overview of cold spray - sandia national laboratories · 2007-08-27 · mfs cso 90714 250 m/s cu a...
Embed Size (px)
TRANSCRIPT
-
MFS CSO 90714
Dr. Mark F. SmithCold Spray Workshop
Albuquerque, NMJuly 14-15, 1999
Overview of Cold Spray
ParticleVelocity (m/s)
> 325
> 350
> 375
> 400
> 450
> 475
> 500
> 425
2000 100 300 400 500
Gas
Pre
ssu
re (
psi
g)
200
250
300
350
400
Gas Temperature (ˆC)
Air, 22 µm Copper
100 µm
-
MFS CSO 90714
250 m/s Cu
A “Cold” Process Technologyfrom Siberia
900 m/s Cu
Deposition Efficiency
CopperCoating Material
Iron Nickel Aluminum
After Alkimov, et al , 1990
400 500 600 700 800 900 1,000
0.80.70.60.50.40.30.20.1
0
Particle Velocity m/s
-
MFS CSO 90714
Sandia Cold Spray System
HEATED GASGasInlets
Heater
TC
Gas Heater
PowderFeed
RobotManipulator
-
MFS CSO 90714
Spray Ductile Metals, Cermets, Polymers
Active Braze Alloy AluminumAluminum BronzeCopper304 Stainless Steel420 Stainless Steel
Fe3Pt MolybdenumMonel80Ni/20CrNiCrAlYNiCr-Cr3C2
Polymer StelCarTantalumTinTitaniumWC-Co (nanophase)
Examples of Materials Successfully Deposited at Sandia
-
MFS CSO 90714
Cold Spray vs. Air Plasma Spray
Plasma Sprayed Copper
Cold Sprayed Copper
100 µm
100 µm
• Superior Density• Less Oxide
-
MFS CSO 90714
Some Exciting New Possibilities
• Avoid melting & solidification- Avoid thermally induced stress- Avoid undesirable phases- Avoid oxidation (deposit metals in ambient air!)- Preserve desired phases & chemistry- Preserve original grain size (nanocrystalline mat’ls)
• Low Porosity (>99% dense, as deposited)• High thermal / electrical conductivity (>80% OFHC Cu)
• High Deposition Efficiencies (>98%)
• Recycle feedstock & process gas• Work with highly dissimilar materials combinations
-
MFS CSO 90714
New Possibilities, cont’d.
• Highly wrought material (high hardness / strength)
• Potential for high deposition rates• Relatively insensitive to standoff, work up close (
-
MFS CSO 90714
Cold Spray Direct Fabrication
• Additively build net / near-net shapes directly from a computer
• Key technical challenge is focussing the spray stream
~ 1 mm FocusedStream for
Subsonic Flow
Do you want a print or a part?Print Build OK
OK
Do you want a Print or a Part?PrintBuild
-
MFS CSO 90714
Example Applications
• Anti-corrosion (superior density, less oxide)
• Wear resistance (superior hardness & density)
• Metals on ceramics / glass
• High-alloy / specialty metals (preserve composition & phases)
• Plastic coatings without volatile organics
• Defect repair (minimal masking / heating, machinable)
• Direct fabrication
• Satellite structures (high conductivity, low residual stress)
-
MFS CSO 90714
Reclaiming Parts & $$$
Unusable $150k GPSsatellite part reclaimed
with Cold Spray
• Low heat input• Low stress• Dense, machinable• High conductivity,
-
MFS CSO 90714
State of the Art
• Technology ~ 10 years old• Success with many metals, some cermets & polymers• New materials / processing / manufacturing possibilities • Considerable industrial interest• Patented, but licenses available• No commercial use yet
-
MFS CSO 90714
Barriers to Commercial Use
Technical Issues:
• Process fundamentals poorly understood• Cannot predict materials / parameters• Reduce / eliminate expensive helium• Nozzle fouling / optimization
Build-up in nozzle
-
MFS CSO 90714
Barriers to Commercial Use
Manufacturing Issues:
• No commercial equipment / coating suppliers• Need articulated robot compatible spray gun• Lack of property data / field experience• Need better fine powder feeders
Uneven deposition dueto uneven powder feed
-
MFS CSO 90714
Understanding Critical Velocity
Raw Particle Velocity Distributions
0
20
40
60
80
100
200 400 600 800 1000 1200
0 %53 %95 %
No
rmal
ized
Co
un
ts
Particle Velocity (m/s)
DepositionEfficiency
1 2 3
19 µm Copper powder onto Aluminum
0
20
40
60
80
100
450 500 550 600 650 700 750 800
Dep
osi
tio
n E
ffic
ien
cy (
%)
Mean Particle Velocity (m/s)
3
2
11
2
3ExperimentPrediction
-
MFS CSO 90714
Process Maps Guide Optimization
ParticleVelocity (m/s)
> 325
> 350
> 375
> 400
> 450
> 475
> 500
> 425
2000 100 300 400 500
Gas
Pre
ssu
re (
psi
g)
200
250
300
350
400
*DV�7HPSHUDWXUH��Û&�
Air, 22 µm Copper
-
MFS CSO 90714
Models Guide Nozzle Design
dDdP
= CD ApM 2
2− 1
dVpdt
= Dm
Vp = particle VelocityD = Drag forcem = particle MassP = Pr essure
CD = Drag coefficientAp = Area of particleM = Mach number
max @ M = 2 = 1.4
(air)
(helium)
A*/A = Choke Point/Nozzle Exit Area Ratio(Axial Position measured from choke point)
-
MFS CSO 90714
“Estimator” ver. 1.0 for Spray Parameters
Air Helium
-
MFS CSO 90714
Understanding Particle Impact
1 km Asteroid Impacting Ocean 300 Gigatons TNT Equivalent (10x Peak of All Cold War Nuke’s)
Sandia Teraflops computer running CTH code100 million computational cells18 hr @ 91% capacity (8,192 of 9,000 processors)
-
MFS CSO 90714
Computational Impact Model& Experimental Comparison
Predicted peak temp.of 1280 K is below the
melting point of Cu(1357 k)
Cu
Stainless Steel25 µm
4
3
2
1
0
- 1
- 2
- 3
- 4
Cu
StainlessSteel
t = 70 nst = 70 ns
X (microns)- 4 - 2 0 2 4
Y (
mic
ron
s)
Copper
Steel
Void
Temperature K
980
900
810
720
630
540
450
380
25 µm Cu Sphere into 304 Stainless at 600 m/s
-
MFS CSO 90714
Summary
• New materials / processing / manufacturing possibilities • Opportunity to be first to exploit market advantage• Several pre-competitive barriers need to be solved• Faster / cheaper / better to work together on pre-comp.• Partners will gain access to best technology & new IP