overview from nuclear lattice effective field theory · 2018-02-08 · elastic proton scattering of...

37
Overview from Nuclear Lattice Effective Field Theory Serdar Elhatisari Nuclear Lattice EFT Collaboration HISKP, Universität Bonn Workshop on Polarized light ion physics with EIC Ghent University, Belgium February 5-9, 2018

Upload: others

Post on 13-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Overview from Nuclear Lattice Effective FieldTheory

Serdar ElhatisariNuclear Lattice EFT Collaboration

HISKP, Universität Bonn

Workshop onPolarized light ion physics with EIC

Ghent University, BelgiumFebruary 5-9, 2018

Page 2: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear Lattice Effective Field Theory collaboration

Serdar Elhatisari (Bonn)Evgeny Epelbaum (Bochum)Nico Klein (Bonn)Hermann Krebs (Bochum)Timo Lähde (Jülich)Dean Lee (MSU)

Ning Li (MSU)Bing-Nan Lu (MSU)Thomas Luu (Jülich)Ulf-G. Meißner (Bonn/Jülich)Gautam Rupak (MSU)Gianluca Stellin (Bonn)

Page 3: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Outline

� Introduction

� Lattice effective field theory

� Adiabatic projection method :scattering and reactions on the lattice

� Degree of locality of nuclear forces

� Nuclear clusters :probing for alpha clusters

� Pinhole Algorithm :density profiles for nuclei

� Summary

Page 4: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Ab initio nuclear structure and nuclear scattering

2 nuclear structure :

4/4/2017 nuchart1.gif (1054×560)

http://rarfaxp.riken.go.jp/~gibelin/Nuchart/nuchart1.gif 1/1

Source: rarfaxp.riken.go.jp/ gibelin/Nuchart/

2 nuclear scattering : ... processes relevant for stellar astrophysics

� scattering of alpha particles : 4He+4He→4He+4He

� triple-alpha reaction : 4He + 4He + 4He→ 12C + γ

� alpha capture on carbon : 4He + 12C→ 16O + γ...

Page 5: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Progress in ab initio nuclear structure and nuclear scattering

Unexpectedly large charge radii of neutron-rich calcium isotopes.Garcia Ruiz et al., Nature Phys. 12, 594 (2016).

Structure of 78Ni from first principles computations.Hagen, Jansen, & Papenbrock, PRL 117, 172501 (2016).

A nucleus-dependent valence-space approach to nuclear structure.Stroberg et al., PRL 118, 032502 (2017).

Ab initio many-body calculations of the 3H(d, n)4He and 3He(d, p)4He fusion.Navratil & Quaglioni, PRL 108, 042503 (2012).

3He(α,γ)7Be and 3H(α,γ)7Li astrophysical S factors from the no-core shell model withcontinuum Dohet-Eraly, J. et al. PLB B 757 (2016) 430-436.

Elastic proton scattering of medium mass nuclei from coupled-cluster theory.Hagen & Michel PRC 86, 021602 (2012).

Coupling the Lorentz Integral Transform (LIT) and the Coupled Cluster (CC) Methods.Orlandini, G. et al. , Few Body Syst. 55, 907-911 (2014).

Page 6: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear LEFT: ab initio nuclear structure and scattering theory

2 Lattice EFT calculations for A = 3, 4, 6, 12 nuclei, PRL 104 (2010) 142501

2 Ab initio calculation of the Hoyle state, PRL 106 (2011) 192501

2 Structure and rotations of the Hoyle state, PRL 109 (2012) 252501

2 Viability of Carbon-Based Life as a Function of the Light Quark Mass,PRL 110 (2013) 112502

2 Radiative capture reactions in lattice effective field theory,PRL 111 (2013) 032502

2 Ab initio calculation of the Spectrum and Structure of 16O,PRL 112 (2014) 102501

2 Ab initio alpha-alpha scattering, Nature 528, 111-114 (2015).

2 Nuclear Binding Near a Quantum Phase Transition, PRL 117, 132501 (2016).

2 Ab initio calculations of the isotopic dependence of nuclear clustering.PRL 119, 222505 (2017).

������!

������!

������!

�����!

λ

E�–Eα�A/4��αα����∞�αα����

��������� ��������������

λ��λ�� λ�� λ�

��� ���

25

����

����

����

���

��

� � � � � �� �� �� �� �� �� �� �� �� ��

��

���

���

��

��

������������

������������

11

�����������������������������������������������������������������������������������

����������������������

Page 7: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice effective field theory

Lattice effective field theory is a powerful numerical method formulated in theframework of chiral effective field theory.

𝑎 𝐿

NucleonsAccessible by

Lattice EFT

early universe

gas of light nuclei

heavy-ion collisions

quark-gluon plasma

excited nuclei

neutron star core

nuclear liquid

superfluid

10 -1 10 -3 10 -2 1

10

1

100

r N r [fm -3 ] T

[MeV

]

neutron star crust

Accessible by Lattice QCD

5 Fig. courtesy of D. Lee

Page 8: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion inpowers of momenta and other low energy scales such as the pion mass (Q/Λχ) .

Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons andpions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices inthe effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology andapplications of chiral perturbation theory in the Goldstone–boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied tolow-energy few-nucleon scattering. The strong nature ofthe nuclear force that manifests itself in the appearance ofself-bound atomic nuclei invalidates a naive application ofperturbation theory. Weinberg pointed out that the breakdownof perturbation theory can be traced back to the infraredenhancement of reducible diagrams that involve few-nucleoncuts [67, 68]. The irreducible part of the amplitude that givesrise to the nuclear force is, however, not affected by the infraredenhancement and is thus accessible within chiral EFT. Theseimportant observations have triggered intense research activitytowards the systematic derivation of the nuclear forces in chiralEFT and their applications to the nuclear few- and many-bodyproblem.

It should also be emphasized that an EFT can beformulated that is only valid at typical momenta well belowthe pion mass. This framework allows one to take intoaccount the unnaturally large NN scattering lengths but losesthe connection with the chiral symmetry of QCD. It hasbeen used with great success not only for nuclear systems[69, 14]. This so-called pion-less EFT requires a 3NF inleading order. The corresponding hard scale is given bythe pion mass and, therefore, intermediate-energy observablescannot be predicted within this framework. In the following,we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based onthe standard chiral power counting (i.e. assuming that alloperators in the effective Lagrangian scale according to a naivedimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of theobserved hierarchy of two-, three- and more-nucleon forceswith 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NFhas the form

V2N = V(0)

2N + V(2)

2N + V(3)

2N + V(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansionparameter Q/�χ . The long-range part of the nuclearforce is dominated by 1π -exchange with the 2π -exchangecontributions starting at next-to-leading order (NLO). Theexpressions for the potential up to next-to-next-to-leadingorder (N2LO) in the heavy-baryon formulation [70, 71] arerather compact and have been independently derived by severalauthors using a variety of different methods [72–75]. 2π - and3π -exchange contributions at next-to-next-to-next-to-leadingorder (N3LO) have been worked out by Kaiser [76–79] andare considerably more involved, see also [80]. While the2π -exchange at NLO and, especially, at N2LO generates arather strong potential at distances of the order of the inversepion mass [74], the leading 3π -exchange contributions turn outto be negligible. The N3LO contributions to the 2π -exchangepotential were also derived in the covariant formulation ofchiral EFT [81] by Higa et al [82, 83]. The LECs enteringthe pion-exchange contributions up to N3LO are known frompion–nucleon scattering and related processes [84–86]. Wenote that some of them, especially the ones from L(3)

πN , arepresently not very accurately determined. In the isospinlimit, the short-range part of the potential involves 2, 9, 24independent terms at LO, NLO/N2LO, N3LO, respectively.The corresponding LECs were fixed from the two-nucleondata leading to the accurate N3LO potentials of Entem andMachleidt (EM) [87] and Epelbaum, Glockle and Meißner(EGM) [88]. These two potentials differ in the treatment ofrelativistic corrections (including the form of the employeddynamical equation), IB terms and the form of the regulatorfunctions. There are also differences in the adopted valuesof certain pion–nucleon LECs. Finally, EGM provide anestimation of the theoretical uncertainty by means of thevariation of the cutoffs in some natural ranges. This importantissue is not addressed in [87], where a single excellentfit to neutron–proton (proton–proton) scattering data withχ2/datum = 1.10 (χ2/datum = 1.50) in the energy rangefrom 0 to 290 MeV is given. We refer the reader to [87, 88] formore details. In figure 5, we compare NN phase shifts obtainedwith these models with predictions from phenomenological

5

Fig. courtesy of E.Epelbaum

Ordonez et al. ’94; Friar & Coon ’94; Kaiser et al. ’97; Epelbaum et al. ’98,’03,’05,’15; Kaiser ’99-’01;

Higa et al. ’03; ...

Page 9: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Chiral EFT for nucleons: NN scattering phase shifts

0

10

20

30

40

50

60

70

80

0 50 100 150 200

δ(1

S0)

[de

gre

es]

pCM [MeV]

NPWALO

NLO,N2LON3LO

40

60

80

100

120

140

160

180

0 50 100 150 200

δ(3

S1)

[de

gre

es]

pCM [MeV]

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200

ε1

[de

gre

es]

pCM [MeV]

-6

-4

-2

0

2

4

6

8

10

0 50 100 150 200

ε2

[de

gre

es]

pCM [MeV]

-15

-10

-5

0

5

10

0 50 100 150 200

δ(1

P1)

[de

gre

es]

pCM [MeV]

0

5

10

15

20

0 50 100 150 200

δ(3

P0)

[de

gre

es]

pCM [MeV]

-15

-10

-5

0

5

0 50 100 150 200

δ(3

P1)

[de

gre

es]

pCM [MeV]

-2

0

2

4

6

8

10

12

14

0 50 100 150 200

δ(3

P2)

[de

gre

es]

pCM [MeV]

-2

0

2

4

6

8

10

0 50 100 150 200

δ(1

D2)

[de

gre

es]

pCM [MeV]

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200

δ(3

D1)

[d

eg

ree

s]

pCM [MeV]

-2

0

2

4

6

8

10

12

14

16

0 50 100 150 200

δ(3

D2)

[d

eg

ree

s]

pCM [MeV]

-2

-1

0

1

2

3

4

5

0 50 100 150 200

δ(3

D3)

[d

eg

ree

s]

pCM [MeV]

Figure 1: Neutron-proton scattering phase shifts versus center-of-mass momenta. Coarselattice spaces, a = at = (100MeV)−1 = 1.97 fm, are used in the fits. The two-pion-exchangepotentials are not included specifically since they can be absorbed into the contact forcesthrough a redefinition of the low-energy constants.

4

Page 10: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice Monte Carlo calculations

Transfer matrix operator formalism M = : exp(−H at) :

Microscopic Hamiltonian H = Hfree + V

Z(Lt) = Tr(MLt) =∫

Dc Dc∗ exp[−S(c, c∗)]Creutz, Found. Phys. 30 (2000) 487.

The exact equivalence of several different lattice formulations.Lee, PRC 78:024001, (2008); Prog.Part.Nucl.Phys., 63:117-154 (2009)

e−E0 at = limLt→∞

Z(Lt+1)/Z(Lt)

These amplitudes are computed with the Hybrid Monte Carlo methods.Phys. Lett. B195, 216-222 (1987), Phys. Rev. D35, 2531-2542 (1987).

Page 11: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice Monte Carlo calculations

Nuclear forces posses approximate SU(4) symmetry. HSU(4) acts as an approximateand inexpensive low energy filter at few first/last time steps. Significant suppression ofsign oscillations. Chen, Lee, Schäfer, PRL 93 (2004) 242302

|ψI(τ′)〉 = [MSU(4)]

L′t |ψI〉 MSU(4) = : e−at HSU(4) : τ′ = L′t at

For time steps in midsection, the full HLO Hamiltonian is used.

|ψI(τ)〉 = [MLO]Lt |ψI(τ

′)〉 MLO = : e−at HLO : τ = Lt at

The ground state energy at LO can be extracted from

e−ELO at = limLt→∞

Z(Lt+1)LO

Z(Lt)LO

= limLt→∞

〈ψI(τ/2)|MLO|ψI(τ/2)〉〈ψI(τ/2)|ψI(τ/2)〉

Page 12: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice Monte Carlo calculations

Higher order calculations (perturbative)

ho = NLO, NNLO, · · ·

Mho = : e−at(HLO+Vho) :

where the potential Vho is treated perturbatively.

The higher order correction to the ground state energy can be extracted from

e−∆Eho at =Z(Lt+1)

ho

Z(Lt+1)LO

=〈ψI(τ/2)|Mho|ψI(τ/2)〉〈ψI(τ/2)|MLO|ψI(τ/2)〉

Page 13: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice Monte Carlo calculations

Compute observable O

The observable O at LO

〈O〉0,LO = limLt→∞

〈ψI |[MLO]Lt O [MLO]

Lt |ψI〉〈ψI |[MLO]2Lt+1|ψI〉

The observable O at (NLO, NNLO, · · · )

〈O〉0,ho = limLt→∞

〈ψI |[MLO]Lt−1 Mho O [MLO]

Lt |ψI〉〈ψI |[MLO]Lt Mho [MLO]Lt |ψI〉

Page 14: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Lattice EFT: (Euclidean time) projection Monte Carlo

e−Hτ

τ = Ltat

2 evolve nucleons forward inEuclidean time

2 allow them to interact

𝛑 𝛑

Eucl

idea

n t

ime

𝑎

𝐿

Page 15: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Auxiliary field Monte Carlo

Use a Gaussian integral identity

exp[−C

2

(N† N

)2]=

√1

∫ds exp

[− s2

2+√

C s(

N† N)]

s is an auxiliary field coupled to particle density. Each nucleon evolves as if a single particle in afluctuating background of pion fields and auxiliary fields.

𝛑 𝛑

Eucl

idea

n t

ime

𝒔

𝒔𝑰

𝒔𝝅

Page 16: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Adiabatic projection method

Scattering and reactions on the lattice

The first partuse Euclidean time projection to construct anab initio low-energy cluster Hamiltonian, calledthe adiabatic Hamiltonian.

The second partcompute the two-cluster scattering phaseshifts or reaction amplitudes using theadiabatic Hamiltonian.Rupak, Lee., PRL 111 (2013) 032502.Pine, Lee, Rupak, EPJA 49 (2013) 151.SE, Lee, PRC 90, 064001 (2014).Rokash, Pine, SE, Lee, Epelbaum, Krebs, PRC 92,054612 (2015)SE, Lee, Meißner, Rupak, EPJA 52: 174 (2016)

��

�/2−�/2

-0.5

0

0.5

1

0 10 20 30 40 50 60

R(p

)0 (r)

r (fm)

free

-0.5

0

0.5

1

0 10 20 30 40 50 60

R(p

)0 (r)

r (fm)

interacting

-0.5

0

0.5

1

0 10 20 30 40 50 60

R(p

)0 (r)

r (fm)

Rw

Page 17: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Adiabatic projection method

The method constructs a low energy effective theory for the clusters.

Use initial states parameterized by therelative spatial separation betweenclusters, and project them in Euclideantime.

|~R〉 = ∑~r|~r + ~R〉1 ⊗ |~r〉2

𝑅

𝑛𝑥, 𝑛𝑦

𝑛𝑥′ , 𝑛𝑦

|~R〉τ = e−H τ |~R〉 dressed cluster state

The adiabatic projection in Euclidean time gives asystematically improvable description of the low-lying scattering cluster states.In the limit of large Euclidean projection time thedescription becomes exact.

Page 18: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Adiabatic projection method

|~R〉τ = e−H τ |~R〉 dressed cluster state (not orthogonal)

Hamiltonian matrix

[Hτ]~R,~R′ = τ 〈~R|H|~R′〉τ

Norm matrix

[Nτ]~R,~R′ = τ 〈~R|~R′〉τ

[Haτ]~R,~R′ = ∑

~R′′,~R′′′

[N−1/2

τ

]~R~R′′

[Hτ]~R′′~R′′′[

N−1/2τ

]~R′′′~R′

The structure of the adiabatic Hamiltonian,[Haτ ]~R,~R′ , is similar to the Hamiltonian

matrix used in calculations of ab initio no-core shell model/resonating group method(NCSM/RGM) for nuclear scattering and reactions.

Navratil, Quaglioni, PRC 83, 044609 (2011).Navratil, Roth, Quaglioni, PLB 704, 379 (2011).Navratil, Quaglioni, PRL 108, 042503 (2012).

Page 19: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Adiabatic projection method

The radiative capture process p(n, γ)d. 4

10 20 50 70 100

10-5

10-4

10-3

10-2

δ = 0.6

δ = 0.4

δ = 0

δ = 0.6

δ = 0.4

δ = 0

10 20 50 70 100p (MeV)

0

20

40

60

80

δ = 0.6

δ = 0.4

δ = 0

δ = 0.6

δ = 0.4

δ = 0

|M|(M

eV−2)

φ(deg)

FIG. 4. Comparison of lattice results with continuum resultsfrom Eq. (5) for δ = 0.6, 0.4 and results extrapolated to δ = 0.In the top panel we show |M| and in the bottom panel weshow the phase angle φ in degrees.

will be discussed in forthcoming publications. In thisstudy we have demonstrated the second part of themethod using the example of radiative neutron capturereaction p(n, γ)d at leading order in pionless EFT. Wehave shown that extrapolations in the parameter δ arean effective way to remove finite volume errors in the lat-tice calculations. We were able to reproduce the knowncontinuum result for the capture amplitude at infinitevolume with an error of within 2% for the magnitudeand an error of within 4% for the phase angle. Theseremaining errors are consistent with the size of the smalldiscretization errors due to lattice spacing.

This method should be applicable for calculating pho-tonuclear reaction rates involving many nuclear systems.This includes halo nuclei with a single valence nucleon.For example, in 14C(n, γ)15C the carbon-15 nucleus isa halo nucleus with a neutron separation energy ofonly 1.22 MeV. At low energy the incoming state canbe treated as a point-like neutron and a tightly-boundcarbon-14 core in halo EFT [27]. But ab initio latticecalculations should be able to go well beyond halo sys-tems. This method could also be applied to more com-plicated systems such as alpha capture on carbon-12 oroxygen-16 as occurs in helium burning. We are hopefulthat such systems will studied in the near future usingmethods outlined here.

Acknowledgments.— The authors thank E. Epelbaum,R. Higa, H. Krebs, T. Lahde, U.-G. Meißner for use-ful discussions. G.R. thanks R. Higa for valuable dis-cussions on the formulation of the Green’s function ap-proach. Computing support was provided by the HPCC

at MSU. Part of this work was completed at the INT.Partial support provided by the U.S. Department of En-ergy grant DE-FG02- 03ER41260 for D.L. and the U.S.NSF Grant No. PHY-0969378 for G.R.

[email protected]† dean [email protected]

[1] P. Navratil, R. Roth, and S. Quaglioni, Phys. Lett. B704, 379 (2011).

[2] P. Navratil and S. Quaglioni, Phys. Rev. Lett. 108,042503 (2012).

[3] T. Neff, Phys. Rev. Lett. 106, 042502 (2011).[4] O. Jensen, G. Hagen, T. Papenbrock, D. Dean, and

J. Vaagen, Phys. Rev. C 82, 014310 (2010).[5] K. M. Nollett and R. Wiringa, Phys. Rev. C 83, 041001

(2011).[6] M. Lage, U.-G. Meißner, and A. Rusetsky, Phys. Lett.

B 681, 439 (2009).[7] V. Bernard, M. Lage, U.-G. Meißner, and A. Rusetsky,

JHEP 1101, 019 (2011).[8] H. B. Meyer, (2012), arXiv:1202.6675 [hep-lat].[9] R. A. Briceno and Z. Davoudi, (2012), arXiv:1204.1110

[hep-lat].[10] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67

(2012).[11] C. Chin and P. S. Julienne, Phys. Rev. A 71, 012713

(2005).[12] T. M. Hanna, T. Kohler, and K. Burnett, Phys. Rev. A

75, 013606 (2007).[13] C. Weber, G. Barontini, J. Catani, G. Thalhammer,

M. Inguscio, and F. Minardi, Phys. Rev. A 78, 061601(2008).

[14] O. Machtey, Z. Shotan, N. Gross, and L. Khaykovich,Phys. Rev. Lett. 108, 210406 (2012).

[15] B. Bazak, E. Liverts, and N. Barnea, Phys. Rev. A 86,043611 (2012).

[16] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).[17] B. Borasoy, H. Krebs, D. Lee, and U.-G. Meißner, Nucl.

Phys. A 768, 179 (2006).[18] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner,

Phys. Rev. Lett. 104, 142501 (2010).[19] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner, Eur.

Phys. J. A 45, 335 (2010).[20] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meißner,

Phys. Rev. Lett. 106, 192501 (2011).[21] E. Epelbaum, H. Krebs, T. A. Lahde, D. Lee, and U.-G.

Meißner, Phys. Rev. Lett. 109, 252501 (2012).[22] J.-W. Chen and M. J. Savage, Phys. Rev. C 60, 065205

(1999).[23] G. Rupak, Nucl.Phys. A 678, 405 (2000).[24] M. Luscher, Commun. Math. Phys. 105, 153 (1986).[25] V. Efros, W. Leidemann, G. Orlandini, and N. Barnea,

J. Phys. G 34, R459 (2007).[26] H. Kamada, Y. Koike, and W. Gloeckle, Prog. Theor.

Phys. 109, 869 (2003).[27] G. Rupak, L. Fernando, and A. Vaghani, Phys. Rev. C

86, 044608 (2012).

Rupak, Lee., PRL 111 (2013) 032502.

N − d scattering.

−90

−75

−60

−45

−30

−15

0

0 20 40 60 80 100 120 140

Quartet−S

Bre

akup

−90

−75

−60

−45

−30

−15

0

0 20 40 60 80 100 120 140

Quartet−S

Bre

akup

p−d (EFT)

−90

−75

−60

−45

−30

−15

0

0 20 40 60 80 100 120 140

Quartet−S

Bre

akup

n−d (EFT)

−90

−75

−60

−45

−30

−15

0

0 20 40 60 80 100 120 140

Quartet−S

Bre

akup

n−d

−90

−75

−60

−45

−30

−15

0

0 20 40 60 80 100 120 140

Quartet−S

Bre

akup p−d

p (MeV)

δ 0(degrees)

SE, Lee, Meißner,Rupak. EPJ 52:174 (2016).

Page 20: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Alpha-alpha scattering

S-wave D-wave

δ 0(d

egre

es)

ELab (MeV)

Afzal et al.

LO (no Coulomb)NLO

NNLO 0

40

80

120

160

200

0 2 4 6 8 10 12

δ 0(d

egre

es)

ELab (MeV)

0

40

80

120

160

200

0 2 4 6 8 10 12

δ 0(d

egre

es)

ELab (MeV)

120

150

180

0 1 2 3

δ 0(d

egre

es)

ELab (MeV)

Higa et al.

120

150

180

0 1 2 3

δ 2(d

egre

es)

ELab (MeV)

Afzal et al.

LO (no Coulomb)NLO

NNLO

0

40

80

120

160

200

0 2 4 6 8 10 12δ 2

(deg

rees

)ELab (MeV)

0

40

80

120

160

200

0 2 4 6 8 10 12δ 2

(deg

rees

)ELab (MeV)

0

40

80

120

160

200

0 2 4 6 8 10 12

Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247 (1969)Higa, Hammer, van Kolck, Nucl.Phys. A809, 171 (2008)SE, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111-114 (2015)

Page 21: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Degree of locality of nuclear forces

Interaction A Interaction B

� Nonlocal short-range interactions V(r, r′)� One-pion exchange interaction

� (+ Coulomb interaction)

� Local short-range interactions V(r, r′) = U(r)δ(r− r′)� Nonlocal short-range interactions V(r, r′)

� One-pion exchange interaction� (+ Coulomb interaction)

r r′ 

Local 

Nonlocal 

Introducing the nonlocal short-range interactionsreduce the Monte Carlo sign oscillation significantly.

Page 22: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Degree of locality of nuclear forces

Interaction A Interaction B

� Nonlocal short-range interactions V(r, r′)� One-pion exchange interaction

� (+ Coulomb interaction)

� Local short-range interactions V(r, r′) = U(r)δ(r− r′)� Nonlocal short-range interactions V(r, r′)

� One-pion exchange interaction� (+ Coulomb interaction)

22

0

20

40

60

80

0 50 100 150

a

0

60

120

180

0 50 100 150

b

-10

-5

0

5

0 50 100 150

c

0

5

10

15

0 50 100 150

d

Nijmegen PWAContinuum LO

Lattice LO-ALattice LO-B

-10

-5

0

0 50 100 150

δ or

ε (

deg)

e

0

2

4

6

0 50 100 150

f

-1

0

1

2

3

0 50 100 150

g

-6

-4

-2

0

0 50 100 150

h

0

5

10

0 50 100 150

i

-1

0

1

0 50 100 150

j

-5

0

5

0 50 100 150

pcms (MeV)

k

-2

-1

0

0 50 100 150

l

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment3H -7.82(5) -7.78(12) -7.82(5) -7.78(12) -8.482

3He -7.82(5) -7.78(12) -7.08(5) -7.09(12) -7.7184He -29.36(4) -29.19(6) -28.62(4) -28.45(6) -28.296

Page 23: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Degree of locality of nuclear forces4He – 4He S-wave scattering

δ 0(d

egre

es)

ELab (MeV)

Afzal et al.

-45

0

45

90

135

180

0 2 4 6 8 10

δ 0(d

egre

es)

ELab (MeV)

A (LO)A (LO + Coulomb)

B (LO)B (LO + Coulomb)

-45

0

45

90

135

180

0 2 4 6 8 10

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment8Be -58.61(14) -59.73(6) -56.51(14) -57.29(7) -56.59112C -88.2(3) -95.0(5) -84.0(3) -89.9(5) -92.16216O -117.5(6) -135.4(7) -110.5(6) -126.0(7) -127.619

20Ne -148(1) -178(1) -137(1) -164(1) -160.645

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

Page 24: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Degree of locality of nuclear forces

Interaction A Interaction B

� Nonlocal short-range interactions V(r, r′)� One-pion exchange interaction

� (+ Coulomb interaction)

� Local short-range interactions V(r, r′) = U(r)δ(r− r′)� Nonlocal short-range interactions V(r, r′)

� One-pion exchange interaction� (+ Coulomb interaction)

���������

�����������

�������������

32

����������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 4

-100

-80

-60

-40

-20

0

20

40

2 2.5 3 3.5 4 4.5 5 5.5 6

VT

B (

MeV

)

r (fm)

A (LO)B (LO)C (LO)

FIG. 2: Tight-binding potential. We plot the tight-binding potential versus radial distance for the LO interactions for A, B,and C, where C is the interaction used in several previous lattice calculations [11, 18]. Interaction A is shown with blue squaresand solid line, B is drawn with red crosses and dashed line, and C is presented with orange circles and short-dashed line.

λ16 = 0.2(1) for 16O, λ12 = 0.3(1) for 12C, and λ8 = 0.7(1) for 8Be. One finds a sudden change in the nucleon-nucleondensity correlations at long distances as λ crosses the critical point, going from a continuum state to a self-boundsystem. As λ increases further beyond this critical value, the nucleus becomes more tightly bound, gradually losingits alpha cluster substructure and becoming more like a nuclear liquid droplet. The quantum phase transition atλ∞ = 0.0(1) is the corresponding phenomenon in the many-body system, a first-order phase transition occurring forinfinite matter.

FIG. 3: Zero-temperature phase diagram. We show the zero-temperature phase diagram as a function of the parameter λ inthe interaction Vλ = (1− λ)VA + λVB without Coulomb included. The blue filled circles indicate neutrons, the red filled circlesindicate protons, and the small arrows attached to the circles indicate spin direction. We show a first-order quantum phasetransition from a Bose gas to nuclear liquid at the point where the scattering length aαα crosses zero. We have also plotted thealpha-like nuclear ground state energies EA for A nucleons up to A = 20 relative to the corresponding multi-alpha thresholdEαA/4. The last alpha-like nucleus to be bound is 8Be at the unitarity point where |aαα| =∞.

A = 20!

A = 16!

A = 12!

A = 8!

λ

EA–Eα A/4|aαα| = ∞aαα = 0

Alpha gas Nuclear liquid

λ20λ16 λ12 λ8

λ = 0 λ = 1

By adjusting λ in ab initio calculations, we have a new tool for studying alpha cluster states such as the Hoyle stateof 12C and possible rotational excitations of the Hoyle state [1–6]. By tuning λ to the unitarity point |aαα| =∞, wecan continuously connect the Hoyle state wave function without Coulomb interactions to a universal Efimov trimer[7, 8, 27]. An Efimov trimer is one of an infinite tower of three-body states for bosons in the large scattering-lengthlimit, with intriguing mathematical properties such as fractal-like discrete scale invariance. Another interesting systemis the second 0+ state of 16O [28], which should be continuously connected to a universal Efimov tetramer [27, 29, 30].This connection to Efimov states is now being investigated in follow-up work. The ability to tune the energies ofalpha cluster states relative to alpha-separation thresholds provides a new window on wave functions and rotationalexcitations of alpha cluster states. By studying the λ-dependence of nuclear energy levels one can also identify the

r r′ 

Local 

Nonlocal 

Tight-binding approximation

The alpha-alpha interaction is sensitive to the degree of locality of the interaction.

Page 25: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear binding near a quantum phase transition

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment4He -29.36(4) -29.19(6) -28.62(4) -28.45(6) -28.2968Be -58.61(14) -59.73(6) -56.51(14) -57.29(7) -56.59112C -88.2(3) -95.0(5) -84.0(3) -89.9(5) -92.16216O -117.5(6) -135.4(7) -110.5(6) -126.0(7) -127.619

20Ne -148(1) -178(1) -137(1) -164(1) -160.645

E8BeE4He

= 1.997(6)

E12CE4He

= 3.00(1)

E16OE4He

= 4.00(2)

E20NeE4He

= 5.03(3)

29

������������������������������������

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

Page 26: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear binding near a quantum phase transition

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment4He -29.36(4) -29.19(6) -28.62(4) -28.45(6) -28.2968Be -58.61(14) -59.73(6) -56.51(14) -57.29(7) -56.59112C -88.2(3) -95.0(5) -84.0(3) -89.9(5) -92.16216O -117.5(6) -135.4(7) -110.5(6) -126.0(7) -127.619

20Ne -148(1) -178(1) -137(1) -164(1) -160.645

V = (1− λ)VA + λVB

������!

������!

������!

�����!

λ

E�–Eα�A/4��αα����∞�αα����

��������� ��������������

λ��λ�� λ�� λ�

��� ���

25

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

Page 27: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Ground state energies at LO

����

����

����

���

��

� � � � � �� �� �� �� �� �� �� �� �� ��

��

���

���

��

��

������������

������������

11

�����������������������������������������������������������������������������������

����������������������

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Page 28: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear clusters: probing for alpha clusters

ρ(~n) : the total nucleon density operator on the lattice site ~n .

ρ4 = ∑~n

: ρ4(~n)/4! : is defined to construct a probe for alpha clusters .

Similarly ρ3 is to construct a second probe for alpha clusters only in nuclei with even Zand even N where 3H and 3He clusters are not energetically favorable.

ρ3 = ∑~n

: ρ3(~n)/3! :

ρ3 and ρ4 depend on the short-distance regulator, the lattice spacing a. However theregularization-scale dependence of ρ3 and ρ4 does not depend on the nucleus beingconsidered.

Therefore, by defining ρ3,α and ρ4,α as the corresponding values for the alpha particle,we consider the ratios ρ3/ρ3,α and ρ4/ρ4,α that are free from short-distance divergencesand are model-independent quantities up to contributions from higher-dimensional op-erators in an operator product expansion.

Page 29: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear clusters: probing for alpha clusters

∆ρ3α /Nα the ρ3-entanglement of the alpha clusters ,

where ∆ρ3α = ρ3/ρ3,α − Nα .

𝑁𝛼 = 4

𝑁𝛼 = 3

𝑁𝛼 = 2

𝑁𝛼 = 1

Nucleus 4,6,8He 8,10,12,14Be 12,14,16,18,20,22C 16,18,20,22,24,26,28O∆ρ3

α /Nα 0.0− 0.03 0.20− 0.35 0.25− 0.50 0.50− 0.75

Page 30: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Nuclear clusters: probing for alpha clusters

Our results show that the transition from cluster-like states in light systems to nuclearliquid-like states in heavier systems should not be viewed as a simple suppression ofmulti-nucleon short-distance correlations, but rather an increasing entanglement of thenucleons involved in the multi-nucleon correlations.

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Page 31: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Density profiles for nuclei: pinhole algoritm

The simulations with auxiliary-field Monte Carlo methods involve quantum states that are super-position of many different center-of-mass positions. Therefore, the density distrubitions of thenucleons cannot be computed direclty.

Consider a screen placed at the middle time step having pinholes with spin and isospin labels thatallow nucleons with the corresponding spin and isospin to pass.

Eucl

idea

n t

ime

𝜏𝑖 = 0

𝜏𝑖 = 𝜏

𝜏/2 𝑖1, 𝑗1 𝑖8, 𝑗8

𝑖5, 𝑗5

𝑖4, 𝑗4 𝑖6, 𝑗6

𝑖3, 𝑗3 𝑖7, 𝑗7

𝑖2, 𝑗2

Page 32: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Density profiles for nuclei: pinhole algoritm

This opaque screen corresponds to the insertion of the normal-ordered A-body density operator,

ρi1,j1,...,iA ,jA(~n1, . . . ,~nA) = : ρi1,j1(~n1) . . . ρiA ,jA(~nA) :

where ρi,j(~n) = a†i,j(~n)ai,j(~n) is the density operator for nucleon with spin i and isospin j.

We performe Monte Carlo sampling of the amplitude,

Ai1,j1,...,iA ,jA(~n1, . . . ,~nA, Lt) = 〈ψI(τ)|ρi1,j1,...,iA ,jA(~n1, . . . ,~nA)|ψI(τ)〉Eu

clid

ean

tim

e

𝜏𝑖 = 0

𝜏𝑖 = 𝜏

𝜏/2 𝑖1, 𝑗1 𝑖8, 𝑗8

𝑖5, 𝑗5

𝑖4, 𝑗4 𝑖6, 𝑗6

𝑖3, 𝑗3 𝑖7, 𝑗7

𝑖2, 𝑗2

Page 33: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Pinhole algoritm: proton and neutron densities

��

�����

�����

�����

�����

����

������

���

���

���

�����������

������

��������������������������������������������������

�������������������������������������������������������������������������������������������������������������������

��

�����

�����

�����

�����

����

�����

���

���

���

�����������

������

��

�����

�����

�����

�����

����

�����

�� �� �� �� �� ���

���

���

���

�����������

������

�����������

18

�����������������������������������������������������������������������������������

�������������������������������������������������������������������������������

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Page 34: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Pinhole algoritm: 12C and 14C electric form factor

The magnitude of the 12C electric form factor

16

FIG. S11. The magnitude of the 12C electric form factor, |F (q)|, versus momentum transfer q in units of fm−1. The error bars indicate onestandard deviation errors from the stochastic noise of the Monte Carlo simulations. For comparison we also show experimental results [55].

0 0.5 1 1.5 2 2.5 3

q (fm-1)

10-4

10-3

10-2

10-1

100

|F(q

)|

experimentL

t = 7

Lt = 9

Lt = 11

Lt = 13

Lt = 15

FIG. S12. The magnitude of the 14C electric form factor, |F (q)|, versus momentum transfer q in units of fm−1. The error bars indicate onestandard deviation errors from the stochastic noise of the Monte Carlo simulations. For comparison we also show experimental results [32].

0 0.5 1 1.5 2 2.5 3

q (fm-1)

10-4

10-3

10-2

10-1

100

|F(q

)|

experimentL

t = 7

Lt = 9

Lt = 11

Lt = 13

Lt = 15

TABLE I. Observed charge radii from electron scattering and proton and neutron radii at leading order.

nucleus observed charge radius proton radius (LO) neutron radius (LO)12C 2.472(16) fm [56], 2.481(6) fm [57] 2.40(7) fm 2.39(5) fm14C 2.497(17) fm [56] 2.43(7) fm 2.56(7) fm16C — 2.46(10) fm 2.65(8) fm

[2] C. Beck, ed., Clusters in Nuclei, vol. 3 of Lecture Notes in Physics (Springer-Verlag, 2014).[3] Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Part. Nucl. Phys. 82, 78 (2015).[4] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meißner (2017), 1705.06192.[5] F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).[6] C. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

The magnitude of the 14C electric form factor

16

FIG. S11. The magnitude of the 12C electric form factor, |F (q)|, versus momentum transfer q in units of fm−1. The error bars indicate onestandard deviation errors from the stochastic noise of the Monte Carlo simulations. For comparison we also show experimental results [55].

0 0.5 1 1.5 2 2.5 3

q (fm-1)

10-4

10-3

10-2

10-1

100

|F(q

)|

experimentL

t = 7

Lt = 9

Lt = 11

Lt = 13

Lt = 15

FIG. S12. The magnitude of the 14C electric form factor, |F (q)|, versus momentum transfer q in units of fm−1. The error bars indicate onestandard deviation errors from the stochastic noise of the Monte Carlo simulations. For comparison we also show experimental results [32].

0 0.5 1 1.5 2 2.5 3

q (fm-1)

10-4

10-3

10-2

10-1

100

|F(q

)|

experimentL

t = 7

Lt = 9

Lt = 11

Lt = 13

Lt = 15

TABLE I. Observed charge radii from electron scattering and proton and neutron radii at leading order.

nucleus observed charge radius proton radius (LO) neutron radius (LO)12C 2.472(16) fm [56], 2.481(6) fm [57] 2.40(7) fm 2.39(5) fm14C 2.497(17) fm [56] 2.43(7) fm 2.56(7) fm16C — 2.46(10) fm 2.65(8) fm

[2] C. Beck, ed., Clusters in Nuclei, vol. 3 of Lecture Notes in Physics (Springer-Verlag, 2014).[3] Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Part. Nucl. Phys. 82, 78 (2015).[4] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G. Meißner (2017), 1705.06192.[5] F. Hoyle, Astrophys. J. Suppl. 1, 121 (1954).[6] C. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, Phys. Rev. 107, 508 (1957).

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Page 35: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Pinhole algoritm: measure of alpha cluster geometry������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

19�����������������������������������������������������������������������������������

20

20

20

Consider the triangular shape formed by the three spin-up protons.

SE, Epelbaum, Krebs, Lähde, Lee, Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017)

Page 36: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Summary

Scattering and reaction processes involving alpha particle are in reach of ab initiomethods and this has opened the door towards using experimental data from

collisions of heavier nuclei as input to improve ab initio nuclear structure theory.

Understanding of the connection between the degree of locality of nuclear forces andnuclear structure has led to a more efficient set of lattice chiral EFT interactions (to be

proven by the higher order corrections).

The pinhole algorithm has been developed for the auxiliary-field Monte Carlo methodsfor the calculation of arbitrary density correlations with respect to the center of mass.

Thanks!

Page 37: Overview from Nuclear Lattice Effective Field Theory · 2018-02-08 · Elastic proton scattering of medium mass nuclei from coupled-cluster theory. Hagen & Michel PRC 86, 021602 (2012)

Extras