organic materials database / dirac...

37
Organic Materials Database / Dirac Materials Electronic Structure Database with Focus on Data Mining Stanislav Borysov, Matthias Geilhufe and Alexander Balatsky omdb.diracmaterials.org Nordita, Center for Quantum Materials, KTH Royal Institute of Technology and Stockholm University, Villum Foundation

Upload: vocong

Post on 01-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database / Dirac MaterialsElectronic Structure Database with Focus on Data Mining

Stanislav Borysov, Matthias Geilhufe and Alexander Balatsky

omdb.diracmaterials.org

Nordita, Center for Quantum Materials, KTH Royal Institute of Technology and Stockholm University, Villum Foundation

A data mining approach for the search of organic Diracmaterials

Stanislav Borysov1,2, Matthias Geilhufe1,2, Alexander Balatsky1,2

1 Center for Quantum Materials, Stockholm2 Nordita, KTH Royal Institute of Technology and Stockholm University

1 / 17

Page 2: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials DatabaseOnline Database with Focus on Data Mining

omdb.diracmaterials.org

Accelerated Materials Discovery

https://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf

Organic Materials

• Flexible electronics• Organic LED• Organic solar cells

http://www.flickr.com/photos/rdecom/4146880795/

Dirac Materials

DataMining

Large-ScaleCalculations

• Graphene• Topological insulators• Weyl semi-metals

General Context and Motivation

2

Page 3: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Dirac materials

3

Schrödinger fermions Dirac fermions

d-wave superconductors, graphene, topological insulators,…

CuO2 plane

Graphene sheet

Bi2Se3

Peng

etal.,NatureMat.

9,225

(200

9)

Page 4: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

What is a Dirac material?

Dirac materials (DMs): low-energy fermionic excitations are described by a Dirac Hamiltonian

Examples:

Dirac equation: Dirac Hamiltonian:

→ d-wave superconductors, superfluid He-3→ 2D DM: graphene, TI, TCI

→ 3D DM: Dirac/Weyl semimetals→ artificial DM→ bosonic DM

in condensed matter

T.O. Wehling, A.M. Black-Schaffer, A.V. Balatsky, Advances in Physics

(2014)

E

kykx

Universal properties:

Landau levels

minimum cond.Eres ≃ −1/U

impurity resonances

density of states

specific heat

e-e interactions

Page 5: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

DM as a framework:

Page 6: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Example of classification:

Carl Linnaeus 1707-1778

• The formal introduction of this system of naming species is credited to Swedish natural scientist Carl Linnaeus

• The value of the binomial nomenclature system derives primarily from its economy, its widespread use, and the uniqueness and stability of names it generally favors:

• Economy, Clarity, Robustness, Predictive

Page 7: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Challenge of classification

Page 8: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Metals

Page 9: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Nonmetals

Page 10: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Dirac Materials: characterization of functional response

Not a chemical characterization, nor group theoretical

Functoinal characterization

Page 11: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Dirac materials vs metalsMetals

FS

E=v(k-k_F)

Diracmaterials(3Heincluded)

E=vk,k_F=0

empty

occupied

Definingfeature:Symmetryofthebandstructureortopology

Dimensionalityofzeroenergystatesinoneless(atleast)DM/WM>Topologicalstates

DMBettercontrolofresponse– gapopening,lessdissipationatlowT.Importantforfutureenergyanddeviceapplications.

D_node = d-2, d-3D_node = d-1

Page 12: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

T. Wehling, A Black-Schaffer and A. V. Balatsky, Dirac Materials, Adv Phys, v 63, p 1 (2014)

Page 13: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Many-body instability in DM N(E)

E

E

kykx

4

gapless sate gapped sateKotov et al., RMP 84, 1067 (2012)

αc≈1 in graphene

but no gap observed in suspended graphene with α=2.2

2D DM:

N(E)

N(E)

Eµeµh

pumpµE

k

µe

µh

l Linear dispersion → vanishing DOS at the nodel

l Critical coupling for many-body instabilitiesl

l

l

l

l

l

l Dirac nodes are stable against interactionsl

dimensionless coupling in DM

Need to create long-livednon-equilibrium e and hpopulations, e.g. populationinversion, in a DM.

Page 14: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

E

kE

nF(E,T)

equilibrium pump relaxation

tt<0 t=0

rapid thermalization

E

nF(E,T)

population inversion

carrier-carrier(150fs-1ps)phonons(1-15ps)

cooling & recombination→(10-150fs)

(timscales for graphene)

Page 15: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Bosonic Dirac MaterialsHonecomb lattices with Dirac Dispersion

• Any particle: fermion or boson on honeycomb, • Kagome and other lattices

Dirac cone dispersion:𝑡"#𝑂"∗𝑂# - O can be any particle

O – fermion – TI, Graphene, SC

O- boson – plasmonic crystals, acoustic, polaritons

• Dirac Materials extended to bosons : Josepshon Junction circuits and Magnons

Page 16: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Phonons on an non-bravaislattice

Page 17: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

BEC of polaritons in Driven Dirac nodes

Direct Observation of Dirac Cones and aFlatband in a Honeycomb Lattice for Polaritons T. Jacqmin et al, PRL 112, 116402 (2014)

Polaritons Dirac cone

Page 18: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Dirac Magnons

Page 19: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Dirac magnons – transition metal trihalides

Br-

Cr3+

J

Jz

l CrBr3 lattice

Page 20: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Magnon energy spectrum

Dirac crossing

Neutron scattering experiments on CrB3 from 70s:W. B. Yelon and R. Silberglitt, Phys. Rev. B 4, 2280 (1971).E. J. Samuelsen, R. Silberglitt, et al., Phys. Rev. B 3, 157 (1971).

Page 21: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Renormalization of Large-Wave-Vector Magnons in Ferromagnetic Cr ...

link.aps.org/doi/10.1103/PhysRevB.4.2280

Google Scholarvon WB Yelon - 1971 - Zitiert von: 5 - Ähnliche Artikel

... Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects. W. B. Yelon and Richard Silberglitt.

Phys. Rev. B 4, 2280 – Published 1 October 1971.

Page 22: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

How we do it

crystallography.netMore than 100,000 organic compounds

to calculate (~20,000 are ready)

Standard DFT calculations to capture trends

Borysov SS, Geilhufe RM, Balatsky AV, Organic materials database: An open-access online database for data mining,

PLoS ONE 12(2), e0171501 (2017)

22

Page 23: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: Content~20,000 Electronic Structures

(Oct 22, 2017)

23

Page 24: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: Gap Search

24

Page 25: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: Gap Search at Fermi Level

25

114 metals (gap = 0 eV)58 semiconductors with 0 < gap <= 0.1 eV

Page 26: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: Online Pattern Search

E (

eV

)

X Γ Y,L Γ Z,N Γ M,R Γ-1.2

-1.15

-1.1

-1.05

-1

-0.95

Highcharts.com

Arbitrary pattern

Search results

S.S. Borysov, B. Olsthoorn, M.B. Gedik, R.M. Geilhufe, A.V. Balatsky,To be submitted (2017)

26

Page 27: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: Online Pattern Search

S.S. Borysov, B. Olsthoorn, M.B. Gedik, R.M. Geilhufe, A.V. Balatsky,To be submitted (2017)

1. Represent data and query as vectors 2. Approximate nearest neighbor search

27

https://www.cs.umd.edu/~mount/ANN/

Page 28: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

~b2~b3

E(~k)

R

~b3

E(~k)

~b2

D

Dirac points (SG 19) Dirac lines (SG 14)

Geilhufe RM, Borysov SS, Bouhon A, Balatsky AV,Data Mining for Three-Dimensional Organic Dirac

Materials: Focus on Space Group 19, Scientific Reports 7, 7298 (2017)

Geilhufe RM, Bouhon A, Borysov SS, Balatsky AV,Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach,

Physical Review B 95, 041103(R) (2017)

Online Pattern Search: Dirac Materials

28

Page 29: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: DOS Similarity Search

2

most

similar

top-terp

henyl.

REFERENCE

MATERIA

LP-T

ERPHENYL

Cry

stalstru

cture

and

electro

nic

structu

re

The

organic

compou

nd

p-terp

henyl

or1,4-

Diphenylb

enzen

ecrystallizes

with

ina

mon

oclinic

crystalstru

cture

obeyin

gthespace

group

P21 /a

(14).The

molecu

leitself

has

the

chem

icalsum

formula

C18 H

14 ,

exhibitin

gthefollow

ingskeletal

formula:

Accord

ingto

Ref.

[27],thelattice

param

etersare

givenby

a=

8.10A,b=

5.61A,c=

13.61A

and�=

92.02�.

The

electronic

structu

reof

p-terp

henyl

fora

non

-op

timized

unit

cellwith

ionic

position

saccord

ing

toRef.

[27]is

illustrated

inFig.

1.Thecrystal

itselfis

alarge

ban

dgap

insulator

with

acalcu

latedban

dgap

of3eV

.Theban

dstru

cture

(Fig.

1a)exh

ibits

alocal-

izedan

dwell

isolatedflat

ban

dright

below

theFerm

ilevel

which

isalso

seenin

theden

sityof

statesshow

nin

Fig.

1b.

Such

flat

ban

dsare

common

with

intheban

dstru

cture

oforgan

icsdueto

theweak

hop

pingof

elec-tron

sbetw

eenthemolecu

larorb

itals.Both

below

and

above

thegap

,theDOSshow

slocalized

features

with

inan

energy

range

ofab

out2eV

.After

astru

ctural

opti-

mization

oftheion

icposition

s,theban

dstru

cture

and

den

sityof

statesrem

ainqu

alitativelysim

ilar.Theban

dgap

itselfslightly

decreases

toab

out2.8

eV,whereas

the

spectral

gapbetw

eenthelocalized

ban

dbelow

theFerm

ilevel

tothesecon

den

ergeticallylow

erbran

chof

ban

ds

slightlyincreases

toab

out0.8

eV.

Computa

tionaldeta

ils

Theelectron

icstru

cture

ofthereferen

cematerial

p-

terphenyl

was

calculated

inthefram

ework

oftheden

-sity

function

altheory

[28–30]by

applyin

gapseu

dop

o-tential

projector

augm

ented-w

avemeth

od[31–34],

asim

-plem

entedin

theVien

naAbinitio

Sim

ulation

Package

(VASP)[35–38].

Durin

gthecalcu

lations,

theexch

ange-

correlationfunction

alwas

approxim

atedby

the

gen-

eralizedgrad

ientap

proxim

ationaccord

ing

toPerd

ew,

Burke

andErnzerh

of[39](P

BE).T

hestru

cturalin

forma-

tionwas

takenfrom

theCam

brid

geStru

ctural

Datab

ase(C

SD)[27,

40]an

dtran

sferredinto

POSCAR

files

us-

ingVESTA

(Visu

alizationfor

Electron

ican

dSTructu

ralAnalysis)

[41].Theen

ergycu

t-o↵was

setto

400eV

.Dueto

thelight

atomsinvolved

,thecalcu

lationswere

perform

edspin-

-2 -1 0 1 2 3 4

ΓZ

CY

AE

DB

D

Energy (eV)

b1

b3

b2

Z

D

Y

AB

C

E

(a)bandstru

cture

alongva

rioushighsymmetry

path

swith

inth

eBrillo

uin

zone

�2

02

46

W1

W2

Energy

(eV)

DOS

(b)den

sityofsta

tesinclu

dingth

etw

oen

ergy

window

sW

1andW

2used

forth

esim

ilaritysea

rch

FIG

.1:

Electron

icstru

cture

ofp-terp

henyl.

polarized

butwith

outspin-orb

itcou

plin

g.For

thein-

tegrationin

~k-sp

ace,a6⇥

6⇥6�-centered

mesh

accord-

ingto

Mon

khorst

andPack

[42]was

chosen

durin

gthe

self-consistent

cycle.Ban

dstru

cture

calculation

swere

perform

edin

twoways.

First,

thecrystal

structu

rewas

keptfixed

asprovid

edby

theexp

eriment

[27],which

isin

correspon

den

ceto

theelectron

icstru

cture

calculation

sstored

with

intheOMDB

[2].Secon

d,theion

icposition

swere

optim

izedby

incorp

oratingvan

der

Waals

correc-tion

swith

inthefram

ework

oftheden

sitydep

endent

dis-

persion

correctionaccord

ingto

Stein

man

nan

dCorm

in-

boeu

f[43]

tocross-ch

eckthestab

ilityof

theelectron

icstru

cture

with

respect

toslight

structu

ralchan

ges.

DOS

SIM

ILARIT

YSEARCH

TOOL

Toidentify

materials

with

intheOMDB

havin

gDOS

similar

top-terp

henyl,

we

develop

eda

DOS

similar-

itysearch

toolwhich

ismad

efreely

available

onlin

eat

https://omdb.diracmaterials.org/search/dos.

It

Reference material

4

E (

eV

)

Γ Y HC EM_1 A X H_1,M D Z,Y D

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 10 20 30 40 50

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(a) OMDB-ID 12336, COD-ID 2212018, C8H8Br2

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D

-2

0

-3.5

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 20 40 60 80

-2

0

-3.5

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(b) OMDB-ID 261, COD-ID 4062949, C8H5O

E (

eV

)

X Γ Y,L Γ Z,N Γ M,R Γ

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 20 40 60 80

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(c) OMDB-ID 12231, COD-ID 2203730, C18H18O2

FIG. 2: Electronic structure of the three mostpromising materials with similarity to the electronicstructure of p-terphenyl within the valence bands.

almost planar molecules comparable to p-terphenyl.

The mechanisms guiding the high-temperature super-conductivity in p-terphenyl are still unclear. The firstattempts were reported by Mazziotti et al. [45] propos-ing that the driving mechanism is the quantum resonancebetween di↵erent superconducting gaps near a Lifshitz

E (

eV

)

X Γ Y,L Γ Z,N Γ M,R Γ2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

Values

0 25 50 75 100 125

2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

(a) OMDB-ID 20042, COD-ID 2222905, C13H9FO3

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D2

4

2.5

3

3.5

4.5

5

Highcharts.com

Values

0 50 100 150 200 250 300 350

2

4

2.5

3

3.5

4.5

5

Highcharts.com

(b) OMDB-ID 21466, COD-ID 7153064, C16H12ClN3O

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

Values

0 50 100 150 200 250 300 350

2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

(c) OMDB-ID 19325, COD-ID 1542706,C12H14N2O5

FIG. 3: Electronic structure of the three mostpromising materials with similarity to the electronicstructure of p-terphenyl within the conduction bands.

transition.Considering a BCS-type mechanism to induce super-

conductivity, the transition temperature Tc increaseswith increasing DOS at the Fermi level N(EF) and cou-pling constant g,

Tc ⇠ e�1/|g|N(EF). (1)

Search results

29

Page 30: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: High-Tc SC Search

Ren-Shu Wang, Yun Gao, Zhong-Bing Huang, Xiao-Jia Chen, Superconductivity above 120 kelvin in a chain link molecule,

arXiv preprint arXiv:1703.06641 (2017)

30

100 110 120 130 140 150

-0.6

-0.4

-0.2

0.0

0.2

100 110 120 130 140 150-0.8

-0.6

-0.4

-0.2

0.0

0.2

100 110 120 130 140 150

-0.6

-0.4

-0.2

0.0

100 110 120 130 140 150

-0.6

-0.4

-0.2

0.0

χ (1

0-6 e

mu

g-1 O

e-1 )

Temperature (K)

ZFC

FC

H=50 Oe

H=100 Oe

Temperature (K)

ZFC

FC

χ (1

0-6 e

mu

g-1 O

e-1 )

FC

χ (1

0-6 e

mu

g-1 O

e-1 )

Temperature (K)

H=200 OeZFC

FC

χ (1

0-6 e

mu

g-1 O

e-1 )

Temperature (K)

H=300 Oe

ZFC

Figure 1.

11

P-Terphenyl (Tc ~ 120 K)

Page 31: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Organic Materials Database: DOS Similarity Search

Geilhufe RM, Borysov SS, Kalpakchi D, Balatsky AV, Novel Organic High-Tc Superconductors: Data Mining using Density of States Similarity Search,

arXiv preprint arXiv:1709.03151 (2017)

31

4

E (

eV

)

Γ Y HC EM_1 A X H_1,M D Z,Y D

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 10 20 30 40 50

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(a) OMDB-ID 12336, cod-id 2212018, C8H8Br2

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D

-2

0

-3.5

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 20 40 60 80

-2

0

-3.5

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(b) OMDB-ID 261, cod-id 4062949, C8H5O

E (

eV

)

X Γ Y,L Γ Z,N Γ M,R Γ

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

Values

0 20 40 60 80

-2

0

-3

-2.5

-1.5

-1

-0.5

Highcharts.com

(c) OMDB-ID 12231, cod-id 2203730, C18H18O2

FIG. 2: Electronic structure of the three mostpromising materials with similarity to the electronicstructure of p-terphenyl within the valence bands.

almost planar molecules comparable to p-terphenyl.

The mechanisms guiding the high-temperature super-conductivity in p-terphenyl are still unclear. The firstattempts were reported by Mazziotti et al. [45] propos-ing that the driving mechanism is the quantum resonancebetween di↵erent superconducting gaps near a Lifshitz

E (

eV

)

X Γ Y,L Γ Z,N Γ M,R Γ2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

Values

0 25 50 75 100 125

2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

(a) OMDB-ID 20042, cod-id 2222905, C13H9FO3

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D2

4

2.5

3

3.5

4.5

5

Highcharts.com

Values

0 50 100 150 200 250 300 350

2

4

2.5

3

3.5

4.5

5

Highcharts.com

(b) OMDB-ID 21466, cod-id 7153064, C16H12ClN3O

E (

eV

)

Γ Y H C E M_1 A X H_1,M D Z,Y D2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

Values

0 50 100 150 200 250 300 350

2

4

2.5

3

3.5

4.5

5

5.5

Highcharts.com

(c) OMDB-ID 19325, cod-id 1542706,C12H14N2O5

FIG. 3: Electronic structure of the three mostpromising materials with similarity to the electronicstructure of p-terphenyl within the conduction bands.

transition.Considering a BCS-type mechanism to induce super-

conductivity, the transition temperature Tc increaseswith increasing DOS at the Fermi level N(EF) and cou-pling constant g,

Tc ⇠ e�1/|g|N(EF). (1)

Valence Bands

2

most similar to p-terphenyl.

REFERENCE MATERIAL P-TERPHENYL

Crystal structure and electronic structure

The organic compound p-terphenyl or 1,4-Diphenylbenzene crystallizes within a monocliniccrystal structure obeying the space group P21/a (14).The molecule itself has the chemical sum formulaC18H14, exhibiting the following skeletal formula:

According to Ref. [27], the lattice parameters are givenby a = 8.10 A, b = 5.61 A, c = 13.61 A and � = 92.02�.

The electronic structure of p-terphenyl for a non-optimized unit cell with ionic positions according toRef. [27] is illustrated in Fig. 1. The crystal itself isa large band gap insulator with a calculated band gapof 3 eV. The band structure (Fig. 1a) exhibits a local-ized and well isolated flat band right below the Fermilevel which is also seen in the density of states shown inFig. 1b. Such flat bands are common within the bandstructure of organics due to the weak hopping of elec-trons between the molecular orbitals. Both below andabove the gap, the DOS shows localized features withinan energy range of about 2 eV. After a structural opti-mization of the ionic positions, the band structure anddensity of states remain qualitatively similar. The bandgap itself slightly decreases to about 2.8 eV, whereas thespectral gap between the localized band below the Fermilevel to the second energetically lower branch of bandsslightly increases to about 0.8 eV.

Computational details

The electronic structure of the reference material p-terphenyl was calculated in the framework of the den-sity functional theory [28–30] by applying a pseudopo-tential projector augmented-wave method [31–34], as im-plemented in the Vienna Ab initio Simulation Package(VASP) [35–38]. During the calculations, the exchange-correlation functional was approximated by the gen-eralized gradient approximation according to Perdew,Burke and Ernzerhof [39] (PBE). The structural informa-tion was taken from the Cambridge Structural Database(CSD) [27, 40] and transferred into POSCAR files us-ing VESTA (Visualization for Electronic and STructuralAnalysis) [41].

The energy cut-o↵ was set to 400 eV. Due to the lightatoms involved, the calculations were performed spin-

-2

-1

0

1

2

3

4

Γ Z C Y A E D B A Γ D

En

erg

y (e

V)

b1

b3

b2

Z

D

Y

AB

C

E

(a) band structure along various high symmetry paths within theBrillouin zone

�2 0 2 4 6

W1 W2

Energy (eV)

DOS

(b) density of states including the two energywindows W1 and W2 used for the similarity

search

FIG. 1: Electronic structure of p-terphenyl.

polarized but without spin-orbit coupling. For the in-tegration in ~k-space, a 6⇥ 6⇥ 6 �-centered mesh accord-ing to Monkhorst and Pack [42] was chosen during theself-consistent cycle. Band structure calculations wereperformed in two ways. First, the crystal structure waskept fixed as provided by the experiment [27], which isin correspondence to the electronic structure calculationsstored within the OMDB [2]. Second, the ionic positionswere optimized by incorporating van der Waals correc-tions within the framework of the density dependent dis-persion correction according to Steinmann and Cormin-boeuf [43] to cross-check the stability of the electronicstructure with respect to slight structural changes.

DOS SIMILARITY SEARCH TOOL

To identify materials within the OMDB having DOSsimilar to p-terphenyl, we developed a DOS similar-ity search tool which is made freely available onlineat https://omdb.diracmaterials.org/search/dos. It

Reference material (p-terphenyl)

Conduction Bands

Page 32: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Collaboration with experimentalists

32

Page 33: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Computational challenges

Borysov SS, Geilhufe RM, Balatsky AV, Organic materials database: An open-access online database for data mining,

PLoS ONE 12(2), e0171501 (2017)

33

Page 34: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Machine Learning to Approximate DFT for Crystals

34

DFT + Tight binding

t

t

Now learn:

Map from tight binding model

Page 35: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Online Materials Hub: Know, Discover, Interact

35

Page 36: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

36

02468

1012141618

New users per month

0

50

100

150

200

250

300

6-2017 7-2017 8-2017 9-2017 10-2017

Total material views per month

Users by country

US SE JP CH CN FI DECA GB AU DK AX SA LTKR JM BR ID UA IN GRSG CU IT LV

Total: 94

Total: 726

OMDB Users Report (27-10-2017)

Page 37: Organic Materials Database / Dirac Materialsdiracmaterials.org/wp-content/uploads/2017/03/DB-and-DM-present... · Graphene sheet Bi 2Se 3 ng 9. ... • The value of the binomial nomenclature

Thank [email protected]

37

omdb.diracmaterials.org