orcaflex manual

429
w 1 OrcaFlex Manual Version 9.4a Orcina Ltd. Daltongate Ulverston Cumbria LA12 7AJ UK Telephone: +44 (0) 1229 584742 Fax: +44 (0) 1229 587191 Email: [email protected] Web Site: www.orcina.com

Upload: viknes07

Post on 26-Oct-2014

415 views

Category:

Documents


25 download

TRANSCRIPT

w

1

OrcaFlexManual

Version9.4a

OrcinaLtd.DaltongateUlverstonCumbriaLA127AJUKTelephone: +44(0)1229584742Fax: +44(0)1229587191E-mail: [email protected]: www.orcina.comwContents3CONTENTS1 INTRODUCTION 11 1.1 InstallingOrcaFlex 11 1.2 RunningOrcaFlex 13 1.3 ParallelProcessing 14 1.4 DistributedOrcaFlex 15 1.5 OrcinaLicenceMonitor 15 1.6 DemonstrationVersion 15 1.7 OrcaFlexExamples 15 1.8 ValidationandQA 16 1.9 Orcina 16 1.10 ReferencesandLinks 16 2 TUTORIAL 21 2.1 GettingStarted 21 2.2 BuildingaSimpleSystem 21 2.3 AddingaLine 21 2.4 AdjustingtheView 22 2.5 StaticAnalysis 22 2.6 DynamicAnalysis 23 2.7 MultipleViews 23 2.8 LookingatResults 24 2.9 GettingOutput 24 2.10 InputData 24 3 USERINTERFACE 25 3.1 Introduction 25 3.1.1 ProgramWindows 25 3.1.2 TheModel 25 3.1.3 ModelStates 26 3.1.4 Toolbar 27 3.1.5 StatusBar 28 3.1.6 MouseandKeyboardActions 28 3.2 OrcaFlexModelFiles 31 3.2.1 DataFiles 31 3.2.2 TextDataFiles 32 3.2.3 SimulationFiles 36 3.3 ModelBrowser 37 3.3.1 ModelBrowserViews 39 3.3.2 MoveSelectedObjectsWizard 39 Contentsw

43.4 Libraries 40 3.4.1 UsingLibraries 40 3.4.2 BuildingaLibrary 43 3.5 Menus 44 3.5.1 FileMenu 44 3.5.2 EditMenu 45 3.5.3 ModelMenu 46 3.5.4 CalculationMenu 47 3.5.5 ViewMenu 48 3.5.6 ReplayMenu 49 3.5.7 GraphMenu 49 3.5.8 ResultsMenu 50 3.5.9 ToolsMenu 50 3.5.10 WorkspaceMenu 50 3.5.11 WindowMenu 51 3.5.12 HelpMenu 51 3.6 3DViews 52 3.6.1 ViewParameters 53 3.6.2 ViewControl 53 3.6.3 Navigatingin3DViews 54 3.6.4 ShadedGraphics 55 3.6.5 HowObjectsareDrawn 56 3.6.6 SelectingObjects 58 3.6.7 CreatingandDestroyingObjects 58 3.6.8 DraggingObjects 58 3.6.9 ConnectingObjects 58 3.6.10 Printing,CopyingandExportingViews 59 3.7 Replays 59 3.7.1 ReplayParameters 60 3.7.2 ReplayControl 60 3.7.3 CustomReplays 61 3.7.4 CustomReplayWizard 61 3.7.5 SuperimposeTimes 63 3.8 DataForms 63 3.8.1 DataFields 64 3.8.2 DataFormEditing 64 3.9 Results 65 3.9.1 ProducingResults 65 3.9.2 SelectingVariables 67 3.9.3 SummaryandFullResults 67 3.9.4 Statistics 68 3.9.5 LinkedStatistics 68 3.9.6 OffsetTables 69 3.9.7 LineClashingReport 69 3.9.8 TimeHistoryandXYGraphs 70 3.9.9 RangeGraphs 71 3.9.10 OffsetGraphs 72 3.9.11 SpectralResponseGraphs 72 wContents53.9.12 ExtremeStatisticsResults 72 3.9.13 PresentingOrcaFlexResults 75 3.10 Graphs 76 3.10.1 ModifyingGraphs 77 3.11 Spreadsheets 78 3.12 TextWindows 78 3.13 Workspaces 78 3.14 ComparingData 79 3.15 Preferences 80 3.16 PrintingandExporting 82 4 AUTOMATION 83 4.1 Introduction 83 4.2 BatchProcessing 83 4.2.1 Introduction 83 4.2.2 ScriptFiles 85 4.2.3 ScriptSyntax 85 4.2.4 ScriptCommands 85 4.2.5 Examplesofsettingdata 88 4.2.6 HandlingScriptErrors 93 4.2.7 ObtainingVariableNames 93 4.2.8 AutomatingScriptGeneration 93 4.2.9 AutomatingTextDataFileGeneration 96 4.3 Post-processing 97 4.3.1 Introduction 97 4.3.2 OrcaFlexSpreadsheet 98 4.3.3 InstructionFormat 100 4.3.4 Pre-definedcommands 101 4.3.5 Basiccommands 102 4.3.6 TimeHistoryandrelatedcommands 103 4.3.7 RangeGraphcommands 103 4.3.8 Datacommands 104 4.3.9 InstructionsWizard 105 4.3.10 DuplicateInstructions 107 5 THEORY 111 5.1 CoordinateSystems 111 5.2 DirectionConventions 112 5.3 ObjectConnections 113 5.4 InterpolationMethods 113 5.5 StaticAnalysis 115 5.5.1 LineStatics 115 5.5.2 BuoyandVesselStatics 119 5.5.3 VesselMultipleStatics 119 5.6 DynamicAnalysis 120 Contentsw

65.6.1 CalculationMethod 121 5.6.2 Ramping 123 5.7 FrictionTheory 123 5.8 SpectralResponseAnalysis 126 5.9 ExtremeStatisticsTheory 127 5.10 EnvironmentTheory 129 5.10.1 BuoyancyVariationwithDepth 129 5.10.2 CurrentTheory 129 5.10.3 SeabedTheory 130 5.10.4 SeabedNon-LinearSoilModelTheory 131 5.10.5 Morison'sEquation 137 5.10.6 Waves 138 5.11 VesselTheory 145 5.11.1 VesselRotations 145 5.11.2 RAOsandPhases 146 5.11.3 RAOQualityChecks 147 5.11.4 HydrodynamicandWindDamping 149 5.11.5 Stiffness,AddedMassandDamping 151 5.11.6 ImpulseResponseandConvolution 152 5.11.7 WaveDriftLoads 153 5.12 LineTheory 155 5.12.1 Overview 155 5.12.2 StructuralModelDetails 156 5.12.3 CalculationStages 157 5.12.4 CalculationStage1TensionForces 158 5.12.5 CalculationStage2BendMoments 159 5.12.6 CalculationStage3ShearForces 161 5.12.7 CalculationStage4TorsionMoments 161 5.12.8 CalculationStage5TotalLoad 162 5.12.9 LineEndOrientation 162 5.12.10 LineLocalOrientation 163 5.12.11 TreatmentofCompression 164 5.12.12 ContentsFlowEffects 164 5.12.13 LinePressureEffects 166 5.12.14 PipeStressCalculation 167 5.12.15 PipeStressMatrix 168 5.12.16 HydrodynamicandAerodynamicLoads 169 5.12.17 DragChains 172 5.12.18 LineEndConditions 173 5.12.19 InteractionwiththeSeaSurface 173 5.12.20 InteractionwithSeabedandShapes 174 5.12.21 Clashing 175 5.13 6DBuoyTheory 177 5.13.1 Overview 177 5.13.2 LumpedBuoyAddedMass,DampingandDrag 179 5.13.3 SparBuoyandTowedFishAddedMassandDamping 180 5.13.4 SparBuoyandTowedFishDrag 182 5.13.5 ContactForces 184 wContents75.14 3DBuoyTheory 185 5.15 WinchTheory 186 5.16 ShapeTheory 187 6 SYSTEMMODELLING:DATAANDRESULTS 189 6.1 ModellingIntroduction 189 6.2 DatainTimeHistoryFiles 190 6.3 VariableData 192 6.3.1 ExternalFunctions 193 6.4 GeneralData 194 6.4.1 Statics 195 6.4.2 Dynamics 197 6.4.3 Integration&TimeSteps 197 6.4.4 ExplicitIntegration 198 6.4.5 ImplicitIntegration 199 6.4.6 NumericalDamping 200 6.4.7 ResponseCalculation 201 6.4.8 PropertiesReport 201 6.4.9 Drawing 201 6.4.10 Results 202 6.5 Environment 202 6.5.1 SeaData 202 6.5.2 SeaDensityData 203 6.5.3 SeabedData 204 6.5.4 WaveData 207 6.5.5 DataforRegularWaves 209 6.5.6 DataforRandomWaves 209 6.5.7 DataforJONSWAPandISSCSpectra 210 6.5.8 DataforOchi-HubbleSpectrum 211 6.5.9 DataforTorsethaugenSpectrum 212 6.5.10 DataforGaussianSwellSpectrum 212 6.5.11 DataforUserDefinedSpectrum 212 6.5.12 DataforTimeHistoryWaves 213 6.5.13 DataforUserSpecifiedComponents 214 6.5.14 DataforResponseCalculation 214 6.5.15 WavesPreview 214 6.5.16 ModellingDesignWaves 215 6.5.17 SettingupaRandomSea 217 6.5.18 CurrentData 219 6.5.19 WindData 221 6.5.20 DrawingData 222 6.5.21 ExternalFunctions 223 6.5.22 Results 223 6.5.23 WaveScatterConversion 224 6.6 SolidFrictionCoefficientsData 228 6.7 Vessels 229 6.7.1 VesselData 230 Contentsw

86.7.2 VesselTypes 239 6.7.3 ModellingVesselSlowDrift 263 6.7.4 VesselResponseReports 265 6.7.5 VesselResults 267 6.8 Lines 269 6.8.1 LineData 271 6.8.2 LineTypes 286 6.8.3 Attachments 296 6.8.4 RayleighDamping 300 6.8.5 LineResults 303 6.8.6 DragChainResults 314 6.8.7 FlexJointResults 315 6.8.8 LineSetupWizard 315 6.8.9 LineTypeWizard 316 6.8.10 Chain 317 6.8.11 Rope/Wire 322 6.8.12 LinewithFloats 325 6.8.13 HomogeneousPipe 329 6.8.14 HosesandUmbilicals 331 6.8.15 ModellingStressJoints 333 6.8.16 ModellingBendRestrictors 335 6.8.17 Modellingnon-linearhomogeneouspipes 337 6.8.18 LineEnds 339 6.8.19 ModellingCompressioninFlexibles 342 6.9 6DBuoys 343 6.9.1 Wings 344 6.9.2 CommonData 345 6.9.3 AppliedLoads 347 6.9.4 WingData 347 6.9.5 WingTypeData 348 6.9.6 LumpedBuoyProperties 350 6.9.7 LumpedBuoyDrawingData 351 6.9.8 SparBuoyandTowedFishProperties 352 6.9.9 SparBuoyandTowedFishAddedMassandDamping 354 6.9.10 SparBuoyandTowedFishDrag 355 6.9.11 SparBuoyandTowedFishDrawing 356 6.9.12 ShadedDrawing 356 6.9.13 Otheruses 358 6.9.14 ExternalFunctions 358 6.9.15 PropertiesReport 358 6.9.16 Results 359 6.9.17 BuoyHydrodynamics 361 6.9.18 HydrodynamicPropertiesofaRectangularBox 362 6.9.19 ModellingaSurface-PiercingBuoy 364 6.10 3DBuoys 367 6.10.1 Data 368 6.10.2 PropertiesReport 369 6.10.3 Results 369 6.11 Winches 370 wContents96.11.1 Data 371 6.11.2 WireProperties 371 6.11.3 Control 372 6.11.4 ControlbyStage 372 6.11.5 ControlbyWholeSimulation 373 6.11.6 DriveUnit 373 6.11.7 ExternalFunctions 374 6.11.8 Results 374 6.12 Links 375 6.12.1 Data 375 6.12.2 Results 377 6.13 Shapes 377 6.13.1 Data 378 6.13.2 Blocks 379 6.13.3 Cylinders 380 6.13.4 CurvedPlates 381 6.13.5 Planes 382 6.13.6 Drawing 382 6.13.7 Results 383 6.14 AllObjectsDataForm 383 7 MODALANALYSIS 387 7.1 ModalAnalysisTheory 388 8 FATIGUEANALYSIS 391 8.1 Commands 392 8.2 Data 393 8.3 LoadCasesDataforRegularAnalysis 394 8.4 LoadCasesDataforRainflowAnalysis 394 8.5 LoadCasesDataforSpectralAnalysis 395 8.6 LoadCasesDataforSHEAR7 397 8.7 ComponentsData 397 8.8 AnalysisData 398 8.9 S-NandT-NCurves 399 8.10 IntegrationParameters 400 8.11 Results 400 8.12 FatiguePoints 401 8.13 HowDamageisCalculated 401 9 VIVTOOLBOX 405 9.1 FrequencyDomainModels 405 9.1.1 VIVA 405 9.1.2 SHEAR7 410 9.2 TimeDomainModels 417 Contentsw

109.2.1 WakeOscillatorModels 420 9.2.2 VortexTrackingModels 423 9.2.3 VIVDrawing 429

wIntroduction,InstallingOrcaFlex111 INTRODUCTIONWelcome to OrcaFlex (version 9.4a), a marine dynamics program developed by Orcina for static and dynamicanalysisofawiderangeofoffshoresystems,includingalltypesofmarinerisers(rigidandflexible),globalanalysis,moorings,installationandtowedsystems.OrcaFlex provides fast and accurate analysis ofcatenary systems such as flexible risers and umbilical cables underwave and current loads and externally imposed motions. OrcaFlex makes extensive use of graphics to assistunderstanding. The program can be operated in batch mode for routine analysis work and there are also specialfacilitiesforpost-processingyourresultsincludingfullyintegratedfatigueanalysiscapabilities.OrcaFlex is a fully 3D non-linear time domain finite element program capable of dealing with arbitrarily largedeflectionsoftheflexiblefromtheinitialconfiguration.Alumpedmasselementisusedwhichgreatlysimplifiesthemathematical formulation and allows quick and efficient development of the program to include additional forcetermsandconstraintsonthesysteminresponsetonewengineeringrequirements.In addition to the time domain features, modal analysis can be performed for individual lines and RAOs can becalculatedforanyresultsvariableusingtheSpectralResponseAnalysisfeature.OrcaFlexisalsousedforapplicationsintheDefence,OceanographyandRenewableenergysectors.OrcaFlexisfully3D and can handle multi-line systems, floating lines, line dynamics after release, etc. Inputs include ship motions,regularandrandomwaves.Resultsoutputincludesanimatedreplayplusfullgraphicalandnumericalpresentation.IfyouarenewtoOrcaFlexthenpleaseseethetutorialandexamples.ForfurtherdetailsofOrcaFlexandourothersoftware,pleasecontactOrcinaoryourOrcinaagent.CopyrightnoticeCopyrightOrcinaLtd.1987-2010.Allrightsreserved.1.1 INSTALLINGORCAFLEXHardwareRequirementsOrcaFlexcanbeinstalledandrunonanycomputerthathas:x WindowsXP,WindowsVistaorWindows7.Both32bitand64bitversionsofWindowsaresupported.x Ifyouareusingsmallfonts(96dpi)thescreenresolutionmustbeatleast1024768.Ifyouareusinglargefonts(120dpi)thescreenresolutionmustbeatleast12801024.However,OrcaFlexisapowerfulpackageandtogetthebestresultswewouldrecommend:x Apowerfulprocessorwithfastfloatingpointandmemoryperformance.ThisisthemostimportantfactorsinceOrcaFlexisacomputation-intensiveprogramandsimulationruntimescanbelongforcomplexmodels.x At least 2GB of memory. This is less important than processor performance but some aspects of OrcaFlex doperform better when more memory is available, especially on multi-core systems. If you have a multi-coresystemwitha64bitversionofWindowsthenyoumaybenefitfromfittingevenmorememory.x Amulti-coresystemtotakeadvantageofOrcaFlex'smulti-threadingcapabilities.x As much disk space as you require to store simulation files. Simulation files vary in size, but can be 100's ofmegabyteseachforcomplexmodels.x Ascreenresolutionof12801024orgreaterwith32bitcolour.x A DirectX 9 compatible graphics card with at least 256MB memory for the most effective use of the shadedgraphicsfacility.x MicrosoftExcel(Excel2000,orlater)inordertousetheOrcaFlexautomationfacilities.Thisrequiresthe32bitversionofExcel.Note: Although OrcaFlex is a 32 bit program, the 64 bit versions of Windows run 32 bit programs veryefficiently and have certain advantages over 32 bit versions of Windows. Most notably the 64 bitversionsofWindowsareabletomakeuseoflargeramountsofmemory.ThiscanbenefitOrcaFlex,and indeed otherprograms. Inadditionwehavefoundthe64bitversions of Windowstobemoreeffectiveatmulti-threadedcalculations.Forthesereasonswecurrentlyrecommend64bitVista/7asthebestplatformsforrunningOrcaFlex.Introduction,InstallingOrcaFlexw

12InstallationToinstallOrcaFlex:x Youwillneedtoinstallfromanaccountwithadministratorprivileges.x If installing from CD, insert the OrcaFlex CD and run the Autorun.exe program on the CD (on many machinesthisprogramwillrunautomaticallywhenyouinserttheCD).Thenclickon'InstallOrcaFlex'.x If you have received OrcaFlex by e-mail or from the web you will have a zip file, and possibly a number oflicencefiles(.lic).Extractthefilesfromthezipfiletosometemporarylocation,andsavethelicencefilestothesamefolder.ThenruntheextractedfileSetup.exe.x YouwillalsoneedtoinstalltheOrcaFlexdonglesuppliedbyOrcina.Seebelowfordetails.Forfurtherdetails,includinginformationonnetworkandsilentinstallation,clickonReadMeontheAutorunmenuoropenthefileInstallationGuide.pdfontheCD.IfyouhaveanydifficultyinstallingOrcaFlexpleasecontactOrcinaoryourOrcinaagent.OrcinaShellExtensionWhen you install OrcaFlex the Orcina Shell Extension is also installed. This integrates with Windows Explorer, andassociates the data and simulation file types (.dat and .sim) with OrcaFlex. You can then open an OrcaFlex file bysimplydouble-clickingthefilenameinExplorer. Theshellextensionalsoprovidesfilepropertiesinformation,suchas which version ofOrcaFlex wrote the file and the Comments textfor the model in the file. For details see the fileCD:\OrcShlEx\ReadMe.htmontheOrcaFlexCD.InstallingtheDongleOrcaFlexissuppliedwithadongle,asmallhardwaredevicethatmustbeattachedtothemachineortothenetworktowhichthemachineisattached.Note: The dongle is effectively your licence to run one copy (or more, if the dongle is enabled for morecopies) of OrcaFlex. It is, in essence, what you have purchased or leased, and it should be treatedwithappropriatecareandsecurity.IfyouloseyourdongleyoucannotrunOrcaFlex.Warning: Orcinacannormallyresupplydisksormanuals(achargebeingmadetocovercosts)iftheyarelostordamaged.Butwecanonlysupplyanew dongle inthecasewheretheold dongle isreturnedtous.Dongles labelled 'Hxxx' (where xxx is the dongle number) must be plugged into the machine on which OrcaFlex isrun. Dongles labelled 'Nxxx' can be used in the same way as 'Hxxx' dongles, but they can also be used over anetwork, allowing the program to be shared by multiple users. In the latter case the dongle should be installed byyournetworkadministrator;instructionscanbefoundintheDongledirectoryontheOrcaFlexCD.TypesofDongleDongles are available for either parallel or USB ports, and these are functionally equivalent so far as OrcaFlex isconcerned.Ingeneral,USBdonglesarepreferred,sincetheyseemtobemorereliable.Inanycase,parallelportsarebecominglesscommononnewmachines.Bydefault,'N'donglescanholdupto10OrcaFlexlicencesforuseoveranetwork.Wecansupplydongleswithlargercapacitiesonrequest.DongleTroubleshootingWe supply, with OrcaFlex, a dongle utility program called OrcaDongle. If OrcaFlex cannot find the dongle then thisprogram may be used to check that the dongle is working correctly and has the expected number of licences. FordetailsseetheOrcaDonglehelpfile.TheOrcaDongleprogramisincludedontheOrcaFlexCD,andyoumaychoosetoinstallitfromtheAutorunmenuinthesamewayasOrcaFlex.Itisalsoavailablefordownloadfromwww.orcina.com/Support/Dongle.Also on our website, users of network dongles may find the Orcina Licence Monitor to be useful. This applicationkeepstrackofthenumberofOrcaFlexlicencesclaimedonanetworkatanytime.DiagnosticsIfOrcaFlexfailstostart,withtheerrorthatitcan'tobtainalicence,thenpleasecheckthefollowing.x If you are using a network dongle, are all the licences in use? The Orcina Licence Monitor may be of use indeterminingthis.Iftheyare,youwillneedtowaituntilalicencebecomesfreebeforeyoucanrunOrcaFlex. wIntroduction,RunningOrcaFlex13x Ifyouareusingalocaldongle,isitpluggedintoyour machine?Ifso,is thedongle devicedriverinstalled?Youcan check this by running OrcaDongle. If the driver is not present, it may have been uninstalled by anotherprogram: if so, you can fix this by Repairing the OrcaFlex installation (from the Windows Control Panel, select'AddorRemovePrograms'(XP)orPrograms/ProgramsandFeatures(Vista),selecttheOrcaFlexentry,selectChangethenRepair).Ifthisstillfails,youcaninstallthedriverbydownloadingfromour website,andrunning,thefileHasp-Setup.msi.x DoesthedongleyouareusinghaveanOrcaFlexlicenceonit?Again,youcancheckthiswithOrcaDongle.x Doyouhavealicencefileforthedongleyouwishtoaccess?ThisfilewillbenamedNxxx.licorHxxx.lic(wherexxxisthedonglenumber)andwillbeintheOrcaFlexinstallationfolder.Ifnot,thenyoushouldbeabletocopytherequiredfile(s)fromtherootleveloftheOrcaFlexCDintotheinstallationfolder.Ifnoneofthesehelp,thenpleasecontactusatOrcinawithadescriptionoftheproblem.Ideally,pleasealsoemailtousthediagnosticsfilenamedOrcLog.txtwhichOrcaFlexwillhavewrittenonfailingtofindalicence.Thisfilecanbefoundinthefolder"%appdata%/Orcina/OrcaFlex":toopenthisfolder,selectStartmenu|Run...andenterthetextbetweenthequotes(includingthe'%'characters).1.2 RUNNINGORCAFLEXA shortcut to run OrcaFlex is set up on the Start menu when you install OrcaFlex (see Start\Programs\OrcinaSoftware\).This shortcut passes no parameters to OrcaFlex so it gives the default start-up behaviour; see below. If this is notsuitable you can configure the start-up behaviourusing command-line parameters, for example by setting up yourownshortcutswithparticularparametersettings.DefaultStart-upOrcaFlex has two basic modules: full OrcaFlex and statics-only OrcaFlex. A full OrcaFlex licence is needed fordynamicanalysis.When you run OrcaFlex it looks for an Orcina dongle from which it can claim an OrcaFlex licence (either a fulllicence or a statics-only licence). By default, it first looks for a licence on a local dongle (i.e. one in local mode andconnected to the local machine) and if none is found then it looks for a licence on a network dongle (i.e. one innetwork mode and accessed via a licence manager over the network). This default behaviour can be changed bycommand-lineparameters.IfOrcaFlexfindsanetworkdongleandthereisachoiceofwhichlicencestoclaimfromit,thenOrcaFlexdisplaysaChooseModules dialog to ask you which modules you want to claim.This helps you share the licences with otherusers of that network dongle. For example if the network dongle contains both a full licence and a statics-onlylicencethenyoucanchoosetousethestatics-onlylicence,ifthatisallyouneed,sothatthefulllicenceisleftfreeforotherstousewhenyoudonotneedityourself.TheChooseModulesdialogcanbesuppressedusing command-lineparameters.CommandLineParametersOrcaFlexcanacceptvariousparametersonthecommandlinetomodifythewayitstartsup.Thesyntaxis:OrcaFlex.exeFilenameOption1Option2...etc.Filenameisoptional.IfpresentitshouldbethenameofanOrcaFlex datafile(.dator.yml)orsimulationfile(.sim)andafterstartingupOrcaFlexwillautomaticallyopenthatfile.Option1, Option2 etc. are optional parameters that allow you configure the start-upbehaviour. They can be any ofthe following switches. For the first character of an option switch, the hyphen character '-' can be used as analternativetothe'/'character.DongleSearchswitchesBydefaulttheprogramsearchesfirstforalicenceonalocaldongleandthenforalicenceonanetworkdongle.Thefollowingswitchesallowyoutomodifythisdefaultbehaviour.x /LocalDongleOnlysearchforlicencesonalocaldongle.Nosearchwillbemadefornetworkdongles.x /NetworkDongle Only search for licences on a network dongle. Any local dongle will be ignored. This can beusefulifyouhavealocaldonglebutwanttouseanetworkdonglethathaslicencesformoremodules.Introduction,ParallelProcessingw

14ModuleChoiceswitchThis switch is only relevant ifthe dongle found is a network dongle and there is a choice oflicences to claim fromthatdongle.Youcanspecifyyourchoiceusingthefollowingcommandlineswitch:x /DisableDynamicsChoosethestatics-onlybasiclicence.Thisissometimesusefulwhenusinganetworkdonglesinceitallowsyoutoleavefulllicencesfreeforotheruserswhenyouonlyneedastatics-onlylicence.Ifyoudonotspecifyallthechoicesthentheprogramdisplaysthe ChooseModulesdialogtoaskforyourremainingchoices.Youcansuppressthisdialogusingthefollowingswitch.x /DisableInteractiveStartup Do not display the Choose Modules dialog. The program behaves the same as iftheuserclicksOKonthatdialogwithoutchanginganymodulechoices.BatchCalculationswitchesThese switches allow you to instruct OrcaFlex to start a batch calculation as soon as the program has loaded. Thefollowingswitchesareavailable:x /Batch Start a batch calculation as soon as the program has loaded. The batch calculation will contain all thefilesspecifiedonthecommandline(youcanhavemorethanone)intheorderinwhichtheyare specified.Youcanuserelativepathswhichwillberelativetotheworkingdirectory.x /CloseAfterBatchInstructstheprogramtocloseoncethebatchiscomplete.x /BatchAnalysisStatics,/BatchAnalysisDynamicsspecifywhattypeof analysistoperformtothespecifiedfiles.Iftheseparametersaremissingthentheprogramdefaultstodynamicanalysis.ProcessPriorityswitchesThese switches determine the processing priority of OrcaFlex. The available switches are /RealtimePriority,/HighPriority,/AboveNormalPriority,/NormalPriority,/BelowNormalPriority,/LowPriority.ThickLinesswitchThe/ThickLinesswitchallowsyoutospecifya minimumthicknessforlinesdrawnonOrcaFlex3DViewwindows.Forexampleusingtheswitch/ThickLines=5forcesOrcaFlextodrawalllinesatathicknessofatleast5.Ifnovalueisspecified(i.e.theswitchis/ThickLines)thentheminimumthicknessistakentobe2.ThisswitchhasbeenaddedtomakeOrcaFlex3DViewsclearerwhenprojectedontoalargescreen. ThreadCountswitchThe /ThreadCount switch allows you to set the number of execution threads used by OrcaFlex for parallelprocessing. For example /ThreadCount=1 forces OrcaFlex to use a single execution thread which has the effect ofdisablingparallelprocessing.1.3 PARALLELPROCESSINGMachineswithmultipleprocessorsorprocessorswithmultiplecoresarebecomingincreasinglycommon.OrcaFlexcanmakegooduseoftheadditionalprocessingcapacityaffordedbysuchmachines.ForuptodateinformationonhardwarechoiceforOrcaFlexpleaserefertowww.orcina.com/Support/Benchmark.OrcaFlex performs the calculations of the model's Line objects in parallel. This means that, interactively at least,performanceisonlyimprovedformodelswithmorethanoneLineobject.However,formodelswithmorethanoneLineperformanceissignificantlyimproved.Both batch processing and fatigue calculations process their jobs and load cases concurrently, using all availableprocessorcores.Note,however,thattheOrcaFlexspreadsheetiscurrentlyonlyabletomakeuseofasingleprocessorcore.Weplantoaddressthislimitationinafuturerelease.ThreadcountOrcaFlexmanagesanumberof executionthreadsto performthe parallelcalculations.The numberofthesethreads(thethreadcount)defaultstothenumberofphysicalprocessorcoresavailableonyourmachineasreportedbytheoperatingsystem.Thisdefaultwillworkwellformostcases.ShouldyouwishtochangeityoucanusetheTools|SetThreadCountmenuitem.Thethreadcountcanalsobecontrolledbyacommandlineswitch.wIntroduction,DistributedOrcaFlex15HyperthreadingSome Intel processors offer a technology called hyperthreading. Such processors can process multiple executionthreads in parallel by making use of under-used resources on the processor. Hyperthreaded processors appear totheoperatingsystemas2distinct,logicalprocessors.Sadly,therealworldperformanceofsuchchipsdoesnotliveuptothemarketinghype.Atbestthistechnologycangive improvements of around 10-20%. However, the performance of hyperthreading under OrcaFlex variesconsiderably with the OrcaFlex model being analysed. In the worst cases using hyperthreading results inperformancetwiceasslowaswithout!For this reason we recommend that you don't attempt to use hyperthreading when running OrcaFlex. By defaultOrcaFlexwilluseasmanythreadsastherearetruephysicalcoresavailabletoyoursystem.To helpunderstand this consider a dual processor, dual core machine with hyperthreading support. The operatingsystem will recognise 8 processors. Of these processors, 4 are true physical processor cores and the other 4 arevirtualhyperthreadedprocessors.AccordinglyOrcaFlexwilldefaulttousing4calculationthreads.1.4 DISTRIBUTEDORCAFLEXDistributed OrcaFlex is a suite of programs that enables a collection ofnetworked, OrcaFlex licensed computers torun OrcaFlex jobs, transparently, using spare processor time. For more information about Distributed OrcaFlexplease refer to www.orcina.com/Support/DistributedOrcaFlex. Distributed OrcaFlex can be downloaded from thisaddress.OrcaFlexcanalsomakeuseofmachineswithmultipleprocessorsusingparallelprocessingtechnology.1.5 ORCINALICENCEMONITORTheOrcinaLicenceMonitor (OLM)isaservicethatmonitorsthecurrent numberofOrcaFlexlicencesclaimedonanetworkinrealtime.Other programsthatusethe OrcaFlexprogramminginterface(OrcFxAPI)suchasDistributedOrcaFlexandtheOrcaFlexspreadsheetarealsomonitored.Youcanobtaininformationoneachlicenceclaimedthatincludes:x Networkinformation:thecomputername,networkaddressandtheusername.x Licenceinformation:thedonglename,thedongletype(networkorlocal)andthetimethelicencewasclaimed.x Program information: which modules are being used, the version, and the location of the program which hasclaimed the licence (usually this is OrcaFlex.exe but it can be Excel.exe for the OrcaFlex spreadsheet forexample).OLMcanbedownloadedfromwww.orcina.com/Support/OrcinaLicenceMonitor.1.6 DEMONSTRATIONVERSIONForanoverviewofOrcaFlex,seetheIntroductiontopicandthetutorial.ThedemonstrationversionofOrcaFlexhassomefacilitiesdisabled youcannotcalculatestaticsorrunsimulation,andyoucannotsavefiles,print,exportorcopytotheclipboard.Otherwisethedemonstrationversionisjustlikethefullversion,soitallowsyoutoseeexactlyhowtheprogramworks.In particular the demonstration version allows you to open any prepared OrcaFlex data or simulation file. If youopen a simulation file then you can then examine the results, see replays of the motion etc. There are numerousexample files provided on the demonstration DVD. These example files are also available fromwww.orcina.com/SoftwareProducts/OrcaFlex/Examples.If you have the full version of OrcaFlex then you can use the demonstration version to show your customers yourOrcaFlex models and results for their system. To do this, give them the demonstration version and copies of yourOrcaFlex simulation files. The demonstration version can be downloaded fromwww.orcina.com/SoftwareProducts/OrcaFlex/Demo.1.7 ORCAFLEXEXAMPLESOrcaFlexissuppliedwithaDVDcontainingacomprehensivecollectionofexamplefiles.Theseexamplescanalsobefoundatwww.orcina.com/SoftwareProducts/OrcaFlex/Examples.Introduction,ValidationandQAw

161.8 VALIDATIONANDQATheOrcaFlexvalidationdocumentsareavailablefromwww.orcina.com/SoftwareProducts/OrcaFlex/Validation.1.9 ORCINAOrcina is a creative engineering software and consultancy company staffed by mechanical engineers, navalarchitects, mathematicians and software engineers with long experience in such demanding environments as theoffshore, marine and nuclear industries. As well as developing engineering software, we offer a wide range ofanalysis and design services with particular strength in dynamics, hydrodynamics, fluid mechanics andmathematicalmodelling.ContactDetailsOrcinaLtd.DaltongateUlverstonCumbriaLA127AJUKTelephone:+44(0)1229584742Fax:+44(0)1229587191E-mail:[email protected]:www.orcina.comOrcinaAgentsWehaveagentsinmanypartsoftheworld.Fordetailspleaserefertowww.orcina.com/ContactOrcina.1.10 REFERENCESANDLINKSReferencesAPI, 1993. API RP 2A-WSD, Recommended Practice for Planning, Designing and Constructing Fixed OffshorePlatformsWorkingStressDesign.AmericanPetroleumInstitute.API, 1998. API RP 2RD, Design of Risers for Floating Production Systems and Tension-Leg Platforms. AmericanPetroleumInstitute.API, 2005. API RP2SK, Design and Analysis ofStationkeeping Systems for Floating Structures. American PetroleumInstitute.API.ComparisonofAnalysesofMarineDrillingRisers.APIBulletin.2J.Aubeny C, Biscontin G and Zhang J, 2006. Seafloor interaction with steel catenary risers. Offshore TechnologyResearchCenter(TexasA&MUniversity)FinalProjectReport(http://www.mms.gov/tarprojects/510.htm).AubenyC,GaudinCandRandolphM,2008.CyclicTestsofModelPipeinKaolin.OTC19494,2008.Barltrop N D P and Adams A J, 1991. Dynamics of fixed marine structures. Butterworth Heinemann for MTD. 3rdEdition.BatchelorGK,1967.Anintroductiontofluiddynamics.CambridgeUniversityPress.BlevinsRD,2005.ForcesonandStabilityofaCylinderinaWake.J.OMAE,127,39-45.BridgeC,LaverK,ClukeyE, EvansT,2004.SteelCatenaryRiser TouchdownPoint VerticalInteractionModels. OTC16628,2004.CarterD JT,1982.PredictionofWaveheight and PeriodforaConstantWindVelocityUsingtheJONSWAPResults,OceanEngineering,9,no.1,17-33.CasarellaMJandParsonsM,1970.CableSystemsUnderHydrodynamicLoading. MarineTechnologySocietyJournal4,No.4,27-44.ChapmanDA,1984.TowedCableBehaviourDuringShipTurningManoeuvres.OceanEngineering.11,No.4.Chung J and Hulbert G M, 1993. A time integration algorithm for structural dynamics with improved numericaldissipation:Thegeneralized- methou ASMEJournalofAppliedMechanics.60,371-375.wIntroduction,ReferencesandLinks17CMPT, 1998. Floating structures: A guide for design and analysis. Edited by Barltrop N D P. Centre for Marine andPetroleumTechnologypublication101/98,OilfieldPublicationsLimited.ColesS,2001.AnIntroductiontoStatisticalModellingofExtremeValues.Springer.CumminsWE,1962.Theimpulseresponsefunctionandshipmotions.Schiffstechnik,9,101-109.DeanRG,1965.Streamfunctionrepresentationofnon-linearoceanwaves.J.Geophys.Res.,70,4561-4572.DirlikT,1985.ApplicationofcomputersinFatigueAnalysis.PhDThesisUniversityofWarwick.DNV-OS-F201,DynamicRisers.DNV-RP-C205,EnvironmentalConditionsandEnvironmentalLoads.ESDU71016.Fluidforces,pressuresandmomentsonrectangularblocks.ESDU71016ESDUInternational,London.ESDU80025.Meanforces,pressuresandflowfieldvelocitiesforcircularcylindricalstructures:Singlecylinderwithtwo-dimensionalflow.ESDU80025ESDUInternational,London.Falco M, Fossati F and Resta F, 1999. On the vortex induced vibration of submarine cables: Design optimization ofwrappedcablesforcontrollingvibrations.3rdInternationalSymposiumonCableDynamics,Trondheim,Norway.FaltinsenOM,1990.Sealoadsonshipsandoffshorestructures.CambridgeUniversityPress.FentonJD,1979.Ahigh-ordercnoidalwavetheory.J.FluidMech.94,129-161.Fenton J D, 1985. A fifth-order Stokes theory for steady waves. J. Waterway, Port, Coastal & Ocean Eng. ASCE. 111,216-234.FentonJD,1990.Non-linearwavetheories.Chapterin"TheSea Volume9:OceanEngineeringScience",editedbyB.LeMeHauteandD.M.Hanes.Wiley:NewYork.3-25.FentonJD,1995.Personalcommunicationpre-printofchapterinforthcomingbookoncnoidalwavetheory.Gregory R W and Paidoussis M P, 1996. Unstable oscillation of tubular cantilevers conveying fluid: Part 1:Theory.Proc.R.Soc.293SeriesA,512-527.HartnupGC,AireyRGandFraserJM,1987.ModelBasinTestingofFlexibleMarineRisers.OMAEHouston.HoernerSF1965.FluidDynamicDrag,PublishedbytheauthoratHoernerFluidDynamics,NJ08723,USA.HuseE,1993.InteractioninDeep-SeaRiserArrays.OTC7237,1993.Isherwood R M, 1987. A Revised Parameterisation of the JONSWAP Spectrum. Applied Ocean Research, 9, No. 1(January),47-50.Iwan W D, 1981. The vortex-induced oscillation ofnon-uniform structural systems. Journal of Sound and Vibration,79,291-301.IwanWDandBlevinsRD,1974.AModelforVortexInducedOscillationofStructures.JournalofAppliedMechanics,September1974,581-586.KotikJandMangulisV,1962.OntheKramers-Kronigrelationsforshipmotions.Int.ShipbuildingProgress,9,No.97,361-368.Larsen C M, 1991. Flexible Riser Analysis Comparison of Results from Computer Programs. Marine Structures,ElsevierAppliedScience.Longuet-Higgins M S, 1983. On the joint distribution of wave periods and amplitudes in a random wave field.ProceedingsRoyalSocietyLondon,SeriesA,MathematicalandPhysicalSciences.389,241-258.MaddoxSJ,1998.Fatiguestrengthofweldedstructures.WoodheadPublishingLtd,ISBN1855730138.Morison J R, O'Brien M D, Johnson J W, and Schaaf S A, 1950. The force exerted by surface waves on piles. PetrolTransAIME.189.Mueller H F, 1968. Hydrodynamic forces and moments of streamlined bodies of revolution at large incidence.Schiffstechnik.15,99-104.Newman J N. 1974. Second-order, slowly-varying forces on vessels in irregular waves. Proc Int Symp Dynamics ofMarineVehiclesandStructuresinWaves,Ed.BishopREDandPriceWG,MechEngPublicationsLtd,London.NewmanJN,1977.MarineHydrodynamics,MITPress.Introduction,ReferencesandLinksw

18NDP, 1995. Regulations relating to loadbearing structures in the petroleum activities. Norwegian PetroleumDirectorate.OchiMKandHubbleEN,1976.Six-parameterwavespectra,Proc15thCoastalEngineeringConference,301-328.OchiMK,1973.OnPredictionofExtremeValues,J.ShipResearch,17,No.1,29-37.OchiMK,1998.OceanWaves:TheStochasticApproach,CambridgeUniversityPress.Oil Companies International Marine Forum, 1994. Prediction of Wind and Current Loads on VLCCs, 2nd edition,Witherby&Co.,London.Paidoussis M P, 1970. Dynamics oftubular cantilevers conveying fluid. J. MechanicalEngineering Science, 12, No 2,85-103.PaidoussisM PandDeksnisEB,1970.Articulatedmodelsofcantileversconveying fluid:Thestudyofaparadox. J.MechanicalEngineeringScience,12,No4,288-300.Paidoussis M P and Lathier B E, 1976. Dynamics of Timoshenko beams conveying fluid. J. Mechanical EngineeringScience,18,No4,210-220.PalmerACandBaldryJAS,1974.Lateralbucklingofaxiallyconstrainedpipes. J.PetroleumTechnology,Nov1974,1283-1284.Pode L, 1951. Tables for Computing the Equilibrium Configuration of a Flexible Cable in a Uniform Stream. DTMBReport.687.Principles of Naval Architecture. Revised edition, edited by J P Comstock, 1967. Society of Naval Architects andMarineEngineers,NewYork.PuechA,1984.TheUseofAnchorsinOffshorePetroleumOperations.EditionsTechnique.Randolph M and Quiggin P, 2009. Non-linear hysteretic seabed model for catenary pipeline contact. OMAE paper79259,2009(www.orcina.com/Resources/Papers/OMAE2009-79259.pdf).Rawson and Tupper, 1984. Basic Ship Theory 3rd ed, 2: Ship Dynamics and Design, 482. Longman Scientific &Technical(Harlow).Rienecker M M and Fenton J D, 1981. A Fourier approximation method for steady water waves. J. Fluid Mech.104,119-137.RoarkRJ,1965.FormulasforStressandStrain.4theditionMcGraw-Hill.SarpkayaT,ShoaffRL,1979.InviscidModelofTwo-DimensionalVortexSheddingbyaCircularCylinder.ArticleNo.79-0281R,AIAAJournal,17,no.11,1193-1200.SarpkayaT,ShoaffRL,1979.Adiscrete-vortexanalysisofflowaboutstationaryandtransverselyoscillatingcircularcylinders.Reportno.NPS-69SL79011,NavalPostgraduateSchool,Monterey,California.RychlikI,1987.Anewdefinitionoftherainflowcyclecountingmethod.Int.J.Fatigue9,No2,119-121.SkjelbreiaL,HendricksonJ,1961.Fifthordergravitywavetheory.Proc.7thConf.CoastalEng.184-196.Sobey R J, Goodwin P, Thieke R J and Westberg R J, 1987. Wave theories. J. Waterway, Port, Coastal & Ocean Eng.ASCE113,565-587.Sparks C, 1980. Le comportement mecanique des risers influence des principaux parametres. Revue de l'InstitutFrancaisduPetrol,35,no.5,811.Sparks C, 1983. Comportement mecanique des tuyaux influence de la traction, de la pression et du poids lineique :Applicationauxrisers.Revuedel'InstitutFrancaisduPetrol38,no.4,481.Standing RG, Brendling WJ, Wilson D, 1987. Recent Developments in the Analysis of Wave Drift Forces, Low-FrequencyDampingandResponse.OTCpaper5456,1987.Tan Z, Quiggin P, Sheldrake T, 2007. Time domain simulation of the 3D bending hysteresis behaviour of anunbondedflexibleriser.OMAEpaper29315,2007(www.orcina.com/Resources/Papers/OMAE2007-29315.pdf).TaylorRandValentP,1984.DesignGuideforDragEmbedmentAnchors, NavalCivilEngineeringLaboratory(USA),TNNoN-1688.TorsethaugenKandHaverS,2004.Simplifieddoublepeakspectralmodelforoceanwaves,PaperNo.2004-JSC-193,ISOPE2004Touson,France.wIntroduction,ReferencesandLinks19Thwaites,1960.IncompressibleAerodynamics,Oxford,399-401.TimoshenkoS,1955.VibrationProblemsinEngineering,vanNostrand.TriantafyllouMS,YueDKPandTeinDYS,1994.Dampingofmooredfloatingstructures. OTC7489,Houston,215-224.Tuckeretal,1984.AppliedOceanResearch,6,No2.TuckerMJ,1991.WavesinOceanEngineering.EllisHorwoodLtd.(Chichester).Wichers J E W, 1979. Slowly oscillating mooring forces in single point mooring systems. BOSS79 (SecondInternationalConferenceonBehaviourofOffshoreStructures).WichersJEW,1988.ASimulationModelforaSinglePointMooredTanker.DelftUniversityThesis.Wu M, Saint-Marcoux J-F, Blevins R D, Quiggin P P, 2008. Paper No. ISOPE-2008-MWU10. ISOPE Conference 2008,Vancouver,Canada.(www.orcina.com/Resources/Papers/ISOPE2008-MWU-10.pdf)YoungAD,1989.BoundaryLayers.BSPProfessionalBooks,87-91.SuppliersoffrequencydomainVIVsoftwareSHEAR7SBMAtlantia1255EnclaveParkway,Suite1200Houston,TX77077,USAAttention:Dr.S.LeveretteEmail:[email protected]:+12818994300Fax:+12818994307VIVAJDMarine11777KatyFreeway,Suite434SouthHouston,TX77079,USAPhone:+12815310888Fax:+12815315888Email:[email protected],GettingStarted212 TUTORIAL2.1 GETTINGSTARTEDThis short tutorial gives you a very quick run through the model building and results presentation features ofOrcaFlex.Oncompletionofthetutorialwesuggestthatyoualsolookthroughthepre-runexamplesseeExampleFiles.OnstartingupOrcaFlex,youarepresentedwitha3Dviewshowingjustabluelinerepresentingtheseasurfaceandabrownlinerepresentingtheseabed.Atthetopofthescreenare menus,atoolbarandastatusbararrangedinthemanner common to most Windows software. As usual in Windows software, nearly all actions can be done inseveralways:here,toavoidconfusion,wewillusuallyonlyrefertoonewayofdoingtheactionwewant,generallyusingthemouse.

Figure: TheOrcaFlexmainwindow2.2 BUILDINGASIMPLESYSTEMTostartwith,wewillbuildasimplesystemconsistingofonelineandonevesselonly.Usingthemouse,clickonthenewvesselbutton onthetoolbar.ThecursorchangesfromtheusualpointertoacrosshaircursortoshowthatyouhavenowselectedanewobjectandOrcaFlexiswaitingforyoutodecidewheretoplace it. Place the cursor anywhere on the screen and click the mouse button. A "ship" shape appears on screen,positionedattheseasurface,andthecursorrevertstothepointershape.Toselectthevessel,movethecursorcloseto the vessel and click the mouse button the message box (near the top of the 3D view) will confirm when thevessel has been selected. Now press and hold down the mouse button and move the mouse around. The vesselfollows the mouse horizontally, but remains at the sea surface. (To alter vessel vertical position, or other details,selectthevesselwiththemouse,thendoubleclicktoopentheVesseldatawindow.)2.3 ADDINGALINENow add a line. Using the mouse, click on the new line button . The crosshair cursor reappears move themousetoapointjusttothe rightofthevesselandclick.Thelineappearsasacatenaryloopatthemouseposition.Move the mouse to a point close to the lefthand end of the line, press and hold down the mouse button and movethemousearound.Theendofthelinemovesaroundfollowingthemouse,andthelineisredrawnateachposition.Release the mouse button, move to the right hand end, click and drag. This time the right hand end of the line isdragged around. In this way, you can put the ends of the lines roughly where you want them. (Final positioning toexact locations has to be done by typing in the appropriate numbers select the line with the mouse and doubleclicktobringupthelinedataform.)Movethelineendsuntilthelefthandendofthelineisclosetothebowoftheship,therighthandendliesabovethewaterandthelinehangsdownintothewater.Tutorial,AdjustingtheVieww

22Atthispoint,thelinehasadefaultsetofpropertiesandbothendsareatfixedpositionsrelativetotheGlobalorigin.Forthemomentwewillleavethelineproperties(length,mass,etc.)attheirdefaultvalues,butwewillconnectthelefthandendtotheship.Dothisasfollows:1. Clickontheline nearthelefthandend,toselectthat endoftheline; makesureyouhaveselectedtheline,notthevesselorthesea.Themessageboxatthelefthandendofthestatusbartellsyouwhatiscurrentlyselected.Ifyouhaveselectedthewrongthing,tryagain.(Notethatyoudon'thavetoclickattheendofthelineinordertoselectitanywhereinthelefthandhalfofthelinewillselectthelefthandend.Asarule,itisbettertochooseapointwellawayfromanyotherobjectwhenselectingsomethingwiththemouse.)2. Release the mouse and move it to the vessel, hold down the CTRL key and click. The message box will confirmtheconnectionand,toindicatetheconnection,thetriangleattheendofthelinewillnowbethesamecolourasthevessel.Now select the vessel again and drag it around with the mouse. The left hand end of the line now moves with thevessel.Leavethevesselpositionedroughlyasbeforewiththelineinaslackcatenary.2.4 ADJUSTINGTHEVIEWThe default view of the system is an elevation of the global X-Z plane you are looking horizontally along thepositive Y axis. The view direction (the direction you are looking) is shown in the Window Title bar inazimuth/elevationform(azimuth=270;elevation=0).Youcanmoveyourviewpointup,down,rightorleft,andyoucanzoominorout,usingtheviewcontrolbuttons nearthetopleftcornerofthewindow.Clickoneachofthetop3buttonsinturn:thenclickagainwiththe SHIFTkeyhelddown.TheSHIFTkeyreversestheactionofthebutton.Ifyouwanttomovetheviewcentrewithoutrotating,usethescrollbarsatthebottomandrightedgesofthewindow.Byjudicioususeofthebuttonsandscrollbarsyoushouldbeabletofindanyviewyoulike.Alternatively, you can alter the view with the mouse. Hold down the ALT key and left mouse button and drag. Arectangle on screen shows the area which will be zoomed to fill the window when the mouse button is released.SHIFT+ALT+leftmousebuttonzoomsouttheexistingviewshrinkstofitintherectangle.Warning: OrcaFlex will allow you to look up at the model from underneath, effectively from under theseabed! Because the view is isometric and all lines are visible, it is not always apparent that thishasoccurred.Whenthishashappened,theelevationangleisshownasnegativeinthetitlebar. Therearethreeshortcutkeyswhichareparticularlyusefulforcontrollingtheview.ForexampleCTRL+Pgivesaplanview from above; CTRL+E gives an elevation; CTRL+Q rotates the view through 90 about the vertical axis. (CTRL+PandCTRL+Eleavetheviewazimuthunchanged.)Nowclickthe buttononthe3DViewtobringuptheEditViewParametersform.Thisgivesamoreprecisewayofcontrollingtheviewandisparticularlyusefulifyouwanttoarrangeexactlythesameviewof2differentmodels say2alternativeconfigurationsforaparticularrisersystem.Edittheviewparametersifyouwishbypositioningthecursorintheappropriateboxandeditingasrequired.If you should accidentally lose the model completely from view (perhaps by zooming in too close, or moving theviewcentretoofar)thereareanumberofwaysofretrievingit:x PressCTRL+TorrightclickintheviewwindowandselectResettoDefaultView.x PresstheResetbuttonontheEditViewParametersform.Thisalsoresetsbacktothedefaultview.x Zoomoutrepeatedlyuntilthemodelreappears.x Closethe3DViewandaddanewone(usethe Window|Add3DViewmenuitem).Thenewwindowwillhavethedefaultviewcentreandviewsize.2.5 STATICANALYSISNote: IfyouarerunningthedemonstrationversionofOrcaFlexthenthisfacilityisnotavailable.Torunastaticanalysisofthesystem,clickonthecalculatestaticsbutton .Themessageboxreportswhichlineisbeing analysed and how many iterations have occurred. When the analysis is finished (almost instantly for thissimple system) the Program State message in the centre of the Status Bar changes to read "Statics Complete", andtheStaticAnalysisbuttonchangestolightgreytoindicatethatthiscommandisnolongeravailable.Theappearanceof the line will have changed a little. When editing the model, OrcaFlex uses a quick approximation to a catenarywTutorial,DynamicAnalysis23shape for general guidance only, and this shape is replaced with the true catenary shape when static analysis hasbeencarriedout.(SeeStaticAnalysisformoredetails).We can now examine the results of the static analysis by clicking on the Results button . This opens a ResultsSelectionwindow.Youareofferedthefollowingchoices:x Resultsinnumericalandgraphicalform,withvariousfurtherchoiceswhichdeterminewhatthetableorgraphwillcontain.x Resultsforallobjectsoroneselectedobject.Ignore the graph options for the moment, select Summary Results and All Objects, then click Table. A summary ofthe static analysis results is then displayed in spreadsheet form. Results for different objects are presented indifferent sheets. To view more static analysis results repeat this process: click on the Results button and select asbefore.2.6 DYNAMICANALYSISWearenowreadytorunthesimulation.IfyouarerunningthedemonstrationversionofOrcaFlexthenyoucannotdothis,butinsteadyoucanloaduptheresultsofapre-runsimulationseeExamples.Click the Run Dynamic Simulation button . As the simulation progresses, the status bar reports currentsimulationtimeandexpected(real)timetofinishtheanalysis,andthe3Dviewshowsthemotionsofthesystemasthewavepassesthrough.Click the Start Replay button . An animated replay of the simulation is shown in the 3D view window. Use theview control keys and mouse as before to change the view. The default Replay Period is Whole Simulation. Thismeans that you see the simulation start from still water, the wave building and with it the motions of the system.SimulationtimeisshownintheStatusbar,topleft.Negativetimemeansthewaveisstillbuildingupfromstillwatertofullamplitude.Attheendofthesimulationthereplaybeginsagain.Thereplayconsistsofaseriesof"frames"atequalintervalsoftime.Justasyoucan"zoom"inandoutinspaceforacloserview,soOrcaFlexletsyou"zoom"inandoutintime.ClickontheReplayParametersbutton ,editIntervalto0.5sandclickOK.Theanimatedreplayisnowmuchjerkierthanbeforebecausefewerframesarebeingshown.NowclickagainonReplayParameters,setReplayPeriodtoLatestWaveandclickontheContinuousboxtodeselect.Thereplayperiodshownisattheendofthesimulation andhasdurationofasinglewaveperiod.Attheendofthewaveperiodthereplaypauses,thenbeginsagain.Now click on the Replay Step button to pause the replay. Clicking repeatedly on this button steps through thereplayoneframeatatime averyusefulfacilityfor examiningaparticularpartofthemotionindetail.ClickwiththeSHIFTkeyhelddowntostepbackwards.Youcanthenrestarttheanimationbyclickingon'StartReplay'asbefore.Toslowdownorspeedupthereplay,clickon Replay Parameters and adjust the speed. Alternatively use the shortcuts CTRL+F and SHIFT+CTRL+F to make thereplayfasterorslowerrespectively.ToexitfromreplaymodeclickontheStopReplaybutton .2.7 MULTIPLEVIEWSYou can add another view of the system if you wish by clicking on the View button . Click again to add a thirdview,etc.Eachviewcanbemanipulatedindependentlytogive,say,simultaneousplanandelevationviews.Tomakeallviewsreplaytogether,clickonReplayControlandchecktheAllViewsbox.Toremoveanunwantedviewsimplyclose its view window. To rearrange the screen and make best use of the space, click Window and choose TileVertical(F4)orTileHorizontal(SHIFT+F4).Alternatively,youcanminimisewindowssothattheyappearassmallicons on the background, or you can re-size them or move them around manually with the mouse. These arestandard Windows operations which may be useful if you want to tidy up the screen without having to close awindowdowncompletely.Tutorial,LookingatResultsw

242.8 LOOKINGATRESULTSNowclickontheResultsbutton .ThisopensaResultsSelectionwindow.Youareofferedthefollowingchoices:x ResultsasTablesorGraphs,withvariousfurtherchoiceswhichdeterminewhatthetableorgraphwillcontain.x Resultsforallobjectsoroneselectedobject.Select Time History for any line, then select Effective Tension at End A and click the Graph button. The graphappears in a newwindow. You can call up time histories ofa wide range ofparameters for most objects. For lines,you can also call up Range Graphs of effective tension, curvature, bend moment and many other variables. Theseshow maximum, mean and minimum values of the variable plotted against position along the line. DetailednumericalresultsareavailablebyselectingSummaryResults,FullResults,StatisticsandLinkedStatistics.Timehistoryand rangegraphresultsarealsoavailableinnumericalform selectthevariableyouwantand presstheValuesbutton.TheresultscanbeexportedasExcelcompatible spreadsheetsforfurtherprocessingasrequired.Further numerical results are available in tabular form by selecting Summary Results, Full Results, Statistics andLinkedStatistics.ResultsPost-ProcessingExtrapost-processingfacilitiesareavailablethroughExcelspreadsheets.2.9 GETTINGOUTPUTYou can get printed copies of data, results tables, system views and results graphs by means of the File|Printmenu, or by clicking Print on the pop-up menu. Output can also be transferred into a word processor or otherapplication,eitherusingcopy+pasteviatheclipboardorelseexport/importviaafile.Note: PrintingandexportfacilitiesarenotavailableinthedemonstrationversionofOrcaFlex.2.10 INPUTDATATakealookthroughtheinputdataforms.Startbyresettingtheprogram:clickontheResetbutton .ThisreturnsOrcaFlex to the reset state, in which you can edit the data freely. (While a simulation is active you can only editcertainnon-criticalitems,suchasthecoloursusedfordrawing.)NowclickontheModelBrowserbutton .ThisdisplaysthedatastructureintreeformintheModelBrowser.Select an item and double click with the mouse to bring up the data form. Many of the data items are selfexplanatory. For details of a data item, select the item with the mouse and press the F1 key. Alternatively use thequestionmarkHelpiconinthetoprightcorneroftheform.HavealookaroundalltheobjectdataformsavailabletogetanideaofthecapabilitiesofOrcaFlex.EndofTutorialWehopeyouhavefoundthistutorialuseful.TofamiliariseyourselfwithOrcaFlex,trybuildingandrunningmodelsofanumberofdifferentsystems.Themanualalsoincludesarangeofexampleswhichexpandonparticularpointsofinterestordifficulty.Finally,pleaserememberthatweatOrcinaareoncalltohandleyourquestionsifyouarestuck.wUserInterface,Introduction253 USERINTERFACE3.1 INTRODUCTION3.1.1 ProgramWindowsOrcaFlexisbaseduponamainwindowthatcontainsthe Menus,aToolBar,aStatusBarandusuallyatleastone3Dview.Thewindowcaptionshowstheprogramversionandthefilenameforthecurrentmodel.

Figure: TheOrcaFlexmainwindowWithinthismainwindow,anynumberofchildwindowscanbeplacedwhichmaybe:3DViewWindows showing3DpictorialviewsofthemodelGraphWindows showingresultsingraphicalformSpreadsheetWindows showingresultsinnumericalformTextWindows reportingstatusAdditionaltemporarywindowsarepoppedup,suchasDataFormsforeachobjectinthemodel(allowingdatatobeviewedandmodified)anddialoguewindows(usedtospecifydetailsforprogramactionssuchasloadingandsavingfiles).Whileoneofthesetemporarywindowsispresentyoucanonlyworkinsidethatwindowyoumustdismissthetemporarywindowbeforeyoucanuseotherwindows,themenusortoolbar.TheactionsthatyoucanperformatanytimedependonthecurrentModelState.ArrangingWindows3D View, Graph, Spreadsheet and Text Windows may be tiled so that they sit side-by-side, but they must remainwithintheboundsofthemainwindow.Theprogramrearrangesthewindowseverytimeanewwindowiscreated.3.1.2 TheModelOrcaFlex works by building a mathematical computer model of your system. This model consists of a number ofobjectsthatrepresentthepartsofthesysteme.g.vessels,buoys,linesetc.Each object has a name, which can be any length. Object names are not case-sensitive, so Riser, riser and RISERwouldallrefertothesameobject.ThisbehaviouristhesameasforWindowsfilenames.Themodelalwayshastwostandardobjects:x Generalcontainsgeneraldata,suchastitle,unitsetc.x Environmentrepresentsthesea,seabed,waves,currentetc.YoucanthenusetheModelBrowserorthetoolbartoaddotherobjectstorepresentthepartsofyoursystem.Thereisnolimit,otherthanthecapacityofyourcomputer,tothenumberofobjectsyoucanaddtothemodel.Atanytime,youcansaveyourmodeltoadatafile.UserInterface,Introductionw

263.1.3 ModelStatesOrcaFlex builds and analyses a mathematical model of the system being analysed, the model being built up from aseriesofinterconnectedobjects,suchasLines,VesselsandBuoys.FormoredetailsseeModellingandAnalysis.OrcaFlex works on the model by moving through a sequence ofstates, the current state being shown on the statusbar.Thefollowingdiagramshowsthesequenceofstatesusedandtheactions,resultsetc.availableineachstate.RESETCalculatingStaticsSimulatingSTATICS COMPLETESIMULATIONCOMPLETECalculateStaticPositionResetResetEdit orResetRunPauseRunSIMULATIONPAUSEDResetExtendSimulationSIMULATIONUNSTABLEReset

Figure: ModelStatesThestatesusedareasfollows:ResetThestatein whichOrcaFlexstarts.InResetstateyoucanfreelychangethemodeland editthedata.Noresults areavailable.CalculatingStaticsOrcaFlexiscalculatingthestaticspositionofthemodel.YoucanabortthecalculationbyCLICKINGtheResetbutton.StaticsCompleteThestaticscalculationiscompleteandthestaticpositionresultsareavailable.Youareallowedtomakechangestothemodelwheninthisstatebutifyoumakeanychanges(exceptforveryminorchangeslikecoloursused)thenthemodelwillbeautomaticallyresetandthestaticsresultswillbelost.SimulatingThedynamicsimulationisrunning.Theresultsofthesimulationsofarareavailableandyoucanexaminethemodeldata, but only make minor changes (e.g. colours used). You cannot store the simulation to a file while simulating youmustpausethesimulationfirst.wUserInterface,Introduction27SimulationPausedThere is a simulation active, but it is paused. The results so far are available and you can examine the model data.Youcanalsostorethepart-runsimulationtoafile.SimulationCompleteThesimulationiscomplete.Thesimulationresultsareavailableandyoucanstoretheresultstoasimulationfileforlater examination. You must reset the model, by CLICKING on the Reset button, before significant changes to themodelcanbemade.YoucanusetheExtendDynamicSimulationfacilityifyouwishtosimulateforafurtherperiodoftime.SimulationUnstableThe simulation has become unstable. The simulation results are available and you can store the results to asimulation file for later examination. This allows you to try and understand why the simulation has becomeunstable. You may also want to examine the results up until the point at which the simulation became unstable.However, please treat these results with caution because the simulation eventually went unstable this indicatesthatthedynamicsimulationmaynothaveconvergedatearliersimulationtimes.Youmustresetthemodel,byCLICKINGontheResetbutton,beforesignificantchangestothemodelcanbemade.TypicalmodelstateflowToillustratehowmodelstateswork,hereisanexampleofatypicalworkingpattern:1. InResetstate,openanewmodelfromadatafileorusethecurrentmodelasthestartingpointforanewmodel.2. InResetstate,addorremoveobjectsandeditthemodeldataasrequiredforthenewmodel.Itisgenerallybestto use a very simple model in the early stages of design and only add more features when the simple model issatisfactory.3. Run a static analysis (to get to Statics Complete state) and examine the static position results. Make anycorrections to the model that are needed this will automatically reset the model. Steps (2) and (3) arerepeatedasrequired.4. Runasimulationandmonitortheresultsduringthesimulation(inSimulatingstate).5. If further changes to the model are needed then Reset the model and edit the model accordingly. Steps (2) to(5)arerepeatedasrequired.6. Finalise the model, perhaps improving the discretisation (for example by reducing the time step sizes orincreasing the number of segments used for Lines). Run a final complete simulation (to reachSimulationCompletestate)andgeneratereportsusingtheresults.3.1.4 ToolbarThe toolbar holds a variety of buttons that provide quick access to the most frequently used menu items. TheselectionofbuttonsavailablevarieswiththecurrentProgramState.Button Action EquivalentMenuItem

Open File|Open

Save File|Save

ModelBrowser Model|ModelBrowser

NewVessel Model|NewVessel

NewLine Model|NewLine

New6DBuoy Model|New6DBuoy

New3DBuoy Model|New3DBuoy

NewWinch Model|NewWinch

NewLink Model|NewLinkUserInterface,Introductionw

28Button Action EquivalentMenuItem

NewShape Model|NewShape

CalculateStatics Calculation|SingleStatics

RunSimulation Calculation|RunDynamicSimulation

PauseSimulation Calculation|PauseDynamicSimulation

Reset Calculation|Reset

StartReplay Replay|StartReplay

StopReplay Replay|StopReplay

StepReplayForwards Replay|StepReplayForwards

EditReplayParameters Replay|EditReplayParameters

AddNew3DView Window|Add3DView

ExamineResults Results|SelectResults

HelpContentsandIndex Help|OrcaFlexHelp3.1.5 StatusBarTheStatusBarisdividedintothreefields:TheMessageBoxThis is at the lefthand end. It shows information about the progress ofthe current action, such as the name ofthecurrentlyselectedobject,orthecurrentiterationnumberorsimulationtime.Errormessagesarealsoshownhere.Whenastaticscalculationisdonemessagesshowingtheprogressofthecalculationareshowninthemessagebox.To see all the messages from the statics calculation CLICK on the message box the StaticsProgressWindow willthenbeopened.TheProgramStateIndicatorInthecentreandshowswhichstatetheprogramisin(seeModelStates).TheInformationBoxThisisontheright.Itshowsadditionalinformation,including:x Theglobalcoordinatesofthepositionofthecursor,inthecurrentviewplane.x Distanceswhenusingthemeasuringtapetool.3.1.6 MouseandKeyboardActionsAswellasthestandardWindowsmouseoperationssuchasselectionanddraggingOrcaFlexusessomespecialisedactions. Clicking the right mouse button over a 3D View, Graph or Text Window displays a pop-up menu offrequently used actions, such as Copy, Paste, Export etc. For wire frame 3D Views and Graph Windows the mousecanbeusedforzooming.SimplyholdtheALTkeydownandusingtheleftmousebutton,dragaboxovertheregionyouwanttoview.AllofthemenuitemscanbeselectedfromthekeyboardbypressingALTfollowedbytheunderlinedletters.Example: Toexitfromtheprogram(menu:File|Exit)pressALT+FthenX,orALTthenFthenXA number of frequently used menu items may also be accessed by shortcut keys, such as CTRL+R to start a replay.See the tables below. The shortcut keys are also displayed on the OrcaFlex menus. We suggest that as you becomemorefamiliarwiththeoperationofOrcaFlexthatyoumemorisesomeoftheshortcutkeysforactionsthatyouusefrequently.wUserInterface,Introduction29KeysonMainWindowNewmodelCTRL+NOpenfileCTRL+OSavefileCTRL+SOpendataSHIFT+CTRL+OSavedataSHIFT+CTRL+SHelpF1PrintF7Show/hideModelBrowserF6SwitchbetweenModelBrowserandMainWindowSHIFT+F6CalculatestaticpositionF9RundynamicsimulationF10PausedynamicsimulationF11ResetF12OpenresultsselectionformF5GotonextwindowCTRL+F6GotopreviouswindowSHIFT+CTRL+F6TilewindowsverticallyF4TilewindowshorizontallySHIFT+F4CloseselectedwindowCTRL+F4CloseprogramALT+F4KeysonModelBrowserEditdataEnterRenameobjectF2SwitchtoMainWindowSHIFT+F6LocateF3MoveselectedobjectsCTRL+MHideCTRL+HShowCTRL+SHideallobjectsSHIFT+CTRL+HShowallobjectsSHIFT+CTRL+SViewbyGroupsSHIFT+CTRL+GViewbyTypesSHIFT+CTRL+TLock/UnlockobjectsCTRL+LCutCTRL+XCopyCTRL+CPasteCTRL+VDeleteDELETEClosebrowserESCKeysonDataFormsHelpF1GotonextdataformF6GotopreviousdataformSHIFT+F6UserInterface,Introductionw

30Displaybatchscriptnamesforcurrentlyselecteddataitemortable.F7DisplayPropertiesReportALT+ENTERShowconnectionsreportF8CopyformF9ExportformF10PrintformCTRL+POpencalculatorF12DataSelectionKeysGotonextdataitemortableTABGotopreviousdataitemortableSHIFT+TABGotodataitemortablelabelledwithunderlinedletterALT+LETTERMovearoundwithinatable Selectmultiplecellsintable SHIFT+SHIFT+HOMESHIFT+ENDGotofirstorlastcolumnintableHOMEENDGoupordowntableseveralrowsatatimePGUPPGDNDataEditingKeysEnternewvalueforselectedcell TypenewvalueEditcurrentvalueofselectedcellF2Opendrop-downlist ALT+Movearoundwithinnewdatavaluebeingentered HOMEENDAccepteditRETURNAccepteditandgotoadjacentcellintable CanceleditESCCutselectedcell(s)toclipboardCTRL+XCopyselectedcell(s)toclipboardCTRL+CPastefromclipboardCTRL+VFillselectionfromtop(copytopcelldown)CTRL+DFillselectionfromleft(copyleftmostcelltoright)CTRL+RFillselectionfrombottom(copybottomcellup)CTRL+USHIFT+CTRL+DFillselectionfromright(copyrightmostcelltoleft)CTRL+LSHIFT+CTRL+RInsertnewrowsintableINSERTDeleteselectedrowsfromtableDELETE3DViewControlKeysElevationviewCTRL+EPlanviewCTRL+PRotateviewpointup(incrementviewelevationangle) CTRL+ALT+Rotateviewpointdown(decrementviewelevationangle) CTRL+ALT+Rotateviewpointright(incrementviewazimuthangle) CTRL+ALT+Rotateviewpointleft(decrementviewazimuthangle) CTRL+ALT+wUserInterface,OrcaFlexModelFiles31Rotateviewpoint+90CTRL+QRotateviewpoint-90SHIFT+CTRL+QZoomInCTRL+IZoomOutSHIFT+CTRL+IMoveviewcentrefineadjustment Moveviewcentrecoarseadjustment CTRL+Editviewparametersforcurrent3DviewCTRL+WResettodefaultviewCTRL+TSetasdefaultviewSHIFT+CTRL+TShowentiremodelCTRL+ALT+T3DViewControlKeys(forwireframegraphicsonly)Show/HidelocalaxesCTRL+YShow/HidenodeaxesCTRL+ALT+YUndomostrecentdragCTRL+ZLock/UnlockselectedobjectCTRL+LPlacenewobject SPACEorRETURNEditselectedobjectCTRL+F2CutselectedobjecttoclipboardCTRL+XCopyselectedobject,orviewifnoneselected,toclipboardCTRL+CPasteobjectfromclipboard(followedbymouseclickorRETURNtopositionthenewobject)CTRL+VDeleteselectedobjectDELETEMeasuringtapetool SHIFT+CTRL+dragReplayControlKeysStart/StopreplayCTRL+RReplayfasterCTRL+FReplayslowerSHIFT+CTRL+FStepforwardsoneframeinthereplayandpauseCTRL+AStepbackwardsoneframeinthereplayandpauseCTRL+BEditreplayparametersCTRL+D3.2 ORCAFLEXMODELFILES3.2.1 DataFilesOrcaFlexmodelsaresavedtoeitherbinarydatafiles(.dat)ortextdatafiles(.yml).AllversionsofOrcaFlexcanreadbinarydatafiles.Textdatafileswereonlyintroducedinversion9.3aandsocannotbereadbyolderversionsoftheprogram.Binarydatafileshavestrongversioncompatibilityfeatures.Forexample,whenOrcaFlexattemptstoopenabinarydata file written by a later version of the program it is able to report informative compatibility warnings. Theprogram is not able to be as helpful and informative when working with text data files across program versions.Whilstwestrivetoachieveasmuchcompatibilityaspossiblefortextdatafilesacrossprogramversions,wecannotachievethesamelevelofcompatibilityasthatforbinarydatafiles.Text data files, as written by OrcaFlex, contain only data that is active in the model. For example, if implicit timeintegration is selected in the model then all data relating to explicit time integration is excluded from the text datafile.Ontheotherhand,binarydatafilescontainalldatawhetherornotitisactive.ThefactthatthebinarydatafileUserInterface,OrcaFlexModelFilesw

32contains inactive data can be very useful and so, in general, we would recommend that model building anddevelopmentisperformedusingthebinarydatafile.Text data files can be created without the use of OrcaFlex simply by entering text into a text editor. In general wewould not advocate this approach to model building. For very simple systems it may be a practical approach butmore complex models are usually much easier to build and inspect using the full capabilities and visualisationstrengthsofOrcaFlex.Ontheotherhand,textdatafilescanbeveryeffectivewhenmakingminorchangestoexistingmodels.Usingtextdatafilesforsuchminorvariationsofexistingmodelsmakesitmucheasiertomonitorjustwhathasbeenchanged,forexamplebyusingstandardtextdifferencingprograms.Text data files are highly readable and self-documenting which makes them ideal for QA and archival purposes.Anotherapplicationwellsuitedtotheuseoftextdatafilesisautomation.3.2.2 TextDataFilesText data files are used to define and represent OrcaFlex models in a human readable and easily editable format.TextdatafilescanbeopenedandsavedbyOrcaFlex.Averysimpleexampleisshownbelow:General: StageDuration: - 10.0 - 50.0 Lines: - Name: Line1 Length, TargetSegmentLength: - [60.0, 5.0] - [40.0, 2.0] - [120.0, 10.0] This example first defines a 10s build-up stage followed by stage 1 with 50s duration. Then a Line is created andnamed "Line1". Finally the section data is specified: three sections are created with varying section lengths andsegmentlengths.Defaultvaluesareusedforalldatawhicharenotspecified.Note: The formatting (colour, bold, italic etc.) in the examples here has been added to aid readability,andisnotafeatureorrequirementoftextdatafilesthemselves.YAMLfileformatTextdatafilesuseastandardfileformatcalledYAMLandshouldbesavedwiththe.ymlfileextension.TheYAMLfileformatwaschosenbecauseitisextremelyeasytoreadandwrite.YAMLfilesareplaintextfilesandsocanbeeditedinanytexteditor.WehavefoundNotepad++tobeaveryeffectiveeditor for YAML files. Notepad++ has a tabbed interface for easy editing of multiple files and has code folding andsyntaxhighlightingfacilitiesthatworkwellwithYAMLfiles.Note: YAMLfilesmustbesavedwiththeUTF-8characterencoding.MoredetailsontheYAMLformatandNotepad++canbeobtainedfromthefollowingwebsites:x http://en.wikipedia.org/wiki/YAMLYAMLpageonWikipedia.x http://www.yaml.org/OfficialYAMLhomepage.x http://www.yaml.org/spec/CompletetechnicalspecificationofYAML.x http://notepad-plus.sourceforge.net/Notepad++.ElementsofatextdatafileThemostbasicelementofatextdatafileisthename/valuepair:UnitsSystem: SI The name (UnitsSystem) is written first, followed by a colon (:), then a SPACE, and then the value (SI). The namesusedintextdatafilesarethesameasusedtoidentifydataitemsinbatchscriptfiles.NamesandvaluesinYAMLfilescancontainspacesandotherpunctuation:General: StaticsMethod: Whole System statics Lines: wUserInterface,OrcaFlexModelFiles33 - Name: 12" Riser - Name: Umbilical, upper - Name: "!$%^&*(){}[]=+-_#~'@:;/?.>,