oryza2000 modeling: an introduction

35
Systems Analysis and Simulation - An introduction -

Upload: manuel-p-marcaida-iii

Post on 04-Apr-2015

2.168 views

Category:

Documents


0 download

DESCRIPTION

An introduction to rice modeling using ORYZA2000.

TRANSCRIPT

Page 1: ORYZA2000 Modeling: An Introduction

Systems Analysis and Simulation

- An introduction -

Page 2: ORYZA2000 Modeling: An Introduction

Principles and theory of systems analysis and simulation of “the School of de Wit”,

Wageningen University, Netherlands (1965-…)

Other major modelling groups:

• USA: IBSNAT/DSSAT (CERES, CROPGRO)

• Australia: APSRU (APSIM)

All three combined in ICASA: International Consortium for the Application of Systems Analysis

Page 3: ORYZA2000 Modeling: An Introduction

Systems, Models and Simulation

System: limited part of reality that contains interrelated elements

System boundary: environment influences system, but not the other way round

Model: simplified representation of a system e.g.- scale model of ship- mathematical model

Simulation: building mathematical models and studyperformance in reference to real system

Page 4: ORYZA2000 Modeling: An Introduction

The Rice System and boundary at field level

Radiation, CO2, H2O O2 , H2O

H2O H2O, nutrients

H2OH2O Root zone

nutrients

Temperature,Wind speedVapor pressure

Mathematical model

Page 5: ORYZA2000 Modeling: An Introduction

Schematization of the production system:

Page 6: ORYZA2000 Modeling: An Introduction

Cf = kdf,m / (0.8 √(1 – σ) )

kdr,bl = 0.5 Cf / sinβ or kdr,t = kdr,bl √(1 – σ)

Ia,L = dIL /dL = k (1 ρ) I0 exp( k L)

Ia,df = dIdf,L/dL = kdf (1 ) I0,df exp(kdf LL)

Ia,dr,t = dIdr,t,L/dL = kdr,t (1 ) I0,dr exp(kdr,t LL)

Ia,dr,dr = dIdr,dr,L/dL = kdr,dr (1 ) I0,dr exp(kdr,dr LL)

Ia,sh = Ia,df (Ia,dr,t Ia,dr,dr)

Ia,dr,dr = (1 σ) I0,dr/sinβ and fsl = Cf exp(kdr,bl LL)

Light interceptionand distribution

SUBROUTINE SRDPRF (GAID, CSLV, SINB, ECPDF, RDPDR, RDPDF, & RAPSHL, RAPPPL, FSLLA)

! Reflection of horizontal and spherical leaf angle distribution TMPR1 = SQRT (1. - CSLV) RFLH = (1. - TMPR1) / (1. + TMPR1) RFLS = RFLH * 2. / (1. + 2. * SINB)

! Extinction coefficient for direct radiation and total direct flux CLUSTF = ECPDF / (0.8*TMPR1) ECPBL = (0.5/SINB) * CLUSTF ECPTD = ECPBL * TMPR1 ! Absorbed fluxes per unit leaf area: diffuse flux, total direct! flux, direct component of direct flux RAPDFL = (1.-RFLH) * RDPDF * ECPDF * EXP (-ECPDF * GAID) RAPTDL = (1.-RFLS) * RDPDR * ECPTD * EXP (-ECPTD * GAID) RAPDDL = (1.-CSLV) * RDPDR * ECPBL * EXP (-ECPBL * GAID)

Scientific equations

Computer code

Page 7: ORYZA2000 Modeling: An Introduction

Diagram of a crop growth model

Photosynthesis

Assimilatepool Biomass

Leaves

Stems

Panicles

Roots

LAI

Developmentstage

Maintenancerespiration

Growthrespiration

Partitioning

Developmentrate

N leaves

Light

Transpiration

Soil water Soil-watertension

Evaporation Rain, irrigation

Temperature

Page 8: ORYZA2000 Modeling: An Introduction

modelModel input:• Weather• Crop properties• Soil properties• Management

Model output = calculated/predicted• Crop growth and development• Yield• Water requirements• Nitrogen requirements• ……

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120

TIME

Run 3, WAGTRun 3, WAGT_OBSRun 3, WLVGRun 3, WLVG_OBSRun 3, WSORun 3, WSO_OBS

Simulation

Real rice system

Page 9: ORYZA2000 Modeling: An Introduction

Crop models: descriptive and explanatory

Descriptive: describe relation at same level of integration (e.g. leaf photosynthesis as function of radiation falling on that leaf)

Explanatory: explain system from underlying level of integration (e.g. assimilation of whole crop as function of leaf photosynthesis characteristics)

Page 10: ORYZA2000 Modeling: An Introduction

State variable approach

• State of a system can be defined at any time

• Changes can be expressed mathematically

State time 1 State time 2

(leaf area)

Rate of change ( leaf area)

x time step

Page 11: ORYZA2000 Modeling: An Introduction

LIGHT

PHOTOS

MAINT

BIOMASS

GROWTH

LAICONV. EFF.

ASSIMILATES

Page 12: ORYZA2000 Modeling: An Introduction

Modelling: why the fuzz?

Radiation, CO2, H2O O2 , H2O

H2O H2O, nutrients

H2OH2O Root zone

nutrients

Temperature,Wind speedVapor pressure

Study the behavior of the system in relation to (changes in) its environment

G x E

Crop ecology

Page 13: ORYZA2000 Modeling: An Introduction

The Rice System and boundary at field level

Radiation, CO2, H2O O2 , H2O

H2O H2O, nutrients

H2OH2O Root zone

nutrients

Temperature,Wind speedVapor pressure

Page 14: ORYZA2000 Modeling: An Introduction

Purpose and usefulness of modelling

• Test our knowledge and understanding• Supports experimental data analysis through process-based explanation• Mimic field experiments• Extrapolate experimental findings (time, space)• Management optimization• Crop ideotype design (breeding support)• Agro-ecological zonation, yield gap analysis, yield forecasting, climate change

Page 15: ORYZA2000 Modeling: An Introduction

ORYZA2000: a crop growth simulation model for lowland (and upland/aerobic) rice

1. Potential production

2. Water-limited production

3. Nitrogen-limited production

Page 16: ORYZA2000 Modeling: An Introduction

1970

1975

1980

1985

1990

1995

WOFOST

WOFOST 6.0

ELCROS

PAPRAN

PHOTON

MACROS(SAWAH)

ARID CROP(SAHEL)

ARID CROP

SUCROS87SUCROS

SUCROS87

SUCROS1,SUCROS2

SBFLEVO, WWFLEVO

SWHEAT

INTERCOM

BACROS

LINTUL

1965 'Photosynthesis of leaf canopies'

MICROWEATHER

ORYZA

2000 ORYZA2000

Pedigree of crop growth models from

“School of de Wit”

Page 17: ORYZA2000 Modeling: An Introduction

Some validation

IR72 at IRRI farm; 1991-1993 WS and DS:

• Different N treatments from 0 to 400 kg ha-1

• Different N application timings

• Fully irrigated treatments

Page 18: ORYZA2000 Modeling: An Introduction

IR72, DS 1992

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120

TIME

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120

TIME

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120

TIME

Leaf AreaIndex

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120

TIME

Total

Panicle

Leaves

?

Biomass

225 kg N ha-1 0 kg N ha-1

Page 19: ORYZA2000 Modeling: An Introduction

N uptake (kg/ ha)N supply (kg/ ha)

Yield (kg/ ha)

N supply (kg/ ha)

400 300

11

400

Observed

o Simulated

IR72; 1993 DS

17 treatments

0-400 kg N ha-1

Different splits?

Page 20: ORYZA2000 Modeling: An Introduction

0

2

4

6

8

10

12

0 5 10

Yield simulated (t ha-1)

Yield observed (t ha-1)

N = 39

IR72; all data

1991-1993

39 treatments

0-400 kg N ha-1

Different splits

Page 21: ORYZA2000 Modeling: An Introduction

IR72, DS 1992: ponded water depth

0

20

40

60

80

100

120

38 58 78 98 118Day of year

Ponded water depth (mm)

� ObservedSimulated

Page 22: ORYZA2000 Modeling: An Introduction

Case study 1: water management optimization (Boling et al., 2001)

IR64 at Jakenan, Indonesia; 1995-2000

Irrigated and rainfed treatments

General objectives:

• Optimize crop scheduling (best use of rain)

• Optimize irrigation water application

• Toposequence effect (low-deep groundwater)

Page 23: ORYZA2000 Modeling: An Introduction

Solar radiation, MJ m-2 d-1

8

10

12

14

16

18

20

22

24

O N D J F M A M J J A S O

Rainfall, mm (10 d)-1

0

20

40

60

80

100

120

140

160

P=0.20 P=0.50 P=0.80

(a)

(b) Probability of exceedance (P):

Time

O N D J F M A M J J A S O

(c)

(Gogorancah) (Walik Jerami) (Palawija)

Dry-seeded rice Transplanted rice Upland crop

Jakenan climateandcropping system

Page 24: ORYZA2000 Modeling: An Introduction

First step: model validation: crop

Calendar day

40 60 80 100 120 140 160 180 200

Dry matter, kg ha-1

0

3000

6000

9000

12000

15000

18000WiTnS1, measuredWrTnS1, measuredWiTnS2, measuredWiTdS1, measuredWrTdS1, measuredWrTdS2, measuredWiTnS1, simulatedWrTnS1, simulatedWrTnS2, simulated

Irrigated

Rainfed early

Rainfed late

1996

Page 25: ORYZA2000 Modeling: An Introduction

(a) April-June 1995 (walik jerami season)

A M J J A

Water table depth, cm

-140

-120

-100

-80

-60

-40

-20

0

(b) December 1997-March 1998 (gogorancah season)

D J F M A

-140

-120

-100

-80

-60

-40

-20

0

20

measuredsimulated

(c) November 1998-February 1999 (gogorancah season)

Day of seeding

N D J F M

-120

-100

-80

-60

-40

-20

0

20

40

Model validation: groundwater

Modelling depth ofgroundwater difficult! Use “scenarios” in the model explorations: - shallow - medium - deep

Page 26: ORYZA2000 Modeling: An Introduction

0

20

40

60

80

100

90 100 110 120 130 140 150

Rainfed early; 20 cm depth

Day

kPa

0

20

40

60

80

100

120 130 140 150 160 170

Jakenan, 1996. WrTdS2, 20 cm

Day

Kpa Rainfed late; 20 cm depthkPa

Model validation: soil water tension

Page 27: ORYZA2000 Modeling: An Introduction

Day of seeding

O N D J F M A M J J A S O

Simulated yield, kg ha-1

0

2000

4000

6000

8000

10000rainfed, shallow water tablerainfed, medium water tablerainfed, deep water tableirrigated

Model exploration: irrigated and rainfed yield asfunction of sowing date

Page 28: ORYZA2000 Modeling: An Introduction

Day of seeding

O N D J F M A M J J A S O

Water requirement, mm

0

200

400

600

800

1000

1200

1400

Simulated yield, kg ha-1

0

2000

4000

6000

8000(a)

(b)Irrigation scenario:

rainfed

irrigated (I1), 0.34 cm3

cm-3

irrigated (I3), PI to M, 3.3 mm d-1

irrigated (I2), PI to M, 7.5 mm d-1

I1: 0.34 cm3 cm-3

I3: PI to M, 3.3 mm d-1

I2: PI to M, 7.5 mm d-1

Model exploration: effect of small irrigation applications

Page 29: ORYZA2000 Modeling: An Introduction

Day of seeding

J F M A M

Yield increase, kg ha-1 m-3 irrigation

0.0

0.2

0.4

0.6

0.8

1.0

I1: 0.34 cm3 cm-3

I3: PI to M, 3.3 mm d-1

I2: PI to M, 7.5 mm d-1

Model exploration: optimizing irrigation application

Page 30: ORYZA2000 Modeling: An Introduction

Case study 2: agro-ecological zonation and yield forecasting (European Union)

Example for wheat (SUCROS model used)

General objectives:

• Map potential and rainfed yields in EU

• Map yield gap in EU

• Predict yield in EU

Page 31: ORYZA2000 Modeling: An Introduction

Step 1: weather stations and grid cells

Page 32: ORYZA2000 Modeling: An Introduction

Step 2: soil data

Page 33: ORYZA2000 Modeling: An Introduction

Step 3: running model in GIS: potential yield

Page 34: ORYZA2000 Modeling: An Introduction

Step 3: running model in GIS: yield prediction

Page 35: ORYZA2000 Modeling: An Introduction

Step 3: running model in GIS: yield gap analysis