overview: monte carlo radiative energy deposition (mred) code

17
Robert A. Weller MURI Review, Nashville, June 2009 1 MURI Review, 2009 Overview: Monte Carlo Radiative Energy Deposition (MRED) Code What does MRED compute? R. A. Weller 1 , M. H. Mendenhall 1 , R. A. Reed 1 , M. A. Clemens 1 , N. A. Dodds 1 , B. D. Sierawski 1 , K. M. Warren 1 , R. D. Schrimpf 1 , L. W. Massengill 1 , T. Koi 2 , D. Wright 2 , and M. Asai 2 1 Institute for Space & Defense Electronics, Vanderbilt University 2 Stanford Linear Accelerator Laboratory, Stanford University USA Acknowledgements: AFOSR, MURI DTRA Basic Research Program: HDTRA1-08-1-0034 and HDTRA1-08-1-0033 DTRA Basic Research Program: Radiation Hardened Microelectronics Program NASA GSFC: NASA Electronic Parts and Packaging (NEPP) Program NASA MSFC: Advanced Avionics and Processor Systems (AAPS), formerly RHESE

Upload: trinhdiep

Post on 05-Feb-2017

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 1

MURI Review, 2009

Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

What does MRED compute?R. A. Weller1, M. H. Mendenhall1, R. A. Reed1, M. A. Clemens1,

N. A. Dodds1, B. D. Sierawski1, K. M. Warren1, R. D. Schrimpf1, L. W. Massengill1,

T. Koi2, D. Wright2, and M. Asai21Institute for Space & Defense Electronics, Vanderbilt University

2Stanford Linear Accelerator Laboratory, Stanford UniversityUSAAcknowledgements:

– AFOSR, MURI

– DTRA Basic Research Program: HDTRA1-08-1-0034 and HDTRA1-08-1-0033– DTRA Basic Research Program: Radiation Hardened Microelectronics Program– NASA GSFC: NASA Electronic Parts and Packaging (NEPP) Program

– NASA MSFC: Advanced Avionics and Processor Systems (AAPS), formerly RHESE

Page 2: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 2

Outline

• SEU rate prediction

–The general Monte Carlo method

–RPP method

–Collected charge methods

• Criteria for using a Monte Carlo approach

• Status of the CREME96 Revision

• Conclusion

Page 3: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 3

Detailed physical simulation

http://www.icknowledge.com/

trends/p4(2).jpg

National Electrostatics Corporation

Radiation Environments Devices

Supercomputer

Croc image: http://crocodilian.com/crocfaq/

Algorithms Do it once; do it right. Leverage supercomputer scaling.

Page 4: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 4

A simulated radiation event

Page 5: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 5

• MRED: A Monte Carlo engine to determine a probability distribution by repetitive sampling.

• Monte Carlo: Appropriate when analytical computations are impractical.

• Example: “The probability density for an isotropic, mono-energetic flux of ions with atomic number z and energy E0 to deposit energy E in a specific volume?”

Monte Carlo simulation

http://ecx.images-amazon.com/images/I/411nB42M-7L._AA260_.jpg

Page 6: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 6

SEE rate: What MRED computes

R(t) = dE dn e<0All Ez

dA e dtt

(z,E, e, x,t ) Pe(z,E, e, x,t ;t)

The world

Probability of an effect

(z,E, e, x,t )

Effect rate

Page 7: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 7

The common simplifying assumptions

R(t) = dE dn e<0All Ez

dA e dtt

(z,E, e, x,t ) Pe(z,E, e, x,t ;t)

R = dE (z,E) dn e<0All Ez

dA e Pe(z,E, e, x)

Pe(z,E, e, x,t ;t) lim0Pe(z,E, e, x) (t (t ))The event and effect

are instantaneous…

(z,E, e, x,t) (z,E, e, x)The flux is time

independent…

(z,E, e, x) (z,E)The flux is isotropic

and homogeneous…

Page 8: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 8

The event occurs if and only if the deposited energy exceeds a critical threshold…

RPP model assumptions

Pe(z,E, e, x) pd (z,E, e, x,Ed ) Pe(Ed )dEd

pd (z,E, e, x,Ed ) = (Ed h(e, x)S(z,E))

Pe(Ed ) = H (Ed Ec )

R = dE (z,E) dn e<0All Ez

dA e Pe(z,E, e, x)

The world is a rectangular parallelepiped…

The event probability is completely determined by the energy deposited in the world…

Deposited energy is completely determined by LET, which is constant…

= Unit step function

Page 9: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 9

The chord-length distribution emerges

R(Ec ) = A dE (z,E) dEc

S(z,E )

1

Ad

n(x ) e<0

dA e ( h(e, x))z

=Ed

S(z,E)

pc (l)H (l)H (lmax l)

Ad

n(x ) e<0

dA e (l h(e, x))

Pc (l) pc (x)dxl

Pc(l) for a 10 10 1 m RPP

Differential path length distribution

Integral path length distribution

R(Ec ) = A dE (z,E)Pc (Ec

S(z,E))

z

The RPP Rate

Page 10: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 10

The LET distribution emerges

f (s) = f (s)H (smax s) dE (z,E) s S(z,E)( )( )z

=(z,Ei )

dS(z,E)dE E=Ei

iz

s = S(z,Ei )

R(Ec ) = A ds dE (z,E) s S(z,E)( )( )z

Pc Ec /s( )

Dirac delta

Differential:

Integral:

R(Ec ) = A dsEc lmax

smaxf (s)Pc

Ec

s

s

E2 E

1

F(s) f (s )dss

= f (s )dss

smax

Page 11: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 11

The RPP model for rate prediction

• Upset follows deposition of critical charge Qc or equivalent energy, Ec.

• Deposition of Q > Qc depends on projectile LET and chord-length distribution

• Rate depends on LET distribution in the space environment

• Factors entering into the model– Target (RPP) size– LET distribution– RPP s path length distribution– Critical charge for upset

• The upset rate, R:

A = Surface area

lmax = Longest chord

Ec = Energy equivalent of Qc

smin = Ec /lmax= Minimum LET for upset

smax = Maximum environmental LET

F(s) = Integral LET distribution

pc (x) = Differential path length distribution

R(Ec ) = AEc F(s)pl (Ec/s)ds

s2

smax

smin

Page 12: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 12

Effect criterion: Collected charge

pQ (z,E, e, x,Q) = dE1 dE2 ... dEn (Q kiEii=1

n

) pd1(z,E, e, x,E1)pd2 (z,E, e, x,E2 )...pdn (z,E, e, x,En )

Pe(z,E, e, x) dQ pQ (z,E, e, x,Q)Pe(Q)

Multiple Sensitive Volumes

SV1=90%SV2=13%

SV3=4%

CollectorBase

Emitter

R = dE (z,E) dn e<0All Ez

dA e Pe(z,E, e, x)

Effect probability is determined by collected charge…

Probability to collect charge Q

Dirac delta

Probability for an effect, e.g.: Pe(Q) H (Q Qc )

How to evaluate this? MRED!

Page 13: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 13

SPICE in the loop – What it really does.

pQ (z,E, e, x,Q) = dE1 dE2… dEn (Q kiEii=1

n

) pd1(z,E, e, x,E1)pd2 (z,E, e, x,E2 )…pdn (z,E, e, x,En )

Recall the single-transistor probability to collect charge Q:

R = dE (z,E) dn e<0All Ez

dA e Pe(z,E, e, x)

Pe(z,E, e, x) dQ1 dQ2… dQn pQ1(z,E, e, x,Q1)pQ2(z,E, e, x,Q1)…pQn(z,E, e, x,Q1) Pe(Q1,Q2 ,… ,Qn )

SPICEIf the effect involves several transistors and a joint probability…

This is the time-independent case…

NMOSNMOS PMOS

Page 14: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 14

Summary of the approximation hierarchy

RPP MC: One SV

MC: Nested SVs MC: SVs +SPICE MC: SVs +TCAD

RPP

IRPP

Cross-Section Data

Page 15: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 15

Indicators for Monte Carlo analysis

• Known technology or system application characteristics:– Basic assumptions of the RPP or IRPP model are known to be

inappropriate to the technology under investigation.– Upsets are known to require near simultaneous, multiple-transistor,

multiple-node perturbations.

• Experimental observations: – Unexpected upsets are observed in what is assumed to be a

hardened technology.– Different ions with the same LET produce upset cross-sections that

differ statistically.– Cross sections for multiple ions cannot be correlated with a single

sensitive volume.– strong azimuthal angle dependence (rotation around the die surface

normal) is observed with heavy ions.– Strong angular dependence is evident in test data using protons.

Page 16: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 16

CREME-MC - Status

User-Specified

Back-End-of-Line1

Sensitive

Volume

Page 17: Overview: Monte Carlo Radiative Energy Deposition (MRED) Code

Robert A. Weller MURI Review, Nashville, June 2009 17

Conclusion

Thank you!