out-of-equilibrium self-assembly for the formation of ... · daniel barragan (univ. nacional...

33
Out-of-equilibrium self-assembly for the formation of biological and soft-matter structures Miguel Rubi 1

Upload: others

Post on 08-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

Out-of-equilibrium self-assembly for the formation of biological

and soft-matter structures

Miguel Rubi

1

Page 2: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

2

Congratulations Signe!!

4,25SKe

Page 3: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

3

Age is just a number!

Three type of ages:

-Official (ID)-Biological (how do you feel)-Relativistic (time passes slowly when activity isvery intense)

ln 70 = 4.24849524204936

ln 55 = 4.00733318523247

Page 4: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

IWNET 2018, Sint-Michielsgestel, The Netherlands (July 1-6, 2018)

4

Andres Arango (UB)

Daniel Barragan(Univ. Nacional Colombia)

Page 5: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

1. Out of equilibrium self-assembly

2. Gelation

3. Liesegang patterns

4. Determining the architecture of self-assembled

structures from energy dissipation

5

Outline

Page 6: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

6

Out-of-equilibrium self-assembly

❖Self-assembly (SA) is the organization of discreteelements into structures.

❖An assembled structure is an arrangement ofbuilding blocks (BB) into a material object thatintegrates a heterogeneous system.

❖ Equilibrium SA leads to the formation of stablestructures through quasi-equilibrium steps.

A. Arango, JMR, D. Barragan, : Phys. Chem. Chem. Phys.,2019, 21, 17475; Perspective

Page 7: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

7

❖Nonequilibrium self-assembly (NESA) leads to the formation of stable,metastable, kinetically-trapped and stationary structures mediated bydissipation.

❖NESA processes are the previous steps in the formation of self-organized(SO) structures.

Page 8: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

IWNET 2018, Sint-Michielsgestel, The Netherlands (July 1-6, 2018)

8

A: Microtubules, assembled fromtubuline dimers.B: Gel, assembled from fibers ormicrotubules.C: Plant cells, assembled from microtubules assemblies.D: Leaf, assembled from plant cells

Structures

Page 9: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

9

Self-propelled “particles”

Magneto-hydrodynamic assemblies

Microtubule-based structures, active gels

A. Networks (contractile or ascellular structure)

B. Microtubule astersC. Microtubule vortex

Structures

Page 10: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

Questions

• How the formation of the structures is governed by the laws of thermodynamics?

• What is the amount of energy dissipated in the formation of a non-equilibrium self-assembled structure from a set of disordered elements?

• In the lack of a non-equilibrium potential that can constitute a structure selection mechanism, as occurs in equilibrium, we wonder why under specified conditions a determined structure appears and not another.

• Computational approaches have technical challenges because the number of particles needed to explain the mesoscale behavior is very large.

• These methods enable the possibility of simulating larger systems for longer time, but they do not enable the quantification of the dissipation (entropy production) naturally.

IWNET 2018, Sint-Michielsgestel, The Netherlands (July 1-6, 2018)

10

Page 11: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

11

Models

Dynamical Thermodynamic

KineticComputational Gibbs entropy Information entropy

▪ Kinetic Monte Carlo

▪ Molecular Dynamics

▪ Langevindynamics

▪ Reaction-diffusion▪ Magneto-

hydrodynamics▪ Mesoscopic

nonequilibrium thermodynamics

▪ Kolmogorov-Sinai entropy

▪ Configuration entropy

▪ Maximum entropy production

▪ Minimum entropy production

▪ Dual entropy production

▪ Non-extrema principles

Page 12: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

12

❖ Gel formation is a NESA process.❖ Model based on mesoscopic

nonequilibrium thermodynamics*.❖ The models gives:

i) fiber orientation probabilityii) dissipation (entropy production).

+

+

𝐴𝑛

𝐴𝑛−1

𝐴𝑛−1

𝐴1

𝑦𝐴1𝑦𝐵

𝐵𝐺𝑛𝐺𝑚−𝑛

𝐺𝑚𝐺𝑚−𝑦

𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑨𝒔𝒔𝒆𝒎𝒃𝒍𝒚

𝑫𝒊𝒔𝒂𝒔𝒔𝒆𝒎𝒃𝒍𝒚

𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝐧

𝑨𝒔𝒔𝒆𝒎𝒃𝒍𝒚

𝑫𝒊𝒔𝐚𝐬𝐬𝐞𝐦𝐛𝐥𝐲

𝐹𝑢𝑒𝑙

GELATION

*D. Reguera, J.M. Rubi, J.M. Vilar, J. Phys. Chem. B (2005); Feature Article

Page 13: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

IWNET 2018, Sint-Michielsgestel, The Netherlands (July 1-6, 2018)

13

BB: N,N-dibenzoyl-(L)-cystine (DBC)

Activator: Methyl Iodide (MeI)

Activated blocks: DBC−Me_2

Intermediate activated BB: DBC−Me

First-order structures: linear fibers formed from DBC

by sequential reactions

Second-order structures: gel formed by agglomeration

of linear fibers.

Mechanism

A. Arango, JMR, D. Barragan, J. Phys. Chem.B, 122, 4937 (2018)

Page 14: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

14

γ𝑛γ′𝑛

λ𝑛

θ𝑛

𝐴𝑛

𝐴𝑛+1

𝐴1

𝐴𝑛

𝐴𝑛−1

𝐵

γ𝑛,𝑚γ′𝑛,𝑦

𝐺𝑛

𝐺𝑚−𝑛

𝐺𝑚

𝐺𝑛−𝑦

𝑦𝐵

α2α1 𝐵

𝐼

𝐼𝐼

𝑎

REACTION COORDINATES

Page 15: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

, ( )

, ( )

( )

B

A B

Ac c c

s s

( ) ( ) ( )Tds dP = −

Mesoscopic description:

1( ) ( )

( )

JT

LJ

T

= −

= −

Reactioncoordinate

Mesoscopic entropy production

B

P P PD

t k T

= +

A→B

J.M. Vilar, J.M. Rubi, PNAS (2001)

Page 16: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

( )

( ) Bk Tz e

=

B

L zJ k

z

= −

zJ D

= −

B

LD k

z=

( )

2 22

2 11

( ) ( ) ( )kT kTJ t Jd D z z D e e

= = − − = − −

1 2

lnBk T P = +

Local fugacity

Page 17: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

17

Phase Space: Continuity:

Entropy production:(1st order)

Current:

Chemical potential:

MODEL

Page 18: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

18

First-order structures:

Second-order structures:

Page 19: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

19

Adding activatorCoarse-graining in the reaction coordinates

RESULTS

Page 20: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

20

Page 21: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

21

Non-symmetric

N =54

Entropy production rate

A. Arango, D. Barragan, JMR, J. Phys. Chem. B 2019, 123, 5902

Page 22: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

22

The total entropy producedincreases monotonically but notlinearly. From experimentalresults, we observe that thisquantity is maximized.

Page 23: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

❖ Periodic precipitation pattern.❖ Their control and engineering

constitute a crucial task for applications.❖ Liesegang patterns are composed of

mono-disperse nano- and micro-structures whose size varies predictablyfrom ring to ring.

Liesegang rings

Page 24: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

❖ Electrolyte E diffuses into the matrix andinteracts with electrolyte B to trigger thebottom-up self-assembly of meso-structures leading to the Liesegang patterns.

❖ Structures size increases as a function ofthe radial position.

Page 25: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

25

(1) First order activation (chemical reaction)

(2) First order self-assembly (chemical reaction/pre-nucleation)

(3) Second order activation (phase change)

(4) Second order self-assembly (aggregation)

Mechanism

E: activator (silver nitrate)B: disactivated BB (potassium dichromate )A: activated BB (silver dichromate)A_n: first order structureG_m: second order structure

Page 26: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

Continuity equation Energy Balance

Structure size:

ModelA. Arango, JMR, D. Barragan, PCCP, 20, 4699 (2018)

Experiments:

Page 27: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

❖ Ring distribution obtained from our modelat time 𝑡𝑝 (smaller than relaxation time).

❖ Darker color corresponds to the highestconcentration of precipitated structureswhile the lighter color indicates absenceof structure.

❖ From the experiments, we estimate 𝜔 and𝑑0.

Results

Page 28: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

❖ We observe a ring distribution in which theseparation between the rings increases with thedistance.

❖ The diameter of the structure and its standarddeviation as a function of position tends toincrease.

❖ The error in the estimated position and in thestructure's diameter is lower in the non-isothermalmodel.

Page 29: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

❖ The system evolves towards a structure whichminimizes the lost work in its formation.

❖ The structure thus adopts an architecture suchthat the work lost in changing the configuration isalmost negligible

Entropy produced

Page 30: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

30

❖ Models based on mesoscopic thermodynamics enable us to understand andto describe the evolution of the internal architecture of meso-structures.

❖ The model allow us to compute the entropy production of the NESA processas a function of the structural parameter.

❖ The structures observed in this system are found at extreme values of theentropy produced when represented as a function of a structural parameter.

CONCLUSIONS

Page 31: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

31

First-order structures:

Second-order structures:

BOUNDARY CONDITIONS

Page 32: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

Modelling potential barriers

Bistable

A:

B:

A B

A B

*

*

Page 33: Out-of-equilibrium self-assembly for the formation of ... · Daniel Barragan (Univ. Nacional Colombia) 1. Out of equilibrium self-assembly 2. Gelation 3. Liesegang patterns 4. Determining

Modelling a potential barrier with anintermediate state