optimal generation scheduling in a carbon dioxide ......emission regulation •carbon capture and...

34
Optimal Generation Scheduling in a Carbon Dioxide Allowance Market Environment Project M21 Part III Wei Sun Iowa State University Chen-Ching Liu University College Dublin PSERC Webinar, April 5, 2011

Upload: others

Post on 20-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Optimal Generation Scheduling in

    a Carbon Dioxide Allowance

    Market Environment

    Project M21 Part III

    Wei Sun Iowa State University

    Chen-Ching Liu University College Dublin

    PSERC Webinar, April 5, 2011

  • New Generation Scheduling

    Problem (GSP)

    GENCOs

    Electricity

    Market

    CO2 Allowance

    Market

    Unit Commitment

    Generation Output

    Maintenance

    Scheduling

    CO2 Allowance

    Amount and Price

    Enough Allowances

    to Cover Emitted CO2

    Traditional GSP New GSP 2

  • Outline

    Motivation

    Carbon Dioxide (CO2) Allowance Market

    New Generation Scheduling Problem

    considering CO2 Cap-And-Trade

    Conclusions

    3

  • Greenhouse Gas (GHG)

    4 * U.S. Energy Information Administration

  • Motivation

    5

    European Power Prices Pre- and Post-CO2 Regulation

    * Source: JPMorgan Energy Strategy, Bloomberg

  • CO2 Emission Regulation

    • Carbon Capture and Storage

    /Sequestration (CCS)

    • Non-CO2 or Low-CO2 Emission

    Power Sources (hydroelectric,

    nuclear, renewable energy

    resources)

    • Market-based and least-cost

    Mechanisms: Emission

    Trading

    6

    CO2 Emission Cap-and-Trade

  • CO2 Emission Cap-And-Trade

    7

    A Cap Set on CO2

    Emissions

    Permits are

    Divided Up

    Polluters Buy or Get Free

    Permits

    Permits Decrease Over

    Time

    A Trading Market

    Reasons to Sell Permits

    Reasons to Buy Permits

    Trading Permits

    Creates Profit

    The buyer is paying a charge for polluting, while the seller is being

    rewarded for having reduced emissions

    To encourage polluters to shift away from CO2-emitting fossil fuels

    and toward clean, renewable energy sources

    Cap

    +

    Trade

    Providing economic incentives to achieve

    reductions in the emissions of pollutants

  • Carbon Trading Markets

    8

    1. Kyoto Protocol

    2. New Zealand

    Emissions Trading

    Scheme (NZ ETS)

    3. European Union

    Emission Trading

    Scheme (EU ETS)

    4. United States

    • Chicago Climate Exchange (CCX)

    starting from 2003;

    • Western Climate Initiative (WCI)

    starting from 2007;

    • Regional Greenhouse Gas

    Initiative (RGGI) starting from 2009.

  • RGGI CO2 Allowance Market

    Ten Northeastern and Mid-Atlantic

    states, starting from Jan. 1, 2009

    Reduce 10% of CO2 emissions by

    2018

    Primary and secondary market

    Quarterly auction in the format of

    single-round, uniform-price, sealed-bid

    Three-year compliance period

    Reserved price

    Using offsets

    Cost-effective emission reductions 9

  • Market Equilibrium Model

    • To investigate the ability of generation

    companies (GENCOs) to manipulate prices

    (market power)

    • Derived a nonlinear complementarity problem

    (NCP) formulation based on the equivalence

    between the KKT conditions and strong

    stationarity

    • Transformed to a nonlinear programming

    problem (NLP) and solve it by AMPL/MINOS commercial solver

    10

  • GENCO Bidding Model

    2

    2 2

    , , , ,

    max

    max

    . . 0

    0.033

    0

    COi i i i

    e CO

    i i i i i i i iP q OS A

    i i i i

    i i

    i i

    P a P b P A h OS

    s t k P A OS

    OS A

    P P

    2CO

    2COq

    1

    2

    3

    3q2q1q

    (λ, q) GENCO’ bid

    11

  • GENCO Bidding Model

    2

    2 2

    , , , ,

    max

    max

    . . 0

    0.033

    0

    COi i i i

    e CO

    i i i i i i i iP q OS A

    i i i i

    i i

    i i

    P a P b P A h OS

    s t k P A OS

    OS A

    P P

    2CO

    2COq

    1

    2

    3

    3q2q1q

    (λ, q)

    Revenue from

    electricity market Generation

    cost

    Emission

    allowance cost

    Offset

    cost

    Emission regulation constraints

    Offset usage constraints

    Generation capacity constraints

    GENCO’ bid

    12

  • Market Clearing Model

    13

    2

    1

    2 1 2

    1

    2

    3 2

    0

    0 0

    0 01,

    0 0

    0 0.25 0

    nCO

    j

    j

    CO

    j j j j

    j j j

    j j

    CO

    j j

    A CAP

    A w w

    w q Aj n

    w A

    w CAP A

    1

    2

    1

    2

    max

    . .

    0.25

    0

    i

    n

    j jA

    j

    nCO

    j

    j

    CO

    j

    j j

    A

    s t A CAP

    A CAP

    A q

    2CO

    2COq

    2CO

    2COq2

    A1A

    (λCO2*, Ai)

    RGGI’s rule

    Allowance price and

    cleared demand

  • 2

    1 2 3

    2 2

    , , , ,

    , , ,

    max

    2

    1

    2 1 2

    1

    2

    3 2

    max ( )

    . . 0

    0.033

    0

    0

    0 0

    0 0

    0 0

    0 0.25 0

    COi i i

    i i i i

    e CO

    i i i i i i i iP q OS

    A w w w

    i i i i

    i i

    i i

    nCO

    j

    j

    CO

    j j j j

    j j j

    j j

    CO

    j j

    P a P b P A h OS

    s t k P A OS

    OS A

    P P

    A CAP

    A w w

    w q A

    w A

    w CAP A

    1,j n

    CO2 Allowance Market Model

    14

    Mathematical

    Programs

    with

    Equilibrium

    Constraints

    (MPEC)

    Equilibrium

    Problems

    with

    Equilibrium

    Constraints

    (EPEC) (λ, q)

    GENCO’ bid

    (λCO2*, Ai)

    Allowance price &

    cleared demand

  • EPEC Formulation

    15

    0, ,max ,

    . . , 0

    01,

    0 0

    i

    ix y s

    i

    j j

    j j

    f x y

    s t g x y

    H sj n

    y s

    2 1 2 3

    2 2

    , , ,

    , , , ,

    max

    2

    1

    2 1 2

    1

    2

    3 2

    max ( )

    . . 0

    0.03

    0

    0

    0 0

    0 0

    0 0

    0 0.25 0

    i i i

    COi i i i

    e CO

    i i i i i i i iP q OS

    A w w w

    i i i i

    i i

    i i

    nCO

    j

    j

    CO

    j j j j

    j j j

    j j

    CO

    j j

    P a P b P A h OS

    s t k P A OS

    OS A

    P P

    A CAP

    A w w

    w q A

    w A

    w CAP A

    1,j n

    Equilibrium Point

    , ,x y s

  • NCP Formulation

    , , , 0

    , , , 0

    0

    0 , 0

    , 0

    0 0

    0 0

    0 0

    0 0

    i i ix i x i i x i i i

    y i y i i y i i i i

    i i i

    i i

    i i

    i i

    i i

    i

    i i i

    f x y g x y h x y

    f x y g x y h x y s

    y

    g x y

    h x y s

    x

    s y

    y s

    , , , , , , , ,x y s Strongly Stationary Point

    multipliers

    Theorem 1: If there is an equilibrium point of EPEC and every MPEC

    satisfies an MPEC-LICQ, then there exist multipliers to get a strongly

    stationary point of the NCP. 16

  • NLP Formulation

    , , , , , , ,1

    min :

    . . , , , 0

    , , , 0

    0

    ,

    ,

    0, 0

    0, 0, 0, 0, 0

    0, 0

    i i i

    nT T T T T

    pen i i i i i ix y s

    i

    x i x i i x i i i

    y i y i i y i i i i i

    i i i

    i i

    i i

    i i i i i

    i i

    C x t y s y s

    s t f x y g x y h x y

    f x y g x y h x y s

    y

    g x y t

    h x y s

    y s

    x t

    Theorem 2: If there is an local solution , , , , , , , , , ,x y s t

    then is a strongly stationary point of the EPEC. , ,x y s with Cpen=0, 17

  • Sensitivity Analysis

    GENCO a b λe

    ($/MW)

    Pmax

    (MW)

    Bidding

    Price λ ($/p.u.)

    k

    (ton/MW)

    h

    ($/p.u.)

    1 15 0.005 20 500 2 1 10

    2 18 0.004 20 800 1.5 1 10

    3 10 0.005 20 800 2.5 1 10

    4 15 0.004 20 800 2.3 1 10

    GEN. P(MW) A

    (p.u.) q (p.u.)

    Profit

    ($)

    λCO2

    ($/p.u.)

    1 262.5 262.5 262.5 574.2

    1.5 2 0 0 594 0

    3 800 800 800 3600

    4 437.5 437.5 437.5 765.6

    Base case

    18

  • Sensitivity Analysis

    GENCO a b λe

    ($/MW)

    Pmax

    (MW)

    Bidding

    Price λ ($/p.u.)

    k

    (ton/MW)

    h

    ($/p.u.)

    1 15 0.005 20 500 2 1 10

    2 18 0.004 20 800 1.5 1 10

    3 10 0.005 20 800 2.5 1 10

    4 15 0.004 20 800 2.3 1 10

    GEN. P(MW) A

    (p.u.) q (p.u.)

    Profit

    ($)

    λCO2

    ($/p.u.)

    1 262.5 262.5 262.5 574.2

    1.5 2 0 0 594 0

    3 800 800 800 3600

    4 437.5 437.5 437.5 765.6

    Base case

    GEN. P(MW) A

    (p.u.) q (p.u.)

    Profit

    ($)

    λCO2

    ($/p.u.)

    1 310 310 310 480.5

    1.9 2 2.5 2.5 313.3 0.225

    3 800 800 800 3280

    4 387.5 387.5 387.5 600.625

    λ2=1.9

    19

  • Sensitivity Analysis

    GENCO a b λe

    ($/MW)

    Pmax

    (MW)

    Bidding

    Price λ ($/p.u.)

    k

    (ton/MW)

    h

    ($/p.u.)

    1 15 0.005 20 500 2 1 10

    2 18 0.004 20 800 1.5 1 10

    3 10 0.005 20 800 2.5 1 10

    4 15 0.004 20 800 2.3 1 10

    GEN. P(MW) A

    (p.u.) q (p.u.)

    Profit

    ($)

    λCO2

    ($/p.u.)

    1 262.5 262.5 262.5 574.2

    1.5 2 0 0 594 0

    3 800 800 800 3600

    4 437.5 437.5 437.5 765.6

    Base case

    GEN. P(MW) A

    (p.u.) q (p.u.)

    Profit

    ($)

    λCO2

    ($/p.u.)

    1 310 310 310 480.5

    1.9 2 2.5 2.5 313.3 0.225

    3 800 800 800 3280

    4 387.5 387.5 387.5 600.625

    λ2=1.9

    Need to consider both electricity

    market and CO2 allowance market 20

  • GENCOs Interactions in Two

    Markets

    21

    Day 1

    E-Market

    Day t

    E-Market

    Day T

    E-Market

    GENCOs in Electricity Market (daily)

    GENCOs in CO2 Allowance

    Market (quarterly)

    LMP,

    Output LMP,

    Output

    LMP,

    Output

    LMP and

    Output

    CO2 Allowance

    Price and Cleared

    Demand

  • Time Horizon of New GSP

    Quarter 1 Quarter i Quarter 12

    First Three-Year Compliance Period Next Period

    Week1 Week j Week 12

    Day 1 Day k Day 7

    Quarterly CO2

    Allowance Market

    Weekly Generation

    Maintenance

    Scheduling

    Daily Unit

    Commitment and

    Hourly Economic

    Dispatch

    dt

    qt

    wt

    qitA

    witX

    ditu

    ditg

    22

  • GENCO's Maximization Problem

    23

    Max Total Profit during Time Period T

    subject to

    Generation Maintenance Scheduling Constraints

    UC and OPF Operation Constraints

    CO2 Allowance Market Constraints

    GENCO’s

    Decision

    Variables:

    ftq

    ftOS

    itX

    Allowances bid by firm f in interval t’

    Offsets used by firm f in interval t’

    Maintenance schedule of generation i in period t

    where Profit = Revenue - Cost

    selling power to the electricity market

    maintenance, fuel production, startup, shutdown and CO2 allowance

  • Structure of New GSP

    Max GENCO’s Profit

    s.t. Generation Maintenance

    Scheduling Constraint

    CO2 Allowance Market Constraint

    Traditional

    Generation

    Scheduling

    New Emission

    Regulation

    Environment

    New Generation

    Scheduling Model

    Upper Level

    Problem

    Lower Level

    Problem

    Mixed Integer

    Bi-level Linear

    Programming

    New Solution

    Method

    Optimal Generation Scheduling

    Considering CO2 Allowance Market

    ISO Maintenance Clearing Subproblem

    ISO Unit Commitment Subproblem

    ISO Economic Dispatch Subproblem

    CO2 Allowance Market Clearing Subproblem

    24

  • 2

    , , ,

    1

    1 1 1

    max

    . . , ,

    1, ,

    1 ,

    , ,

    ,

    d d d d d d w q q q

    d w q q d w qit it it it

    d d w

    w d

    w

    w

    w w wi

    w w

    E P SU SD M CO OS

    iit it it it it it it t it itg x q OSt t t

    d w

    it it it

    d w

    it it

    iitt

    w

    it it it T

    it ti

    p g C g C C C p A C OS

    s t u u x i t t

    x u i t t

    x T i

    x x x i t

    x NM t

    2

    ,

    2

    ,

    , hydroelectric

    1 , ,

    1 , ,

    ,

    0.033 ,

    , , , 0

    d d

    d d

    w d

    d w

    d q q q

    d q

    q d

    d q

    d w q q

    w

    MAX

    iit itt t

    MIN d w

    i it it

    MAX d w

    iit it

    CO IA q

    i it it it iti t t

    CO q

    iit iti t t

    it it it it

    g G HE i

    G x g i t t

    g G x i t t

    R g A OS A t

    OS R g t

    g x q OS

    Upper-Level Optimization Problem

    Generation

    Maintenance

    Scheduling

    CO2

    Allowance

    Market

    Revenue Cost

    25

  • Lower-Level Optimization Problem

    ,

    ,

    min

    . . ,

    w w

    d wit

    d w w

    d w

    M UE

    it itgit

    w

    it it itii t t

    C C UE

    s t g UE D t

    2

    max

    1min

    2

    . . 0,

    ,

    0

    d d

    dit

    d d d

    d d d

    d d d

    d

    i iit itgi

    it it ti i

    k i kit it kti

    MIN MAX

    i iit it it

    it

    g g

    s t g D

    GSF g D F k

    G u g G u

    g

    d d d d

    d d

    E energy cong

    it it it it

    k it kti

    p LMP LMP LMP

    GSF

    2

    2 2

    2

    max

    . . 0,

    0.25 , ,

    0 , ,

    q q

    qit

    q q q

    q q

    q q

    CO

    it itAi

    CO q CO

    it t ti

    CO q

    it t

    q

    it it

    B A

    s t A CAP t p

    A CAP i t

    A q i t

    where:

    I. ISO Maintenance

    Clearing

    Subproblem II. ISO Unit

    Commitment

    Subproblem

    III. ISO Economic

    Dispatch

    Subproblem

    IV. CO2 Allowance

    Market Clearing

    Subproblem 26

    1

    min

    . . ,

    ,

    ,

    , ,

    , ,

    , ,

    , ,

    d d d d

    d dit

    d d

    d d

    d d

    d d

    d d d d

    d d d

    d d d

    d d

    P SU SD

    it it it itgi t

    d

    it iti i

    S S d

    it ti

    O O d

    it ti

    MIN d

    i it it

    S O MAX d

    iit it it it

    S S d

    it t it

    O O d

    it t it

    it it

    C g C C

    s t g D t

    r R t

    r R t

    G u g i t

    g r r G u i t

    r R u i t

    r R u i t

    g g MaxI

    1

    1 1

    1 1

    , ,

    , ,

    0, ,

    0, ,

    , ,

    d d

    d d d

    d d d

    d d

    d

    i

    d

    iit it

    ON ON d

    iit it it

    OFF OFF d

    iit it it

    d

    ki kit iti

    nc i t

    g g MaxDec i t

    Y T u u i t

    Y T u u i t

    PTDF g D MaxFlow i t

  • ,max 1* 1*

    . . 1* 1* 1

    arg max 2* 2*

    . . 2* 2* 2

    0 integer

    0 integer

    x y

    w

    I

    J

    C x d y

    s t A x B y b

    y C x d w

    s t A x B w b

    w w

    x x

    Mixed Integer Bilevel Linear

    Programming Problem (MIBLP)

    Upper Level

    Problem

    Lower Level

    Problem

    27

    • Benders Decomposition

    • Linear Problem with Complementarity Constraints (LPCC)

    • Branch-and-Cut

  • Solution Methodology

    Step 1: Decompose MIBLP to slave problems (SPs) and restricted master problem (RMP)

    28

    fix the binary variables and get the BLP - UB

    eliminate the constraints

    and the lower objective

    function - LB

    Step 2: Transform SP to LPCC, and solve LPCC using “θ-free” algorithm

    Step 3: From the solution, construct the LP, which provides an UB (in Min problem)

    Step 4: Using the optimal dual values of LP to add a cut back to RMP

    Feasibility cut (dual LP unbounded)

    Optimality cut (dual LP bounded and restrict RMP)

    Integer Exclusion cut (dual LP bounded but not

    restrict RMP)

    Step 5: Solve the augmented RMP to get a new LB

    Step 6: If not satisfy convergence criterion, using RMP

    solutions to construct a new SP to iterate. Otherwise,

    Stop.

  • Numerical Example

    PJM 5-Bus System

    1-Auction with

    3 Bidding Strategies 7-Week

    Generation

    Maintenance

    Scheduling

    Daily Unit

    Commitment &

    Hourly Economic

    Dispatch

    Strategy Quantity Price

    1 Small Low

    2 Medium Medium

    3 Large High

    + +

    29

  • Simulation Results

    30

    I II

    III IV

  • Simulation Results

    31

    I II

    III IV

  • Simulation Results

    32

    Bidding

    Strategy Optimal

    Maintenance

    Scheduling

  • Conclusions • Optimal generation maintenance scheduling will be changed when

    GENCOs participate in both electricity market and CO2 allowance

    market.

    • Neither the conservative (small quantity) nor the aggressive

    (large quantity) bidding strategy will bring the optimal profit.

    • GENCOs need to consider the maintenance scheduling and CO2

    allowance bidding together in order to maximize their profits.

    • Based on the proposed model, GENCOs will be able to determine

    their optimal mid-term generation maintenance scheduling and

    CO2 allowance bidding strategy participating in both markets.

    33

  • Questions