optimization of technological process to decrease dimensions of circuits xor, manufectured based on...

Upload: ijfcstjournal

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    1/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    DOI:10.5121/ijfcst.2016.6101 1

    OPTIMIZATION OF TECHNOLOGICAL PROCESS TO

    DECREASE DIMENSIONS OF CIRCUITS XOR, MANU-

    FECTURED BASED ON FIELD-EFFECT HETEROTRAN-SISTORS 

    E.L. Pankratov1, E.A. Bulaeva

    1,2

    1Nizhny Novgorod State University, 23 Gagarin Avenue , Nizhny Novgorod, 603950,

    Russia2

    Nizhny Novgorod State University of Architecture and Civil Engineering , 65 Il'insky

    Street , Nizhny Novgorod , 603950, Russia

     A BSTRACT 

     

    The paper describes an approach of increasing of integration rate of elements of integrated circuits. The

    approach has been illustrated by example of manufacturing of a circuit XOR. Framework the approach one

    should manufacture a heterostructure with specific configuration. After that several special areas of the

    heterostructure should be doped by diffusion and/or ion implantation and optimization of annealing of do-

     pant and/or radiation defects. We analyzed redistribution of dopant with account redistribution of radiation

    defects to formulate recommendations to decrease dimensions of integrated circuits by using analytical

    approaches of modeling of technological process.

     K  EYWORDS 

    Circuits XOR; increasing of density of elements; optimization of technological process.

    1. INTRODUCTION 

    One of intensively solving problems of solid state electronics is improvement of frequency cha-racteristics of electronic devices and their reliability. Another intensively solving problem is in-

    creasing of integration rate of integrated circuits with decreasing of their dimensions [1-9]. Tosolve these problems they were used searching materials with higher values of charge carriers

    motilities, development new and elaboration existing technological approaches [1-14]. In the

    present paper we consider circuit XOR from [15]. Based on recently considered approaches [16-23] we consider an approach to decrease dimensions of the circuit. The approach based on manu-

    facturing a heterostructure, which consist of a substrate and an epitaxial layer. The epitaxial layer

    manufactured with several sections. To manufacture these sections another materials have beenused. These sections have been doped by diffusion or ion implantation. The doping gives a possi-

    bility to generate another type of conductivity ( p  or n). After finishing of manufacturing of thecircuit XOR these sections will be used by sources, drains and gates (see Fig. 1). Dopant and rad-iation defects should be annealed after finishing the dopant diffusion and the ion implantation.

    Our aim framework the paper is analysis of redistribution of dopant and redistribution of radiation

    defects to prognosis technological process. The accompanying aim of the present paper is devel-opment of analytical approach for prognosis technological processes with account all requiredinfluenced factors.

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    2/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    2

    2. METHOD OF SOLUTION 

    We solve our aim by calculation and analysis distribution of concentrations of dopants in spaceand time. The required distribution has been determined by solving the second Fick's law in thefollowing form [24,25]

    ( ) ( ) ( ) ( )

    +

    +

    =

     z

    t  z y xC  D

     z y

    t  z y xC  D

     y x

    t  z y xC  D

     xt 

    t  z y xC C C C 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂  ,,,,,,,,,,,,. (1)

    Boundary and initial conditions for the equations are

    Fig. 1. Structure of epitaxial layer. View from top

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    3/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    3

    ( )0

    ,,,

    0

    =∂

    = x x

    t  z y xC ,

    ( )0

    ,,,=

    =  x L x x

    t  z y xC ,

    ( )0

    ,,,

    0

    =∂

    = y y

    t  z y xC ,

    ( )0

    ,,,=

    =  y L x y

    t  z y xC , 

    ( )0

    ,,,

    0=∂

    = z z

    t  z y xC 

    ,

    ( )0

    ,,,

    =∂

    =  z L x z

    t  z y xC 

    , C ( x, y, z,0)=f   ( x, y, z). (2)

    Here the function C ( x, y, z,t ) describes the distribution of concentration of dopant in space and

    time. DС  describes distribution the dopant diffusion coefficient in space and as a function of tem-perature of annealing. Dopant diffusion coefficient will be changed with changing of materials of

    heterostructure, heating and cooling of heterostructure during annealing of dopant or radiation

    defects (with account Arrhenius law). Dependences of dopant diffusion coefficient on coordinatein heterostructure, temperature of annealing and concentrations of dopant and radiation defects

    could be written as [26-28]

    ( )  ( )

    ( )

    ( ) ( )

    ( )  

    ++

    +=

    2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,1,,,

    t  z y xV 

    t  z y xV 

    T  z y xP

    t  z y xC T  z y x D D  LC    ς ς ξ  γ  

    γ  

    . (3)

    Here function  D L ( x, y, z,T ) describes dependences of dopant diffusion coefficient on coordinateand temperature of annealing T . Function P ( x, y, z,T ) describes the same dependences of the limit

    of solubility of dopant. The parameter γ   is integer and usually could be varying in the followinginterval γ   ∈[1,3]. The parameter describes quantity of charged defects, which interacting (in aver-age) with each atom of dopant. Ref.[26] describes more detailed information about dependence of

    dopant diffusion coefficient on concentration of dopant. Spatio-temporal distribution of concen-tration of radiation vacancies described by the function V  ( x, y, z,t ). The equilibrium distribution of

    concentration of vacancies has been denoted as V *. It is known, that doping of materials by diffu-

    sion did not leads to radiation damage of materials. In this situation ζ 1= ζ 2=0. We determine spa-tio-temporal distributions of concentrations of radiation defects by solving the following system

    of equations [27,28]

    ( )( )

      ( )( )

      ( )( ) ×−

    ∂+

    ∂=

    ∂T  z y xk 

     y

    t  z y x I T  z y x D

     y x

    t  z y x I T  z y x D

     xt 

    t  z y x I  I  I  I  I 

    ,,,,,,

    ,,,,,,

    ,,,,,,

    ,  

    ( ) ( )  ( )

    ( ) ( ) ( )t  z y xV t  z y x I T  z y xk  z

    t  z y x I T  z y x D

     zt  z y x I 

    V  I  I ,,,,,,,,,

    ,,,,,,,,,

    ,

    2−

    ∂+×   (4) 

    ( )( )

      ( )( )

      ( )( ) ×−

    ∂+

    ∂=

    ∂T  z y xk 

     y

    t  z y xV T  z y x D

     y x

    t  z y xV T  z y x D

     xt 

    t  z y xV V V V V 

    ,,,,,,

    ,,,,,,

    ,,,,,,

    ,  

    ( ) ( )  ( )

    ( ) ( ) ( )t  z y xV t  z y x I T  z y xk  z

    t  z y xV T  z y x D

     zt  z y xV 

    V  I V ,,,,,,,,,

    ,,,,,,,,,

    ,

    2−

    ∂+× .

    Boundary and initial conditions for these equations are

    ( )0

    ,,,

    0

    =∂

    = x x

    t  z y x ρ ,

    ( )0

    ,,,=

    =  x L x x

    t  z y x ρ ,

    ( )0

    ,,,

    0

    =∂

    = y y

    t  z y x ρ ,

    ( )0

    ,,,=

    =  y L y y

    t  z y x ρ , 

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    4/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    4

    ( )0

    ,,,

    0

    =∂

    = z z

    t  z y x ρ ,

    ( )0

    ,,,=

    =  z L z z

    t  z y x ρ , ρ  ( x, y, z,0)=f  ρ   ( x, y, z). (5)

    Here  ρ   = I ,V . We denote spatio-temporal distribution of concentration of radiation interstitials as I  ( x, y, z,t ). Dependences of the diffusion coefficients of point radiation defects on coordinate and

    temperature have been denoted as  D ρ ( x, y, z,T ). The quadric on concentrations terms of Eqs. (4)

    describes generation divacancies and diinterstitials. Parameter of recombination of point radiationdefects and parameters of generation of simplest complexes of point radiation defects have been

    denoted as the following functions k  I ,V ( x, y, z,T ), k  I , I ( x, y, z,T ) and k V ,V ( x, y, z,T ), respectively.

    Now let us calculate distributions of concentrations of divacancies Φ V ( x, y, z,t ) and diinterstitialsΦ  I ( x, y, z,t ) in space and time by solving the following system of equations [27,28]

    ( )( )

      ( )( )

      ( )+

      Φ+

      Φ=

    ΦΦΦ

     y

    t  z y xT  z y x D

     y x

    t  z y xT  z y x D

     xt 

    t  z y x  I  I 

     I 

     I 

     I 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂  ,,,,,,

    ,,,,,,

    ,,, 

    ( )  ( )

    ( ) ( ) ( ) ( )t  z y x I T  z y xk t  z y x I T  z y xk  zt  z y x

    T  z y x D z  I  I  I 

     I 

     I  ,,,,,,,,,,,,

    ,,,

    ,,,2

    ,   −+

      Φ+   Φ ∂ 

    ∂ 

    ∂ 

    ∂   (6)

    ( )( )

      ( )( )

      ( )+

      Φ+

      Φ=

    ΦΦΦ

     y

    t  z y xT  z y x D

     y x

    t  z y xT  z y x D

     xt 

    t  z y xV 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂ 

    ∂  ,,,,,,

    ,,,,,,

    ,,, 

    ( )  ( )

    ( ) ( ) ( ) ( )t  z y xV T  z y xk t  z y xV T  z y xk  z

    t  z y xT  z y x D

     z  V V V 

    V ,,,,,,,,,,,,

    ,,,,,, 2

    ,  −+

      Φ+

    Φ

    ∂ 

    ∂ 

    ∂ 

    ∂ .

    Boundary and initial conditions for these equations are

    ( )0

    ,,,

    0

    =

    Φ∂

    = x x

    t  z y x ρ ,

    ( )0

    ,,,=

    Φ∂

    =  x L x x

    t  z y x ρ ,

    ( )0

    ,,,

    0

    =

    Φ∂

    = y y

    t  z y x ρ ,

    ( )0

    ,,,=

    Φ∂

    =  y L y y

    t  z y x ρ ,

    ( )0

    ,,,

    0

    =∂

    Φ∂

    = z z

    t  z y x ρ ,

    ( )0

    ,,,=

    Φ∂

    =   z L z z

    t  z y x ρ , Φ  I  ( x, y, z,0)=f Φ  I ( x, y, z), Φ V  ( x, y, z,0)=f Φ V ( x, y, z). (7)

    The functions  DΦρ ( x, y, z,T ) describe dependences of the diffusion coefficients of the above com-plexes of radiation defects on coordinate and temperature. The functions k  I ( x, y, z,T ) and k V ( x, y, z,

    T ) describe the parameters of decay of these complexes on coordinate and temperature.

    To describe physical processes they are usually solving nonlinear equations with space and time

    varying coefficients. In this situation only several limiting cases have been analyzed [29-32]. Oneway to solve the problem is solving the Eqs. (1), (4), (6) by the Bubnov-Galerkin approach [33]

    after appropriate transformation of these transformation. To determine the spatio-temporal distri-bution of concentration of dopant we transform the Eq.(1) to the following integro- differential

    form

    ( ) ( )  ( )   ( )

    ( )  ×∫ ∫ ∫  

    ++=∫ ∫ ∫

    t    y

     L

     z

     L L

     x

     L

     y

     L

     z

     L z y x   y z x y z   V 

    wv xV 

    wv xV T wv x Dud vd wd t wvuC 

     L L L

     z y x

    02*

    2

    2*1

    ,,,,,,1,,,,,,

      τ ς 

    τ ς   

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    5/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    5

    ( )( )

    ( )( )

      ( )( )

      ×∫ ∫ ∫  

    ++

    t x

     L

     z

     L L

     z y   x z  T  z y xP

    w yuC T w yu D

     L L

     z yd 

     x

    wv xC 

    T wv xP

    wv xC 

    0 ,,,

    ,,,1,,,

    ,,,

    ,,,

    ,,,1

    γ  

    γ  

    γ  

    γ   τ ξ τ 

    ∂ 

    τ ∂ τ ξ   

    ( )   ( )

    ( )

    ( )( )  ×∫ ∫ ∫+

    ++×

    t x

     L

     y

     L L

     z x   x y

    T  zvu D L L

     z xd 

     y

    w yuC 

    w yuV 

    w yuV 

    02

    *

    2

    2*

    1,,,

    ,,,,,,,,,1   τ 

    ∂ 

    τ ∂ τ ς 

    τ ς   

    ( )   ( )

    ( )( )( )

    ( )+

    +

    ++×

     y x L L

     y xd 

     z

     zvuC 

    T  z y xP

     zvuC 

     zvuV 

     zvuV τ 

    ∂ 

    τ ∂ τ ξ 

    τ ς 

    τ ς 

    γ  

    γ   ,,,

    ,,,

    ,,,1

    ,,,,,,1

    2*

    2

    2*1 

    ( )∫ ∫ ∫+ x

     L

     y

     L

     z

     L z y x   x y z

    ud vd wd wvu f  L L L

     z y x,, . (1a)

    Now let us determine solution of Eq.(1a) by Bubnov-Galerkin approach [33]. To use the ap-

    proach we consider solution of the Eq.(1a) as the following series

    ( ) ( ) ( ) ( ) ( )∑= =

     N 

    nnC nnnnC    t e zc yc xcat  z y xC  00 ,,, . 

    Here ( )   ( )2220

    22exp  −−−

    ++−=  z y xC nC 

      L L Lt  Dnt e   π  , cn( χ ) =cos (π   n  χ  /  L χ ). Number of terms N  in the

    series is finite. The above series is almost the same with solution of linear Eq.(1) (i.e. for ξ =0)and averaged dopant diffusion coefficient  D0. Substitution of the series into Eq.(1a) leads to thefollowing result

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫

    ×

    ∑+−=∑

    ==

    t    y

     L

     z

     L

     N 

    nnC nnnnC 

     z y

     N 

    nnC nnn

     y z

    ewcvc xca L L

     z yt e zs ys xs

    n

    a z y x

    0 1132

    1γ  

    τ π 

     

    ( )

    ( ) ( )

    ( )

      ( ) ( ) ( )×∑

    ++

    ×=

     N 

    nnnnC  L

      vc xsaT wv x D

    wv xV 

    wv xV 

    T wv xP1

    2*

    2

    2*1,,,

    ,,,,,,1

    ,,,

    τ ς 

    τ ς 

    ξ γ  

     

    ( ) ( ) ( ) ( ) ( ) ( )( )

    ∫ ∫ ∫   ×

    ∑+−×

    =

    t x

     L

     z

     L

     N 

    mmC mmmmC 

     z x

    nC n

     x z   T w yuPewc ycuca

     L L

     z xd ewcn

    0 1 ,,,1

    γ  

    γ   ξ τ τ τ   

    ( )  ( ) ( )

    ( )  ( ) ( ) ( ) ( )   ×∑

    ++×

    =

    τ τ τ 

    ς τ 

    ς    d ewc ysucnV 

    w yuV 

    w yuV T w yu D

     N 

    nnC nnn L

    12*

    2

    2*1

    ,,,,,,1,,,  

    ( )( )

      ( ) ( ) ( ) ( )   ×∫ ∫ ∫

    ∑+−×

    =

    t x

     L

     y

     L

     N 

    nnC nnnnC  L

     y x

    nC 

     x y

    e zcvcucaT  zvuP

    T  zvu D L L

     y xa

    0 1,,,1,,,

    γ  

    γ    τ 

    ξ  

    ( ) ( )( )

      ( ) ( ) ( ) ( )   ×+∑

    ++×

    = z y x

     N 

    nnC nnnnC 

     L L L

     z y xd e zsvcucan

     zvuV 

     zvuV τ τ 

    τ ς 

    τ ς 

    12*

    2

    2*1

    ,,,,,,1  

    ( )∫ ∫ ∫× x

     L

     y

     L

     z

     L x y z

    ud vd wd wvu f  ,, , 

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    6/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    6

    where sn( χ ) = sin (π n  χ  /  L χ ). We used condition of orthogonality to determine coefficients an in theconsidered series. The coefficients an  could be calculated for any quantity of terms  N . In thecommon case the relations could be written as

    ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ∫

    ×

    ∑+−=∑−==

    t  L   L   L  N 

    n nC nnnnC  L

     z y N 

    n nC 

    nC  z y x  x   y  z

    e zc yc xcaT  z y x D L L

    t en

    a L L L

    0 0 0 0 121 65

    222

    1,,,2

    γ  

    τ π π 

     

    ( )( ) ( )

    ( )  ( ) ( ) ( ) ( )×∑

    ++

    ×=

     N 

    nnC nnn

    nC  e zc yc xsn

    a

     z y xV 

     z y xV 

    T  z y xP 12*

    2

    2*12

    ,,,,,,1

    ,,,τ 

    τ ς 

    τ ς 

    ξ γ  

     

    ( ) ( )[ ]   ( ) ( )[ ]   ( )×∫ ∫ ∫ ∫−

    −+

    −+×t  L   L   L

     Ln

     z

    nn

     y

    n

     x   y  z

    T  z y x Dd  xd  yd  zd  zcn

     L zs z yc

    n

     L ys y

    0 0 0 0

    ,,,11   τ π π 

     

    ( ) ( ) ( ) ( ) ( )( )

    ( )

    ++

    ∑+×

    =*1

    1

    ,,,1

    ,,,1,,,

     z y xV 

    T  z y xPe zc yc xcaT  z y x D

     N 

    nnC nnnnC  L

    τ ς 

    ξ τ 

    γ  

    γ  

     

    ( )

    ( )( ) ( )

    ( )  ( ) ( )[ ]∑   ×

    −+

    ++

    +

    =

     N 

    n

    nC 

    n

     x

    nn

    a xc

    n

     L xs x

     z y xV 

     z y xV 

     z y xV 

    12*

    2

    2*12*

    2

    21

    ,,,,,,1

    ,,,

    π 

    τ ς 

    τ ς 

    τ ς   

    ( ) ( ) ( ) ( ) ( ) ( )[ ]   ×−

    −+×22

    212

    2   π τ 

    π τ 

    π 

     y x

    n

     z

    nnC nnn

     z x L L

    d  xd  yd  zd  zcn

     L zs ze zc ys xc

     L L 

    ( ) ( ) ( ) ( )( )

    ( )

    ( )∫ ∫ ∫ ∫  

    ++

    ∑+×

    =

    t  L   L   L  N 

    nnC nnnnC 

     x   y  z

     z y xV 

    T  z y xPe zc yc xca

    0 0 0 02*

    2

    21

    ,,,1

    ,,,1

      τ ς 

    ξ τ 

    γ  

    γ  

     

    ( )( ) ( ) ( ) ( ) ( ) ( )[ ]   ×∑

    −+

    +

    =

     N 

    nn

     xnnnn

    nC  L   xcn

     L xs x zs yc xcn

    aT  z y x DV 

     z y xV 

    1*1 1,,,

    ,,,

    π 

    τ ς   

    ( ) ( )[ ]   ( ) ( ) ( )[ ]∑ ∫   ×

    −++

    −+×=

     N 

    n

     L

    n

     x

    nnC n

     y

    n

     x

     xcn

     L xs xd  xd  yd  zd e yc

    n

     L ys y

    1 0

    11π 

    τ τ π 

     

    ( ) ( )[ ]   ( ) ( )[ ]   ( )∫ ∫

    −+

    −+× y   z

     L   L

    n

     z

    nn

     y

    n  xd  yd  zd  z y x f  zc

    n

     L zs z yc

    n

     L ys y

    0 0

    ,,11π π 

    As an example for γ   = 0 we obtain

    ( ) ( )[ ]   ( ) ( )[ ]   ( ) ( ){∫ ∫ ∫   +

    −+

    −+=

     x   y  z L  L   L

    nn

     y

    nn

     y

    nnC    xs x yd  zd  z y x f  zcn

     L zs z ycn

     L ys ya

    0 0 0,,11 π π   

    ( )[ ]   ( ) ( ) ( ) ( )[ ]   ( )

     

     

    ∫ ∫ ∫ ∫   ×

    −+

    −×t   L   L   L

     Ln

     y

    nnn

     x

    n

     x   y   z

    T  z y x D ycn

     L ys y yc xs

    n xd 

    n

     L xc

    0 0 0 0

    ,,,122

    1π π 

     

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    7/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    7

    ( ) ( )[ ]  ( ) ( )

    ( )   ( )  ×

    +

    ++

    −+×T  z y xPV 

     z y xV 

     z y xV  zc

    n

     L zs z

    n

     y

    n,,,

    1,,,,,,

    112*

    2

    2*1   γ  

    ξ τ ς 

    τ ς 

    π  

    ( ) ( ) ( ) ( ) ( ) ( )[ ]   ( ) ( )×∫ ∫ ∫ ∫

    −++×t    L   L   L

    nnn

     y

    nnnC nC n

     x   y  z

     zc ys xc

    n

     L xs x xced e xd  yd  zd  zc

    0 0 0 0

    21

    π 

    τ τ τ   

    ( ) ( )[ ]( )

    ( ) ( )

    ( )  ×

    ++

    +

    −+×2*

    2

    2*1

    ,,,,,,1

    ,,,11

     z y xV 

     z y xV 

    T  z y xP zc

    n

     L zs z

    n

     y

    n

    τ ς 

    τ ς 

    ξ 

    π    γ   

    ( ) ( ) ( ) ( ) ( )[ ]   ( ) ( ){∫ ∫ ∫   ×

    −++×t    L   L

    nnn

     x

    nnnC  L

     x   y

     ys yc xcn

     L xs x xced  xd  yd  zd T  z y x D

    0 0 0

    1,,,π 

    τ τ   

    ( )[ ]   ( ) ( )( )

    ( )

    ( )∫  

    ++

    +

    −+× z L

     Lnn

     y

     z y xV 

    T  z y xPT  z y x D zs yc

    n

     L y

    02*

    2

    2

    ,,,1

    ,,,1,,,21

      τ ς 

    ξ 

    π    γ   

    ( )( )

    1

    65

    222

    *1

    ,,,−

     

     −

    +   t e

    n

     L L Ld  xd  yd  zd 

     z y xV nC 

     z z z

    π τ 

    τ ς  . 

    For γ   = 1 one can obtain the following relation to determine required parameters

    ( ) ( ) ( ) ( )∫ ∫ ∫+±−= x   y  z L   L   L

    nnnnn

    n

    n

    nC   xd  yd  zd  z y x f  zc yc xca

    0 0 0

    2,,4

    2α  β 

    α 

     β , 

    where ( ) ( ) ( ) ( )  ( )   ( )

    ( )∫ ∫ ∫ ∫   ×

    ++=

    t    L   L   L

    nnnnC 

     z y

    n

     x   y   z

     z y xV 

     z y xV  zc yc xse

    n

     L L

    0 0 0 02*

    2

    2*12

    ,,,,,,12

    2

    τ ς 

    τ ς τ 

    π 

    ξ α   

    ( )

    ( )  ( ) ( )[ ]   ( ) ( )[ ]   ×+

    −+

    −+×n

     L Ld  xd  yd  zd  zc

    n

     L zs z yc

    n

     L ys y

    T  z y xP

    T  z y x D z x

    n

     z

    nn

     y

    n

     L

    2211

    ,,,

    ,,,

    π 

    ξ τ 

    π π  

    ( ) ( ) ( ) ( )[ ]   ( )  ( )

    ( )  ( ) ( )[ ]   ×∫ ∫ ∫ ∫

    −−

    −+×t    L   L   L

    n

     z

    n

     L

    nn

     x

    nnnC 

     x   y   z

     zcn

     L zs z

    T  z y xP

    T  z y x D zc xc

    n

     L xs x xce

    0 0 0 0

    1,,,

    ,,,1

    π π τ   

    ( )

    ( )

    ( )   ( )

    ( )  ( )   ×+

    ++×

    n

     L Ld  xd  yd  ys zd 

     z y xV 

     z y xV 

    T  z y xP

    T  z y x D   y xn

     L

    22*

    2

    2*12

    2,,,,,,

    1,,,

    ,,,

    π 

    ξ τ 

    τ ς 

    τ ς   

    ( ) ( ) ( ) ( )  ( )

    ( )

    ( ) ( )

    ( )  ×∫ ∫ ∫ ∫  

    ++×

    t    L   L   L L

    nnnnC 

     x   y   z

     z y xV 

     z y xV 

    T  z y xP

    T  z y x D zs yc xce

    0 0 0 0 2*

    2

    2*1

    ,,,,,,1

    ,,,

    ,,,2

      τ ς 

    τ ς τ   

    ( ) ( )[ ]   ( ) ( )[ ]   τ π π 

    d  xd  yd  zd  ycn

     L ys y xc

    n

     L xs x

    n

     y

    nn

     x

    n

    −+

    −+× 11 , ( ) ×∫=t 

    nC 

     z y

    n  en

     L L

    02

    2τ 

    π  β   

    ( ) ( ) ( ) ( )[ ]   ( )  ( )   ( )

    ( )∫ ∫ ∫   ×

    ++

    −+× x   y   z L

      L   L

    nn

     y

    nnn

     z y xV 

     z y xV  zc yc

    n

     L ys y yc xs

    0 0 02*

    2

    2*1

    ,,,,,,112

      τ ς 

    τ ς 

    π  

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    8/20

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    9/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    9

    We determine spatio-temporal distributions of concentrations of point defects as the same series

    ( ) ( ) ( ) ( ) ( )∑==

     N 

    nnnnnn

      t e zc yc xcat  z y x1

    0,,,  ρ  ρ  ρ  . 

    Parameters an ρ  should be determined in future. Substitution of the series into Eqs.(4a) leads to the

    following results

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   ×∑   ∫ ∫ ∫−=∑==

     N 

    n

    t   y

     L

     z

     L I nnnI 

     z y x

     N 

    nnI nnn

    nI 

     y z

    vd wd T wv x D zc yca L L L

     z yt e zs ys xs

    n

    a z y x

    1 0133

    ,,,π 

    π  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   −∑   ∫ ∫ ∫−×=

     N 

    n

    t x

     L

     z

     L I nnnI nnI 

     z y x

    nnI 

     x z

    d ud wd T w yu D zc xce ysa L L L

     z x xsd e

    1 0

    ,,,   τ τ π 

    τ τ   

    ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑   ∫ ∫ ∫−=

     x

     L

     y

     L

     z

     L I  I 

     N 

    n

    t x

     L

     y

     L I nnnI nnI 

     z y x   x y z x y

    T vvuk d ud vd T  zvu D yc xce zsa L L L

     y x,,,,,,

    ,1 0

    τ τ π 

     

    ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−

    ∑× ==

     x

     L

     y

     L

     z

     L

     N 

    nnnnnI 

     z y x z y x

     N 

    nnI nnnnI 

     x y zwcvcuca L L L

     z y x

     L L L

     z y x

    ud vd wd t ewcvcuca 1

    2

    1  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   ×∫ ∫ ∫+∑×=

     x

     L

     y

     L

     z

     L I 

     N 

    nV  I nV nnnnV nI 

     x y z

    ud vd wd wvu f ud vd wd T vvuk t ewcvcucat e ,,,,,1

     z y x  L L L z y x×  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   ×∑   ∫ ∫ ∫−=∑==

     N 

    n

    t   y

     L

     z

     LV nnnV 

     z y x

     N 

    nnV nnn

    nV 

     y z

    vd wd T wv x D zc yca L L L

     z yt e zs ys xs

    n

    a z y x

    1 0133

    ,,,π 

    π  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )  −

    ∑   ∫ ∫ ∫−×

    =

     N 

    n

    t x

     L

     z

     LV nnnV nnV 

     z y x

    nnV  x z d ud wd T w yu D zc xce ysa L L L

     z x

     xsd e 1 0 ,,,   τ τ 

    π 

    τ τ   

    ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫−∑   ∫ ∫ ∫−=

     x

     L

     y

     L

     z

     LV V 

     N 

    n

    t x

     L

     y

     LV nnnV nnV 

     z y x   x y z x y

    T vvuk d ud vd T  zvu D yc xce zsa L L L

     y x,,,,,,

    ,1 0

    τ τ π 

     

    ( ) ( ) ( ) ( ) ( ) ( ) ( )×∫ ∫ ∫ ∑−

    ∑×

    ==

     x

     L

     y

     L

     z

     L

     N 

    nnnnnI 

     z y x z y x

     N 

    nnI nnnnV 

     x y z

    wcvcuca L L L

     z y x

     L L L

     z y xud vd wd t ewcvcuca

    1

    2

    1

     

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   ×∫ ∫ ∫+∑×=

     x

     L

     y

     L

     z

     LV 

     N 

    nV  I nV nnnnV nI 

     x y z

    ud vd wd wvu f ud vd wd T vvuk t ewcvcucat e ,,,,,1

     z y x   L L L z y x× .

    We used orthogonality condition of functions of the considered series framework the heterostruc-

    ture to calculate coefficients an ρ . The coefficients an could be calculated for any quantity of terms N . In the common case equations for the required coefficients could be written as

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑   ∫ ∫ ∫

    −++−−=∑−==

     N 

    n

    t  L   L

    n

     y

    n yn

    nI 

     x

     N 

    nnI 

    nI  z y x  x   y

     ycn

     L ys y L xc

    n

    a

     Lt e

    n

    a L L L

    1 0 0 02

    165

    222

    122

    2212

    1

    π π π  

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    10/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    10

    ( ) ( ) ( )[ ]   ( ) ( ){∑   ∫ ∫   +−∫

    −+×=

     N 

    n

    t  L

    n

    nI 

     y

     L

    nI n

     z

    n I 

     x z

     xs xn

    a

     Ld e xd  yd  zd  zc

    n

     L zs zT  z y x D

    1 0 02

    0

    22

    11

    2,,,

    π τ τ 

    π  

    ( )[ ]   ( ) ( ) ( )[ ]   ( )[ ]×∫ ∫   −

    −++

    −++ y   z

     L   L

    nn

     z

    n z I n

     x

     x  yc zd  zc

    n

     L zs z LT  z y x D xc

    n

     L L

    0 0

    2112

    2

    2,,,12

    π π 

     

    ( ) ( ) ( ) ( )[ ]   ( )   −∫

    −++× z L

    nI n

     z

    n z I nI   d e xd  yd  zd  zc

    n

     L zs z LT  z y x Dd e xd  yd 

    0

    122

    2,,,   τ τ π 

    τ τ   

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑   ∫ ∫ ∫

    −++

    −++−=

     N 

    n

    t  L   L

    n

     y

    n yn

     x

    n x

    nI 

     z

     x   y

     ycn

     L ys y L xc

    n

     L xs x L

    n

    a

     L 1 0 0 0212

    2212

    22

    2

    1

    π π π  

    ( )[ ]   ( ) ( ) ( ) ( )[ ]∑   ∫

    +−+−∫   −×=

     N 

    n

     L

    n

     x

     xnI nI 

     L

    nI  I n

     x z

     xcn

     L Lt ead e xd  yd  zd T  z y x D zc

    1 0

    2

    0

    122

    2,,,21π 

    τ τ   

    ( )} ( ) ( )[ ]   ( ) ( )[ ]∫ ∫

    +−+

    −+++ y   z

     L   L

    n

     z

     z I  I n

     y

    n yn  zc

    n

     L LT  z y xk  yc

    n

     L ys y L xs x

    0 0,

    122

    ,,,122

    22π π 

     

    ( )} ( ) ( ) ( ) ( )[ ]   {∑   ∫ ∫   +

    −++−+=

     N 

    n

     L   L

     yn

     x

    n xnV nI nV nI n

     x   y

     L xcn

     L xs x Lt et eaa xd  yd  zd  zs z

    1 0 0

    122

    22π 

     

    ( ) ( )[ ]   ( ) ( ) ( )[ ]∫   ×

    −++

    −++ z L

    n

     z

    n zV  I n

     y

    n  zd  zc

    n

     L zs z LT  z y xk  yc

    n

     L ys y

    0,

    122

    2,,,122

    2π π 

     

    ( ) ( )[ ]   ( ) ( )[ ]   ( )×∑ ∫ ∫ ∫

    −+

    −++×=

     N 

    n

     L   L   L

     I n y

    nn x

    n

     x   y  z

    T  z y x f  ycn

     L ys y xcn

     L xs x xd  yd 1 0 0 0

    ,,,11π π 

     

    ( ) ( )[ ]   xd  yd  zd  zcn

     L zs z L

    n

     z

    n z

    −++× 122

    2π 

     

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑   ∫ ∫ ∫

    −++−−=∑−==

     N 

    n

    t  L   L

    n

     y

    n yn

    nV 

     x

     N 

    nnV 

    nV  z y x  x   y

     ycn

     L ys y L xc

    n

    a

     Lt e

    n

    a L L L

    1 0 0 02

    165

    222

    122

    2212

    1

    π π π  

    ( ) ( ) ( )[ ]   ( ) ( ){∑   ∫ ∫   +−∫

    −+×=

     N 

    n

    t  L

    n

    nV 

     y

     L

    nV n

     z

    nV 

     x z

     xs x

    n

    a

     L

    d e xd  yd  zd  zc

    n

     L zs zT  z y x D

    1 0 02

    0

    2

    2

    11

    2

    ,,,

    π 

    τ τ 

    π 

     

    ( )[ ]   ( ) ( ) ( )[ ]   ( )[ ] ×∫ ∫   −

    −++

    −++ y  z

     L   L

    nn

     z

    n zV n

     x

     x  yc zd  zc

    n

     L zs z LT  z y x D xc

    n

     L L

    0 0

    21122

    2,,,12π π 

     

    ( ) ( ) ( ) ( )[ ]   ( )   −∫

    −++× z L

    nV n

     z

    n zV nV   d e xd  yd  zd  zc

    n

     L zs z LT  z y x Dd e xd  yd 

    0

    122

    2,,,   τ τ π 

    τ τ   

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    11/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    11

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑   ∫ ∫ ∫

    −++

    −++−=

     N 

    n

    t  L   L

    n

     y

    n yn

     x

    n x

    nV 

     z

     x   y

     ycn

     L ys y L xc

    n

     L xs x L

    n

    a

     L 1 0 0 0212

    2212

    22

    2

    1

    π π π  

    ( )[ ]   ( ) ( ) ( ) ( )[ ]∑   ∫

    +−+−∫   −×=

     N 

    n

     L

    n

     x

     xnV nV 

     L

    nV V n

     x z

     xc

    n

     L Lt ead e xd  yd  zd T  z y x D zc

    1 0

    2

    0

    12

    2

    2,,,21

    π 

    τ τ   

    ( )} ( ) ( )[ ]   ( ) ( )[ ]∫ ∫

    +−+

    −+++ y   z

     L   L

    n

     z

     zV V n

     y

    n yn  zc

    n

     L LT  z y xk  yc

    n

     L ys y L xs x

    0 0,

    122

    ,,,122

    22π π 

     

    ( )} ( ) ( ) ( ) ( )[ ]   {∑   ∫ ∫   +

    −++−+=

     N 

    n

     L   L

     yn

     x

    n xnV nI nV nI n

     x   y

     L xcn

     L xs x Lt et eaa xd  yd  zd  zs z

    1 0 0

    122

    22π 

     

    ( ) ( )[ ]   ( ) ( ) ( )[ ]∫   ×

    −++

    −++ z L

    n

     z

    n zV  I n

     y

    n  zd  zc

    n

     L zs z LT  z y xk  yc

    n

     L ys y

    0,

    122

    2,,,122

    2π π 

     

    ( ) ( )[ ]   ( ) ( )[ ]   ( )×∑ ∫ ∫ ∫

    −+

    −++×=

     N 

    n

     L   L   L

    V n

     y

    nn

     x

    n

     x   y   z

    T  z y x f  ycn

     L ys y xc

    n

     L xs x xd  yd 

    1 0 0 0

    ,,,11π π 

     

    ( ) ( )[ ]   xd  yd  zd  zcn

     L zs z L

    n

     z

    n z

    −++× 122

    2π 

    .

    In the final form relations for required parameters could be written as

    ( ) 

      

        −+−

    +−=

     A

     yb yb

     Ab

    b

     Aba   nI nV 

    nI 

    2

    3

    4

    2

    3

    4

    3 444

    λ γ  ,

    nI nI 

    nI nI nI nI nI 

    nV a

    aaa

     χ 

    λ δ γ     ++−=

    2

    where ( ) ( ) ( ) ( )[ ]   ( ){∫ ∫ ∫   ++

    −++= x   y   z L   L   L

     ynn

     x

    n xnn  L ys y xc

    n

     L xs x LT  z y xk t e

    0 0 0,

    2122

    2,,,2π 

    γ    ρ  ρ  ρ  ρ   

    ( )[ ]   ( ) ( )[ ]   xd  yd  zd  zcn

     L zs z L yc

    n

     Ln

     z

    n zn

     y

    −++

    −+ 122

    2122   π π 

    , ( )×∫=t 

    n

     x

    n  e

    n L 022

    1τ 

    π δ 

      ρ  ρ  

    ( ) ( )[ ]   ( ) ( )[ ]   ( )   [∫ ∫ ∫   −

    −+

    −+× x   y  z L  L   L

    n

     z

    nn

     y

    n  yd  zd T  z y x D zc

    n

     L zs z yc

    n

     L ys y

    0 0 0

    1,,,12

    12

      ρ π π 

     

    ( )]   ( ) ( ) ( )[ ]   ( )[ ]  {∫ ∫ ∫ ∫   +−

    −+++−

    t    L   L   L

     znn

     x

    n xn

     y

    n

     x   y  z

     L yc xcn

     L xs x Len Ld  xd  xc 0 0 0 02 211222

    12 π τ π τ 

      ρ   

    ( ) ( )[ ]   ( ) ( ) ( ){∫ ∫   ++

    −++t    L

    nn

     z

    n

     z

    n

     x

     xs xen L

    d  xd  yd  zd T  z y x D zcn

     L zs z

    0 02

    22

    1,,,12

    22   τ 

    π τ 

    π   ρ  ρ 

     

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    12/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    12

    ( )[ ]   ( ) ( )[ ]   ( )[ ]   ( )   ×∫ ∫   −

    −++

    −++ y   z

     L   L

    nn

     y

    n yn

     x

     x  zd T  z y x D zc ycn

     L ys y L xc

    n

     L L

    0 0

    ,,,2112

    12 ρ 

    π π  

    ( )t e

    n

     L L Ld  xd  yd 

    n

     z y x

     ρ 

    π 

    τ 65

    222

    −× , ( ) ( )[ ]   ( )[ ]∫ ∫

    +−+

    −+= x   y L   L

    n

     y

     yn

     x

    nnIV   yc

    n

     L L xc

    n

     L xs x

    0 0

    12

    2

    1

    π π 

     χ   

    ( )} ( ) ( ) ( )[ ]   ( ) ( )t et e xd  yd  zd  zcn

     L zs z LT  z y xk  ys y

    nV nI 

     L

    n

     z

    n zV  I n

     z

    −+++0

    ,12

    22,,,2

    π ,

    ( ) ( )[ ]   ( ) ( )[ ]   ( ) ( )[ ]∫ ∫ ∫   ×

    −+

    −+

    −+= x   y   z L   L   L

    n

     z

    nn

     y

    nn

     x

    nn  zc

    n

     L zs z yc

    n

     L ys y xc

    n

     L xs x

    0 0 0

    111π π π 

    λ   ρ   

    ( )   xd  yd  zd T  z y x f  ,,, ρ 

    × ,22

    4   nI nI nI nV b   χ γ  γ  γ     −= ,

    nI nI nV nI nI nI nI nV b   γ   χ δ  χ δ δ γ  γ     −−= 2

    32 ,

    2

    2

    348   bb y A   −+= , ( ) 22

    22

    nI nI nV nI nI nV nI nV nI nI nV b   χ λ λ δ  χ δ γ  γ  λ δ γ     −+−+= , ×=

    nI b   λ 2

    nI nI nV nI nV   λ  χ δ δ γ     −× ,

    4

    33 323 32

    3b

    bq pqq pq y   −++−−+= ,

    2

    4

    2

    342

    9

    3

    b

    bbb p

      −= ,

    ( ) 34

    2

    4132

    3

    3542792   bbbbbbq   +−= .

    We determine distributions of concentrations of simplest complexes of radiation defects in spaceand time as the following functional series

    ( ) ( ) ( ) ( ) ( )∑=Φ=

    Φ

     N 

    nnnnnn

      t e zc yc xcat  z y x1

    0,,,  ρ  ρ  ρ  . 

    Here anΦρ  are the coefficients, which should be determined. Let us previously transform the Eqs.

    (6) to the following integro-differential form

    ( ) ( )  ( )

    ×∫ ∫ ∫  Φ

    =∫ ∫ ∫Φ   Φt    y

     L

     z

     L

     I 

     I 

     x

     L

     y

     L

     z

     L I 

     z y x   y z x y z

    d vd wd  x

    wv xT wv x Dud vd wd t wvu

     L L L

     z y x

    0

    ,,,,,,,,,   τ 

    ∂ 

    τ ∂  

    ( )  ( )

    ( )∫ ∫ ∫   ×+∫ ∫ ∫  Φ

    +×ΦΦ

    t x

     L

     y

     L I 

     y x

    t x

     L

     z

     L

     I 

     I 

     z x z y   x y x z

    T  zvu D L L

     y xd ud wd 

     y

    w yuT w yu D

     L L

     z x

     L L

     z y

    00

    ,,,,,,

    ,,,   τ ∂ 

    τ ∂  

    ( )( ) ( )   −∫ ∫ ∫+

    Φ×

     x

     L

     y

     L

     z

     L I  I 

     z y x

     I 

     x y z

    ud vd wd wvu I T wvuk  L L L

     z y xd ud vd 

     z

     zvuτ τ 

    ∂ 

    τ ∂ ,,,,,,

    ,,, 2,

     (6a) 

    ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫−   Φ x

     L

     y

     L

     z

     L I 

     z y x

     x

     L

     y

     L

     z

     L I 

     z y x   x y z x y z

    ud vd wd wvu f  L L L

     z y xud vd wd wvu I T wvuk 

     L L L

     z y x,,,,,,,,   τ   

    ( ) ( )  ( )

    ×∫ ∫ ∫

      Φ

    =∫ ∫ ∫Φ Φt   y

     L

     z

     L

     x

     L

     y

     L

     z

     LV 

     z y x   y z x y zd vd wd  x

    wv x

    T wv x Dud vd wd t wvu L L L

     z y x

    0

    ,,,,,,,,,   τ ∂ 

    τ ∂  

    ( )  ( )

    ( )∫ ∫ ∫   ×+∫ ∫ ∫  Φ

    +×  ΦΦ

    t x

     L

     y

     LV 

     y x

    t x

     L

     z

     L

     z x z y   x y x z

    T  zvu D L L

     y xd ud wd 

     y

    w yuT w yu D

     L L

     z x

     L L

     z y

    00

    ,,,,,,

    ,,,   τ ∂ 

    τ ∂  

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    13/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    13

    ( )( ) ( )   −∫ ∫ ∫+

    Φ×

     x

     L

     y

     L

     z

     LV V 

     z y x

     x y z

    ud vd wd wvuV T wvuk  L L L

     z y xd ud vd 

     z

     zvuτ τ 

    ∂ 

    τ ∂ ,,,,,,

    ,,, 2,

     

    ( ) ( ) ( )∫ ∫ ∫+∫ ∫ ∫−   Φ x

     L

     y

     L

     z

     LV 

     z y x

     x

     L

     y

     L

     z

     LV 

     z y x  x y z x y z

    ud vd wd wvu f  L L L

     z y xud vd wd wvuV T wvuk 

     L L L

     z y x,,,,,,,,   τ  .

    Substitution of the previously considered series in the Eqs.(6a) leads to the following form

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )×∑   ∫ ∫ ∫−=∑−=

    Φ=

    Φ N 

    n

    t    y

     L

     z

     LnnnI n I n

     z y x

     N 

    nnI nnn

     I n

     y z

    wcvct e xsan L L L

     z yt e zs ys xs

    n

    a z y x

    1 0133

    π 

    π  

    ( ) ( ) ( ) ( )   ×∑   ∫ ∫ ∫−×=

    ΦΦΦ

     N 

    n

    t x

     L

     z

     L I nn I n

     z y x

     I 

     x z

    d ud wd T wvu Dwcuca L L L

     z xd vd wd T wv x D

    1 0

    ,,,,,,   τ π 

    τ   

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   +∑   ∫ ∫ ∫−×=

    ΦΦΦΦ

     N 

    n

    t x

     L

     y

     L I nn I nn I n

     z y x

     I nn

     x y

    d ud vd T  zvu Dvcuct e zsan L L L

     y xt e ysn

    1 0

    ,,,   τ π 

     

    ( ) ( ) ( )   ×∫ ∫ ∫+∫ ∫ ∫+   Φ x

     L

     y

     L

     z

     L I 

     x

     L

     y

     L

     z

     L I  I 

     z y x   x y z x y z

    ud vd wd wvu f ud vd wd wvu I T wvuk  L L L

     z y x,,,,,,,,

    2

    ,  τ   

    ( ) ( )∫ ∫ ∫−× x

     L

     y

     L

     z

     L I 

     z y x z y x   x y z

    ud vd wd wvu I T wvuk  L L L

     z y x

     L L L

     z y xτ ,,,,,,  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ×∑   ∫ ∫ ∫−=∑−=

    Φ=

    Φ  N 

    n

    t    y

     L

     z

     LnnnV nV n

     z y x

     N 

    nnV nnn

    V n

     y z

    wcvct e xsan L L L

     z yt e zs ys xs

    n

    a z y x

    1 0133

    π 

    π  

    ( ) ( ) ( ) ( )   ×∑   ∫ ∫ ∫−× = ΦΦ N 

    n

    t x

     L

     z

     LV nn

     z y x

     x zd ud wd T wvu Dwcucn L L L

     z xd vd wd T wv x D 1 0 ,,,,,,   τ 

    π τ   

    ( ) ( ) ( ) ( ) ( ) ( ) ( )   ×∑   ∫ ∫ ∫−×=

    ΦΦΦΦ

     N 

    n

    t x

     L

     y

     LV nnV nn

     z y x

    V nnV n

     x y

    d ud vd T  zvu Dvcuct e zsn L L L

     y xt e ysa

    1 0

    ,,,   τ π 

     

    ( ) ( ) ( )   ×∫ ∫ ∫+∫ ∫ ∫+× ΦΦ x

     L

     y

     L

     z

     LV 

     x

     L

     y

     L

     z

     LV V 

     z y x

    V n

     x y z x y z

    ud vd wd wvu f ud vd wd wvuV T wvuk  L L L

     z y xa ,,,,,,,, 2

    ,  τ   

    ( ) ( )∫ ∫ ∫−× x

     L

     y

     L

     z

     LV 

     z y x z y x   x y z

    ud vd wd wvuV T wvuk  L L L

     z y x

     L L L

     z y xτ ,,,,,, .

    We used orthogonality condition of functions of the considered series framework the heterostruc-

    ture to calculate coefficients anΦρ . The coefficients anΦρ  could be calculated for any quantity of

    terms N . In the common case equations for the required coefficients could be written as

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑ ∫ ∫ ∫

    −++−−=∑−==

    Φ

    Φ N 

    n

    t  L   L

    n

     y

    n yn

     x

     N 

    n I n

     I n z y x  x   y

     ycn

     L ys y L xc

     Lt e

    n

    a L L L

    1 0 0 0165

    222

    122

    2212

    1

    π π π  

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    14/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    14

    ( ) ( ) ( )[ ]   ( ) ( ){∑∫ ∫   +−∫

    −+×=

    ΦΦ

    Φ N 

    n

    t  L

    n

     L

     I nn

     z

    n I 

     I n x z

     xs xd e xd  yd  zd  zcn

     L zs zT  z y x D

    n

    a

    1 0 002

    22

    11

    2,,,

    π τ τ 

    π  

    ( )[ ]   ( )[ ]   ( ) ( ) ( )[ ]   ×∫ ∫

    −+−

    −++  Φ

     y  z L   L

    n

     z

    n I nn

     x

     x  xd  yd  zd  zc

    n

     L zs zT  z y x D yc xc

    n

     L L

    0 0

    1

    2

    ,,,2112

    2   π π 

     

    ( )( ) ( )[ ]   ( ) ( )[ ]∑   ∫ ∫ ∫

    +−+

    −+−×=

    ΦΦ

    Φ

     N 

    n

    t  L   L

    n

     y

    nn

     x

    n

     I n

     x y

     I n

     I n

     x   y

     ycn

     L ys y xc

    n

     L xs x

    n

    a

     Ld 

     Ln

    ea

    1 0 0 022

    122

    2122

    1

    π π π τ 

    τ  

    }   ( )[ ]   ( ) ( ) ( ) ( )[ ]∑   ∫ ∫

    +−+∫   −+=

    Φ

    Φ

    ΦΦ

     N 

    n

    t    L

    n

     x

     I n

     I n L

     I n I n y

     x z

     xcn

     Le

    n

    ad e xd  yd  zd T  z y x D yc L

    1 0 033

    0

    12

    1,,,21

    π τ 

    π τ τ   

    ( )} ( ) ( )[ ]   ( ) ( ) ( )[ ]∫

    +−∫

    −++ z y   L

    n

     z

     I  I 

     L

    n

     y

    nn  zc

    n

     LT  z y xk t  z y x I  yc

    n

     L ys y xs x

    0,

    2

    0

    12

    ,,,,,,12   π π 

     

    ( )} ( ) ( ) ( )[ ]   ( )[ ]∑   ∫ ∫ ∫

    +−

    −+−+=

    Φ

    Φ N 

    n

    t    L   L

    n

     y

    n

     x

    n I n

     I n

    n

     x   y

     ycn

     L xc

    n

     L xs xe

    n

    a xd  yd  zd  zs z

    1 0 0 033

    12

    12

    1

    π π τ 

    π  

    ( )} ( ) ( )[ ]   ( ) ( )   ×∑+∫

    −++=

    Φ N 

    n

     I n L

     I n

     z

    nnn

    a xd  yd  zd t  z y x I T  z y xk  zc

    n

     L zs z ys y

     z

    133

    0

    1,,,,,,1

    2   π π  

    ( ) ( ) ( )[ ]   ( ) ( )[ ]   ( )[ ]∫ ∫ ∫ ∫

    +−

    −+

    −+×  Φ

    t    L   L   L

    n

     z

    n

     y

    nn

     x

    n I n

     x   y   z

     zcn

     L yc

    n

     L ys y xc

    n

     L xs xe

    0 0 0 0

    12

    12

    12   π π π 

    τ   

    ( )} ( )   xd  yd  zd  z y x f  zs z I n

    ,,Φ

    +  

    ( ) ( )[ ]   ( ) ( )[ ]   ×∑ ∫ ∫ ∫

    −++−−=∑−==

    Φ

    Φ N 

    n

    t  L   L

    n

     y

    n yn

     x

     N 

    nV n

    V n z y x  x   y

     ycn

     L ys y L xc

     Lt e

    n

    a L L L

    1 0 0 0165

    222

    122

    2212

    1

    π π π  

    ( ) ( ) ( )[ ]   ( ) ( ){∑ ∫ ∫   +−∫

    −+×=

    ΦΦ

    Φ N 

    n

    t  L

    n

     L

    V nn

     z

    nV 

    V n x z

     xs xd e xd  yd  zd  zcn

     L zs zT  z y x D

    n

    a

    1 0 002

    22

    11

    2,,,

    π τ τ 

    π  

    ( )[ ]   ( )[ ]   ( ) ( ) ( )[ ]   ×∫ ∫

    −+−

    −++  Φ

     y   z L   L

    n

     z

    nV nn

     x

     x  xd  yd  zd  zc

    n

     L zs zT  z y x D yc xc

    n

     L L

    0 0

    12

    ,,,21122   π π 

     

    ( )( ) ( )[ ]   ( ) ( )[ ]∑   ∫ ∫ ∫

    +−+

    −+−×=

    ΦΦ

    Φ

     N 

    n

    t  L   L

    n

     y

    nn

     x

    n

    V n

     x y

    V n

    V n

     x   y

     ycn

     L ys y xc

    n

     L xs x

    n

    a

     Ld 

     Ln

    ea

    1 0 0 022

    122

    2122

    1

    π π π τ 

    τ  

    }   ( )[ ]   ( ) ( ) ( ) ( )[ ]∑   ∫ ∫

    +−+∫   −+=

    Φ

    Φ

    ΦΦ

     N 

    n

    t    L

    n

     x

    V n

    V n L

    V nV n y

     x z

     xcn

     Le

    n

    ad e xd  yd  zd T  z y x D yc L

    1 0 033

    0

    12

    1,,,21

    π τ 

    π τ τ   

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    15/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    15

    ( )} ( ) ( )[ ]   ( ) ( ) ( )[ ]∫

    +−∫

    −++ z y   L

    n

     z

    V V 

     L

    n

     y

    nn  zc

    n

     LT  z y xk t  z y xV  yc

    n

     L ys y xs x

    0,

    2

    0

    12

    ,,,,,,12   π π 

     

    ( )} ( ) ( ) ( )[ ]   ( )[ ]∑   ∫ ∫ ∫

    +−

    −+−+=

    Φ

    Φ N 

    n

    t    L   L

    n

     y

    n

     x

    nV n

    V n

    n

     x   y

     yc

    n

     L xc

    n

     L xs xe

    n

    a xd  yd  zd  zs z

    1 0 0 033

    1

    2

    1

    2

    1

    π π 

    τ 

    π 

     

    ( )} ( ) ( )[ ]   ( ) ( )   ×∑+∫

    −++=

    Φ N 

    n

    V n L

    V n

     z

    nnn

    a xd  yd  zd t  z y xV T  z y xk  zc

    n

     L zs z ys y

     z

    133

    0

    1,,,,,,1

    2   π π  

    ( ) ( ) ( )[ ]   ( ) ( )[ ]   ( )[ ]∫ ∫ ∫ ∫

    +−

    −+

    −+×  Φ

    t    L   L   L

    n

     z

    n

     y

    nn

     x

    nV n

     x   y   z

     zcn

     L yc

    n

     L ys y xc

    n

     L xs xe

    0 0 0 0

    12

    12

    12   π π π 

    τ   

    ( )} ( )   xd  yd  zd  z y x f  zs zV n

    ,,Φ

    + .

    3. DISCUSSION 

    In this section we analyzed redistribution of dopant with account redistribution of radiation de-fects. The analysis shown, that presents of interface between materials of heterostructure gives a

    possibility to increase absolute value of gradient of concentration of dopant outside of enrichedare by the dopant (see Figs. 2 and 3). At the same time homogeneity of concentration of dopant inenriched area increases (see Figs. 2 and 3). The effects could be find, when dopant diffusion coef-

    ficient in the doped area is larger, than in the nearest areas. Otherwise absolute value of gradientof concentration of dopant decreases outside enriched by the dopant area (see Fig. 4). However

    the decreasing could be partially or fully compensated by using high doping of materials. Thehigh doping leads to significant nonlinearity of diffusion of dopant. To increase compactness of

    the considered circuits XOR it is attracted an interest the first relation between values of dopantdiffusion coefficient.

    Fig.2a. Spatial distributions of infused dopant concentration in the considered heterostructure. The consi-

    dered direction perpendicular to the interface between epitaxial layer substrate. Difference between values

    of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of curves

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    16/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    16

     x

    0.0

    0.5

    1.0

    1.5

    2.0

         C             (    x  ,

          Θ             )

    23

    4

    1

    0   L /4   L /2 3 L /4   L

    Epitaxial layer Substrate

     

    Fig.2b. Spatial distributions of infused dopant concentration in the considered heterostructure. Curves 1 and

    3 corresponds to annealing time Θ = 0.0048( L x2+ L y

    2+ L z2)/  D0. Curves 2 and 4 corresponds to annealing time

    Θ= 0.0057( L x

    2

    + L y2

    + L z2

    )/  D0. Curves 1 and 2 corresponds to homogenous sample. Curves 3 and 4 corres-ponds to the considered heterostructure. Difference between values of dopant diffusion coefficient in layers

    of heterostructure increases with increasing of number of curves

     x

    0.00000

    0.00001

    0.00010

    0.00100

    0.01000

    0.10000

    1.00000

         C             (    x  ,

          Θ             )

     f C ( x)

     L /40   L /2 3 L /4   L x0

    1

    2

    Substrate

    Epitaxial layer 1

    Epitaxial layer 2

     

    Fig.3. Implanted dopant distributions in heterostructure in heterostructure with two epitaxial layers (solid

    lines) and with one epitaxial layer (dushed lines) for different values of annealing time. Difference between

    values of dopant diffusion coefficient in layers of heterostructure increases with increasing of number of

    curves

    Increasing of annealing time leads to acceleration of diffusion. In this situation one can find in-

    creasing quantity of dopant in materials near doped sections. If annealing time is small, the do-pant can not achieves nearest interface between layers of heterostructure. These effects are shown

    by Figs. 5 and 6. We used recently introduced criterion [16-23] to estimate compromise value of

    annealing time. Framework the criterion we approximate real distribution of concentration of do-

    pant by idealized step-wise distribution ψ  ( x, y, z), which would be better to use for minimizationdimensions of elements of the considered circuit XOR [19-26]. Farther the required compromiseannealing time has been calculated by minimization the following mean-squared error

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    17/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    17

    ( ) ( )[ ]∫ ∫ ∫   −Θ= x   y   z L   L   L

     z y x

     xd  yd  zd  z y x z y xC  L L L

    U 0 0 0

    ,,,,,1

    ψ  . (8)

         C             (    x  ,

          Θ             )

    0   L x

    2

    13

    4

     Fig. 4. Distributions of concentrations of infused dopant in the considered heterostructure. Curve 1 is the

    idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-

    ent values of annealing time for increasing of annealing time with increasing of number of curve

     x

         C             (    x  ,

          Θ             )

    1

    23

    4

    0   L

     

    Fig. 5. Distributions of concentrations of implanted dopant in the considered heterostructure. Curve 1 is the

    idealized distribution of dopant. Curves 2-4 are the real distributions of concentrations of dopant for differ-

    ent values of annealing time for increasing of annealing time with increasing of number of curve

    We analyzed optimal value of annealing time. The analysis shows, that optimal value of anneal-ing time for ion type of doping is smaller, than optimal value of annealing time for diffusion type

    of doping. It is known, that ion doping of materials leads to radiation damage of doped materials.In this situation radiation defects should be annealed. The annealing leads to the above difference

    between optimal values of annealing time of dopant. The annealing of implanted dopant is neces-sary in the case, when the dopant did not achieved nearest interface between layers of heterostruc-ture during annealing of radiation defects.

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    18/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    18

    It should be noted, that using diffusion type of doping did not leads to radiation damage of mate-

    rials. However radiation damage of materials during ion doping gives a possibility to decreasemismatch-induced stress in heterostructure [34].

    4. CONCLUSIONS 

    In this paper we introduced an approach to decrease dimensions of a circuit XOR. The approach

    based on optimization of manufacturing field-effect heterotransistors, which includes into itselfthe considered circuit.

    ACKNOWLEDGEMENTS 

    This work is supported by the agreement of August 27, 2013 №  02.В.49.21.0003 between The

    Ministry of education and science of the Russian Federation and Lobachevsky State University ofNizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-

    cational fellowship for scientific research of Government of Nizhny Novgorod region of Russiaand of Nizhny Novgorod State University of Architecture and Civil Engineering.

    REFERENCES 

    [1] S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions in Si prepared by pulse photon

    annealing. Semiconductors. Vol. 36 (5). P. 611-617 (2002).

    [2] M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETs MOSFETs. Int.

    J. Nanoscience. Vol. 7 (2-3). P. 81-84 (2008).

    [3] D. Fathi, B. Forouzandeh. Accurate analysis of global interconnects in nano-FPGAs. Nano. Vol. 4 (3).

    P. 171-176 (2009).

    [4] D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale

    technologies. Nano. Vol. 4 (4). P. 233-238 (2009).

    [5] A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Lit-

    vin, V.V. Milenin, A.V. Sachenko. Au–TiBx−n-6H-SiC Schottky barrier diodes: the features of cur-

    rent flow in rectifying and nonrectifying contacts. Semiconductors. Vol. 43 (7). P. 897-903 (2009).

    [6] Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAspnp δ-doped heterojunction bipolar transistor. Semiconductors. Vol. 43 (7). С. 971-974 (2009).

    [7] P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi,

    R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxy-

    sulfide buffer layer. Appl. Phys. Lett. Vol. 102 (5). P. 053901-053905 (2013).

    [8] J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shal-

    low acceptor complexes in p-type ZnO. Appl. Phys. Lett. Vol. 102 (15). P. 152114-152118 (2013).

    [9] S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS

    0.18 µm two-stage Op-amp. Mat. Sci. Sem. Proc. Vol. 24. P. 9-14 (2014).

    [10] N.I. Volokobinskaya, I.N. Komarov, T.V. Matioukhina, V.I. Rechetniko, A.A. Rush, I.V. Falina, A.S.

    Yastrebov. Investigation of technological processes of manufacturing of the bipolar power high-

    voltage transistors with a grid of inclusions in the collector region. Semiconductors. Vol. 35 (8). P.1013-1017 (2001).

    [11] G. Volovich. Modern chips UM3Ch class D manufactured by firm MPS. Modern Electronics. Issue 2.

    P. 10-17 (2006).[12] M.V. Dunga, L. Chung-Hsun, X. Xuemei, D.D. Lu, A.M. Niknejad, H. Chenming. Modeling ad-

    vanced FET technology in a compact model. IEEE Transactions on Electron Devices. Vol. 53 (9). P.

    157-162 (2006).

    [13] A. Kerentsev, V. Lanin. Constructive-technological features of MOSFET-transistors. Power Electron-

    ics. Issue 1. P. 34-38 (2008).

    [14] C. Senthilpari, K. Diwakar, A.K. Singh. Low Energy, Low Latency and High Speed Array Divider

    Circuit Using a Shannon Theorem Based Adder Cell. Recent Patents on Nanotechnology. Vol. 3 (1).

    P. 61-72 (2009).

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    19/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    19

    [15] M.M. Fouad, H.H. Amer, A.H. Madian, M.B. Abdelhalim. Current Mode Logic Testing of

    XOR/XNOR Circuit: A Case Study Original. Circuits and Systems. Vol. 4 (4). P. 364-368 (2013).

    [16] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-

    coefficient nonuniformity. Russian Microelectronics. 2007. V.36 (1). P. 33-39.

    [17] E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer struc-

    ture by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. Vol. 7 (4-5). P.

    187–197 (2008).[18] E.L. Pankratov. Decreasing of depth of implanted-junction rectifier in semiconductor heterostructure

    by optimized laser annealing. J. Comp. Theor. Nanoscience. Vol. 7 (1). P. 289-295 (2010).

    [19] E.L.Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using

    radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012).[20] E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase com pactness of

    vertical field-effect transistors. J. Comp. Theor. Nanoscience. Vol. 10 (4). P. 888-893 (2013).

    [21] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-

    tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).

    [22] E.L. Pankratov, E.A. Bulaeva. Optimization of annealing of dopant to increase sharp-ness of p-n-

     junctions in a heterostructure with drain of dopant. Applied Nanoscience. Vol. 4 (5). P. 537-541

    (2014).

    [23] E.L. Pankratov, E.A. Bulaeva. An approach to optimize regimes of manufacturing of complementary

    horizontal field-effect transistor. Int. J. Rec. Adv. Phys. Vol. 3 (2). P. 55-73 (2014).

    [24] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).[25] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,

    Moscow, 1991).

    [26] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow, 1991).

    [27] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,

    1979, in Russian).

    [28] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.

    Phys. 1989. Vol. 61. № 2. P. 289-388.

    [29] W.-X. Ni, G.V. Hansson, J.-E. Sundgren, L. Hultman, L.R. Wallenberg, J.-Y. Yao, L.C. Markert, J.E.

    Greene, -function-shaped Sb-doping profiles in Si(001) obtained using a low-energy accelerated-ion

    source during molecular-beam epitaxy. Phys. Rev. B. Vol. 46 (12). P. 7551-7558 (1992).

    [30] B.A. Zon, S.B. Ledovskii, A.N. Likholet. Lattice diffusion of impurity enhanced by a surface hetero-

    geneous reaction. Tech. Phys. Vol. 45 (4). P. 419-424 (2000).

    [31] F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Ratzke, H. R. Schober, S.K. Sharma,

    H. Teichler. Diffusion in metallic glasses and supercooled melts. Reviews of modern physics. Vol. 75(1). P. 237-280 (2003).

    [32] S.A. Bahrani, Y. Jannot, A. Degiovanni. A New Silicon p‐n Junction Photocell for Con-verting Solar

    Radiation into Electrical Power. J. Appl. Phys. Vol. 114 (14). P. 143509-143516 (2014).

    [33] M.L. Krasnov, A.I. Kiselev, G.I. Makarenko. Integral equations (Science, Moscow, 1976).[34] E.L. Pankratov, E.A. Bulaeva. On the relations between porosity of heterostructured materials and

    mismatch-induced stress. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).

    AUTHORS 

    Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary

    school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:

    from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-

    diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-

    physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-

    rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radi-

    ophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate

    Professor of Nizhny Novgorod State University. He has 135 published papers in area of his researches.

    Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of

    village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school

    “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-

  • 8/20/2019 Optimization of Technological Process to Decrease Dimensions of Circuits XOR, Manufectured Based on Field-Effect…

    20/20

    International Journal in Foundations of Computer Science & Technology (IJFCST) Vol.6, No.1, January 2016

    20

    ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she

    is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in

    the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny

    Novgorod State University. She has 90 published papers in area of her researches.