orbital mechanics principles of space systems design u n i v e r s i t y o f maryland orbital...

33
Orbital Mechanic Principles of Space Systems Desig U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers • Time and flight path angle as a function of orbital position Relative orbital motion (“proximity operations”) © 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Upload: vanessa-bishop

Post on 17-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Orbital Mechanics

• Energy and velocity in orbit• Elliptical orbit parameters• Orbital elements• Coplanar orbital transfers• Noncoplanar transfers• Time and flight path angle as a function of

orbital position• Relative orbital motion (“proximity

operations”)

© 2003 David L. Akin - All rights reservedhttp://spacecraft.ssl.umd.edu

Page 2: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Energy in Orbit

• Kinetic Energy

• Potential Energy

• Total Energy

K.E. =12

mν 2 ⇒K.E.m

=v2

2

P.E. =−mμr

⇒P.E.m

=−μr

Const. =v2

2−

μr

=−μ2a

<--Vis-Viva Equation

Page 3: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Implications of Vis-Viva

• Circular orbit (r=a)

• Parabolic escape orbit (a tends to infinity)

• Relationship between circular and parabolic orbits

vcircular =μr

vescape =2μr

vescape = 2vcircular

Page 4: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Some Useful Constants

• Gravitation constant μ= GM– Earth: 398,604 km3/sec2

– Moon: 4667.9 km3/sec2

– Mars: 42,970 km3/sec2 – Sun: 1.327x1011 km3/sec2

• Planetary radii– rEarth = 6378 km

– rMoon = 1738 km

– rMars = 3393 km

Page 5: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Classical Parameters of Elliptical Orbits

Page 6: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Basic Orbital Parameters• Semi-latus rectum (or parameter)

• Radial distance as function of orbital position

• Periapse and apoapse distances

• Angular momentum

p =a(1−e2 )

r =p

1+ecosθ

rp =a(1−e) ra =a(1+e)

r h = rr × rv h = μp

Page 7: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

The Classical Orbital Elements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 8: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

The Hohmann Transfer

vperigee

v1

vapogee

v2

Page 9: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

First Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =μr1

vperigee =μr1

2r2r1 + r2

Δv1 =μr1

2r2

r1 + r2

−1 ⎛

⎝ ⎜

⎠ ⎟

Page 10: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Second Maneuver Velocities

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2 =μr2

vapogee =μr2

2r1r1 + r2

Δv2 =μr2

1−2r1

r1 + r2

⎝ ⎜

⎠ ⎟

Page 11: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Limitations on Launch Inclinations

Page 12: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Differences in Inclination

Page 13: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Choosing the Wrong Line of Apsides

Page 14: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Simple Plane Change

vperigee

v1 vapogee

v2

Δv2

Page 15: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Optimal Plane Change

vperigee v1 vapogee

v2

Δv2Δv1

Page 16: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

First Maneuver with Plane Change Δi1

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v1 =μr1

vp =μr1

2r2r1 + r2

Δv1 = v12 + vp

2 − 2v1vp cos(Δi1)

Page 17: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Second Maneuver with Plane Change Δi2

• Initial vehicle velocity

• Needed final velocity

• Delta-V

v2 =μr2

va =μr2

2r1r1 + r2

Δv2 = v22 + va

2 − 2v2va cos(Δi2 )

Page 18: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Sample Plane Change Maneuver

01234567

0 10 20 30

Initial Inclination Change (deg)

Delta V (km/sec)

DV1DV2DVtot

Optimum initial plane change = 2.20°

Page 19: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Bielliptic Transfer

Page 20: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Coplanar Transfer Velocity Requirements

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 21: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Noncoplanar Bielliptic Transfers

Page 22: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Calculating Time in Orbit

Page 23: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Time in Orbit

• Period of an orbit

• Mean motion (average angular velocity)

• Time since pericenter passage

M=mean anomaly

P =2π a3

μ

n =μa3

M =nt=E −esinE

Page 24: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Dealing with the Eccentric Anomaly

• Relationship to orbit

• Relationship to true anomaly

• Calculating M from time interval: iterate

until it converges

r =a(1−ecosE)

tanθ2

=1+e1−e

tanE2

Ei+1 =nt+esinEi

Page 25: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Patched Conics

• Simple approximation to multi-body motion (e.g., traveling from Earth orbit through solar orbit into Martian orbit)

• Treats multibody problem as “hand-offs” between gravitating bodies --> reduces analysis to sequential two-body problems

• Caveat Emptor: There are a number of formal methods to perform patched conic analysis. The approach presented here

is a very simple, convenient, and not altogether accurate method for performing this calculation. Results will be accurate to a few percent, which is adequate at this level of design analysis.

Page 26: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Example: Lunar Orbit Insertion

• v2 is velocity of moon around Earth

• Moon overtakes spacecraft with velocity of (v2-vapogee)

• This is the velocity of the spacecraft relative to the moon while it is effectively “infinitely” far away (before lunar gravity accelerates it) = “hyperbolic excess velocity”

vapogee

v2

Page 27: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Planetary Approach Analysis

• Spacecraft has vh hyperbolic excess velocity, which fixes total energy of approach orbit

• Vis-viva provides velocity of approach

• Choose transfer orbit such that approach is tangent to desired final orbit at periapse

v2

2−

μr

=−μ2a

=vh

2

2

v =2vh

2

2+

μr

Δv =2vh

2

2+

μrorbit

−μ

rorbit

Page 28: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Space Systems Laboratory – University of Maryland

Pro

ject

Dia

na

ΔV Requirements for Lunar Missions

To:

From:

Low EarthOrbit

LunarTransferOrbit

Low LunarOrbit

LunarDescentOrbit

LunarLanding

Low EarthOrbit

3.107km/sec

LunarTransferOrbit

3.107km/sec

0.837km/sec

3.140km/sec

Low LunarOrbit

0.837km/sec

0.022km/sec

LunarDescentOrbit

0.022km/sec

2.684km/sec

LunarLanding

2.890km/sec

2.312km/sec

Page 29: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Hill’s Equations (Proximity Operations)

˙ ̇ x =3n2x+2n˙ y +adx

˙ ̇ y =−2n˙ x +ady

˙ ̇ z =−n2z+adz

Ref: J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993

Page 30: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

Clohessy-Wiltshire (“CW”) Equations

x(t)= 4−3cos(nt)[ ]xo +sin(nt)

n˙ x o +

2n

1−cos(nt)[ ]˙ y o

y(t)=6 sin(nt)−nt[ ]xo +yo −2n

1−cos(nt)[ ]˙ x o +4sin(nt)−3nt

n˙ y o

z(t) =zo cos(nt)+˙ z on

sin(nt)

˙ z (t) =−zonsin(nt)+˙ z o sin(nt)

Page 31: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

“V-Bar” Approach

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite Servicing and Resupply, 15th USU Small Satellite Conference, 2001

Page 32: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

“R-Bar” Approach

• Approach from along the radius vector (“R-bar”)

• Gravity gradients decelerate spacecraft approach velocity - low contamination approach

• Used for Mir, ISS docking approaches

Ref: Collins, Meissinger, and Bell, Small Orbit Transfer Vehicle (OTV) for On-Orbit Satellite

Servicing and Resupply, 15th USU Small Satellite Conference, 2001

Page 33: Orbital Mechanics Principles of Space Systems Design U N I V E R S I T Y O F MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters

Orbital MechanicsPrinciples of Space Systems Design

U N I V E R S I T Y O F

MARYLAND

References for Lecture 3

• Wernher von Braun, The Mars Project University of Illinois Press, 1962

• William Tyrrell Thomson, Introduction to Space Dynamics Dover Publications, 1986

• Francis J. Hale, Introduction to Space Flight Prentice-Hall, 1994

• William E. Wiesel, Spaceflight Dynamics MacGraw-Hill, 1997

• J. E. Prussing and B. A. Conway, Orbital Mechanics Oxford University Press, 1993