rn,(

    d

    Phase at observation is

    linear function of position

    in aperture: = k sinq y

    Optics

  • 7/29/2019 Optics Slides

    64/94

    Oxford Physics: Second Year, Optics

    Lecture 4: Fourier methods

    Fraunhofer diffraction as a

    Fourier transform

    Convolution theoremsolving difficult diffraction problems

    Useful Fourier transformsand convolutions

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    65/94

    ikrop ern

    r

    uiu ).(dS

    xexuAu xip d)()(bab

    Fresnel-Kirchoff diffraction integral:

    Simplifies to:

    whereb= ksinq

    Note:A(b) is the Fourier transform ofu(x)

    The Fraunhofer diffraction pattern is the Fourier transformof the amplitude function in the diffracting aperture

    O ti

  • 7/29/2019 Optics Slides

    66/94

    Oxford Physics: Second Year, Optics

    'd).'().'()()()( xxxgxfxgxfxh

    The Convolution function:

    The Convolution Theorem:

    The Fourier transform, F.T., off(x) isF(b)F.T., ofg(x) is G(b)

    F.T., ofh(x) isH(b)

    H(b) = F(b).G(b)The Fourier transform of a convolution offand gis the product of the Fourier transforms offand g

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    67/94

    Oxford Physics: Second Year, Optics

    b

    Monochromatic

    Wave

    Fourier

    Transform

    T

    .bo p/T

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    68/94

    Oxford Physics: Second Year, Optics

    xo x

    b

    V(x)

    V( )b

    -function

    Fourier transform

    Power spectrumV(b)V(b)* = V2

    = constant

    V

    b

    Optics

  • 7/29/2019 Optics Slides

    69/94

    Oxford Physics: Second Year, Optics

    xS x

    b

    V(x)

    V( )b

    Comb of-functions

    Fourier transform

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    70/94

    g(x-x) f(x)

    h(x)

    Constructing a double slit function by convolution

    Oxford Physics: Second Year, Optics

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    71/94

    g(x-x) f(x)

    h(x)

    Triangle as a convolution of two top-hat functions

    This is a self-convolution or Autocorrelation function

    Oxford Physics: Second Year, Optics

    O f d Ph i S d Y Optics

  • 7/29/2019 Optics Slides

    72/94

    Joseph Fourier(17681830)

    Oxford Physics: Second Year, Optics

    Heat transfer theory:

    - greenhouse effect

    Fourier series

    Fourier synthesis and analysis

    Fourier transform as analysis

    Oxford Physics: Second Year Optics

  • 7/29/2019 Optics Slides

    73/94

    Oxford Physics: Second Year, Optics

    Lecture 6: Theory of imaging

    Fourier methods in optics

    Abb theory of imaging Resolution of microscopes

    Optical image processing

    Diffraction limited imaging

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    74/94

    ikrop ern

    r

    uiu ).(dS

    xexuAu xip d)()(bab

    Fresnel-Kirchoff diffraction integral:

    Simplifies to:

    whereb= ksinq

    Note:A(b) is the Fourier transform ofu(x)

    The Fraunhofer diffraction pattern is the Fourier transformof the amplitude function in the diffracting aperture

  • 7/29/2019 Optics Slides

    75/94

    Ernst Abb (1840 -1905)

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    76/94

    Oxford Physics: Second Year, Optics

    a

    dd

    f Du v

    u(x) v(x)

    Fourier plane

    q

    Oxford Physics: Second Year Optics

  • 7/29/2019 Optics Slides

    77/94

    Oxford Physics: Second Year, Optics

    The compound microscope

    Objective magnification = v/uEyepiece magnifies real image of object

    Diffracted orders from high spatial frequencies miss

  • 7/29/2019 Optics Slides

    78/94

    Diffracted orders from high spatial frequencies missthe objective lens

    So high spatial frequencies are

    missing from the image.

    qmax defines the numerical aperture and resolution

    Oxford Physics: Second Year, Optics Image processing

  • 7/29/2019 Optics Slides

    79/94

    y , p

    Fourierplane

    Image

    plane

    Image processing

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    80/94

    Oxford Physics: Second Year, Optics

    Optical simulation ofX-Ray diffraction

    a b

    a b

    (a) and (b) show objects:

    double helix

    at different angle of view

    Diffraction patterns of

    (a) and (b) observed in

    Fourier planeComputer performsInverse Fourier transformTo find object shape

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    81/94

    PIV particle image velocimetry

    p

    Two images recordedin short time interval

    Each moving particle gives

    two point images

    Coherent illumination

    of small area produces

    Youngs fringes in

    Fourier plane of a lens

    CCD camera recordsfringe system

    input to computer

    to calculate velocity vector

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    82/94

    PIV particle image velocimetry

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    83/94

    a

    dd

    f Du v

    u(x) v(x)

    Fourier plane

    q

    phase object

    amplitude object

    Oxford Physics: Second Year, Optics Schlieren photography

  • 7/29/2019 Optics Slides

    84/94

    Sc e e p otog ap y

    Source

    CollimatingLens

    ImagingLens

    KnifeEdge

    ImagePlane

    e ract ve

    indexvariation

    FourierPlane

    Schleiren photography in i.c.engine

  • 7/29/2019 Optics Slides

    85/94

    Schlieren film of autoignition

    Courtesy of Prof CWG Sheppard

    University of Leeds

    Spark

    plug

    Oxford Physics: Second Year Optics

  • 7/29/2019 Optics Slides

    86/94

    Oxford Physics: Second Year, Optics

    Intensity

    y

    x

    Diffraction pattern from circular aperture

    Point Spread Function, PSF

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    87/94

    Lecture 7: Optical instruments and

    Fringe localisation

    Interference fringes

    What types of fringe?

    Where are fringes located?

    Interferometers

    Oxford Physics: Second Year, Optics Youngs slits

  • 7/29/2019 Optics Slides

    88/94

    y p

    non-localisedfringes

    Plane

    waves

    Young s slits

    Oxford Physics: Second Year, Optics Diffraction grating

  • 7/29/2019 Optics Slides

    89/94

    Z

    g g

    q q

    to8

    f

    Planewaves

    Fringes localised at infinity: Fraunhofer

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    90/94

    p

    P

    P

    O

    Wedgedreflecting surfaces

    Point

    source

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    91/94

    OPP

    q

    qParallel

    reflecting surfaces

    Pointsource

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    92/94

    P

    P

    R

    OS

    R

    Wedged

    Reflecting surfaces

    Extended source

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    93/94

    2t=x

    sourceimages

    2t=x

    a

    path difference cosx a

    circular fringe

    constant a

    Parallel

    reflectingsurfaces

    Extended

    source

    Oxford Physics: Second Year, Optics

  • 7/29/2019 Optics Slides

    94/94

    Wedged Parallel

    PointSource

    Non-localisedEqual thickness

    Non-localisedEqual inclination

    Extended

    Source

    Localised in plane

    of Wedge

    Equal thickness

    Localised at infinity

    Equal inclination

    Summary: fringe type and localisation