overview of rough sets

53
Rough Set Overview of Rough Sets Rough Sets (Theoretical Aspects of Reasoning about Data) by Zdzislaw Pawlak

Upload: chelsea-roth

Post on 31-Dec-2015

76 views

Category:

Documents


3 download

DESCRIPTION

Overview of Rough Sets. Rough Sets (Theoretical Aspects of Reasoning about Data) by Zdzislaw Pawlak. Contents. Introduction Basic concepts of Rough Sets information system equivalence relation / equivalence class / indiscernibility relation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Overview of Rough Sets

Rough

Set

Overview of Rough Sets

Rough Sets (Theoretical Aspects of Reasoning about Data)by Zdzislaw Pawlak

Page 2: Overview of Rough Sets

2

Contents

1. Introduction 2. Basic concepts of Rough Sets

information system equivalence relation / equivalence class / indiscernibility relation set approximation (Lower & Upper Approximations)

- accuracy of Approximation- extension of the definition of approximation of sets

dispensable & indispensable- reducts and core

dispensable & indispensable attributes- independent- relative reduct & relative core

dependency in knowledge- partial dependency of attribute (knowledge)- significance of attributes

discernibility Matrix

3. Example decision Table dissimilarity Analysis

Page 3: Overview of Rough Sets

3

Introduction

Rough Set theory

by Zdzislaw Pawlak in the early 1980’s

use : AI, information processing, data mining, KDD etc.

ex) feature selection, feature extraction, data reduction,

decision rule generation and pattern extraction (association rules) etc.

theory for dealing with information with uncertainties.

reasoning from imprecision data.

more specifically, discovering relationships in data.

The idea of the rough set consists of the approximation of a set(X) by a p

air of sets, called the low and the upper approximation of this set(X)

Page 4: Overview of Rough Sets

4

Information System

Knowledge Representation System ( KR-system , KRS )

Information systems I = < U, Ω>

a finite set U of objects , U={x1, x2, .., xn} ( universe )

a finite set Ω of attributes , Ω = {q1, q2, .., qm} ={ C, d }

C : set of condition attribute d : decision attribute

ex) I = < U, {a, c, d}>

UU a c dx1 1 4 yes

x2 1 1 no

x3 2 2 no

x4 2 2 Yes

x5 3 3 no

x6 1 3 yes

x7 3 3 no

Page 5: Overview of Rough Sets

5

Equivalence Relation

An equivalence relation R on a set U is defined as

i.e. a collection R of ordered pairs of elements of U, satisfying certain properties.

1. Reflexive: xRx for all x in U ,

2. Symmetric: xRy implies yRx for all x, y in U

3. Transitive: xRy and yRz imply xRz for all x, y, z in U

))}()((|),{(R ycxcUUyx jjc j

Page 6: Overview of Rough Sets

6

Equivalence Class

R : any subset of attributes( )

If R is an equivalence relation over U,

then U/R is the family of all equivalence classes of R

: equivalence class in R containing an element

ex) an subset of attribute ‘R1={a}’ is equivalence relation

the family of all equivalence classes of {a}

: U/ R1 ={{ 1, 2, 6}{3, 4}{5, 7}}

equivalence class

:

※ A family of equivalence relation over U will be call a knowledge base over U

UU a c d1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no

R

Rx][ Ux

}6,2,1{]1[1R }4,3{]3[

1R }7,5{]5[

1R

Page 7: Overview of Rough Sets

7

Indiscernibility relation

If and ,

then is also an equivalence relation, ( IND(R) )

and will be called an indiscernibility relation over R ※ : intersection of all equivalence relations belonging to R

equivalence class of the equivalence relation IND(R)

:

U/IND(R) : the family of all equivalence classes of IND(R)

ex) an subset of attribute ‘R={a, c}’

the family of all equivalence classes of {a}

: U/{a}={{ 1, 2, 6}{3, 4}{5, 7}}

the family of all equivalence classes of {b}

: U/{c}={{ 2}{3, 4}{5, 6, 7}{1}}

the family of all equivalence classes of IND(R)

: U/IND(R) ={{2}{6}{1} {3,4}{5,7}}=U/{a,c}

UU a c d

1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no

R)R( ][][ xx IND

R

R R

R

Page 8: Overview of Rough Sets

8

I = <U, Ω> = <U, {a, c}>

U is a set (called the universe) Ω is an equivalence relation on U (called an indiscernibility relation).

U is partitioned by Ω into equivalence classes,

elements within an equivalence class are indistinguishable in I.

An equivalence relation induces a partitioning of the universe.

The partitions can be used to build new subsets of the universe.

※ equivalence classes of IND(R) are called basic categories (concepts) of knowledge R

※ even union of R-basic categories will be called R-category

UU a c1 1 4

2 1 1

3 2 2

4 2 2

6 1 3

5 3 3

7 3 3

Page 9: Overview of Rough Sets

9

Set Approximation

Given I = <U, Ω> Let and R : equivalence relation We can approximate X using only the information contained in R

by constructing the R-lower( ) and R-upper( ) approximations of X,

where

or

X is R-definable (or crisp) if and only if ( i.e X is the union of some R-basic categories, called R-definable set, R-exact set)

X is R-undefinable (rough) with respect to R if and only if ( called R-inexact, R-rough)

UX

XR XR

}.][|{ XxxXR R

},][|{ XxxXR R

}.:/{ XYRUYXR

}:/{ XYRUYXR

XRXR

XRXR

)I(INDR

Page 10: Overview of Rough Sets

10

R-positive region of X : R-borderline region of X : R-negative region of X :

XRXRXBNR )(

XRUXNEGR )(

XRXPOSR )(

U

U/R R : subset of attributes

set X

XRXR ∴ X is R-definable

U/R

U

set X

∴ X is R-rough (undefinable)XR XR

Page 11: Overview of Rough Sets

11

EX) I = <U, Ω>, let R={a, c} , X={x | d(x) = yes}={1, 4, 6}

► approximate set X using only the information contained in R

the family of all equivalence classes of IND(R)

: U/IND(R) = U/R = {{1}{ 2}{6} {3,4}{5,7}}

R-lower approximations of X

:

R-lower approximations of X

:

※ The set X is R-rough since the boundary region is not empty

UU a c d

1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no}4,3,6,1{}][|{R XxxX B

}6,1{}][|{R XxxX B

}4,3{)(R XBN }7,5,2{)(R XNEG}6,1{)(R XPOS

Page 12: Overview of Rough Sets

12

Lower & Upper Approximations

yes

yes/no

no

{x1, x6}

{x3, x4}

{x2, x5,x7}

XR

XR

Page 13: Overview of Rough Sets

13

Accuracy of Approximation

accuracy measure αR(X)

: the degree of completeness of our knowledge R about the set X

If , the R-borderline region of X is empty

and the set X is R-definable (i.e X is crisp with respect to R).

If , the set X has some non-empty R-borderline region

and X is R-undefinable (i.e X is rough with respect to R).

ex) let R={a, c} , X={x | d(x) = yes}={1, 4, 6}

Rcard

RcardXR )( .X.10 R

1)( XR

1)( XR

}4,3,6,1{}][|{R XxxX B

}6,1{}][|{R XxxX B

5.04

2)(R

Rcard

RcardX

Page 14: Overview of Rough Sets

14

R-roughness of X

: the degree of incompleteness of knowledge R about the set X

ex) let R={a, c} , X={x | d(x) = yes}={1, 4, 6}

Y={x | d(x) = no}={2, 3, 6, 7}

U/IND(R) = U/R = {{1}{ 2}{6} {3,4}{5,7}}

)(1)( XX RR

5.05.01)(1)(R XX R

}4,3,6,1{}][|{R R XxxX

}6,1{}][|{R R XxxX

5.04/2)(R X

}6,2{}][|{R R YxxY

}7,5,6,4,3,2{}][|{R R YxxY

67.06/4)(1)( RR YY 33.06/2)(R Y

Page 15: Overview of Rough Sets

15

Extension of the definition of approximation of sets

F={X1, X2, ..., Xn} : a family of non-empty sets and

=> R-lower approximation of the family F : R-upper approximation of the family F :

},,{ 21 nXRXRXRFR

},,,{ 11 nXRXRXRFR

ex) R={a, c}

F={X, Y}={{1,4,6}{2,3,5,7}} , X={x | d(x) = yes},

Y={x | d(x) = no}

U/IND(R) = U/R = {{1}{ 2}{6} {3,4}{5,7}}

}7,6,5,2,1{}}7,5,2}{6,1{{},{ YRXRFR

}7,6,5,4,3,2,1{}}7,6,5,4,3,2}{6.4.3.1{{},{ YRXRFR

UF

UU a c d

1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no

Page 16: Overview of Rough Sets

16

the accuracy of approximation of F: the percentage of possible correct decisions when classifying objects employing the knowledge R

the quality of approximation of F : the percentage of objects which can be correctly classified to classes of F

employing the knowledge R

i

iR

XRcard

XRcardF )(

Ucard

XRcardF i

R)(

7/5)( FR2/1)64/()32()( FR

ex) R={a, c}

F={X, Y}={{1,4,6}{2,3,6,7}} , X={x | d(x) = yes}, Y={x | d(x) = no}

}7,6,5,2,1{}}7,5,2}{6,1{{},{ YRXRFR

}7,6,5,4,3,2,1{}}7,6,5,4,3,2}{6.4.3.1{{},{ YRXRFR

Page 17: Overview of Rough Sets

17

Dispensable & Indispensable

Let R be a family of equivalence relations let if IND(R) = IND(R-{a}), then a is dispensable in R if IND(R) ≠ IND(R-{a}), then a is indispensable in R

the family R is independent if each is indispensable in R ; otherwise R is dependent

ex) R={a, c}

U/{a}={{ 1, 2, 6}{3, 4}{5, 7}}

U/{b}={{ 2}{3, 4}{5, 6, 7}{1}}

U/IND(R) ={{1}{ 2}{6} {3,4}{5,7}}=U/{a,b}

∴ a, b : indispensable in R

∴ R is independent (∵ U/IR ≠ U/{b}, U/IR ≠ U/{a})

Ra

Ra

UU a c1 1 4

2 1 1

3 2 2

4 2 2

5 3 3

6 1 3

7 3 3

Page 18: Overview of Rough Sets

18

Core & Reduct

the set of all indispensable relation in R => the core of R , ( CORE(R) ) is a reduct of R if Q is independent and IND(Q) = IND(R) , ( RED(R) )RQ

)R()R( REDCORE

ex) a family of equivalence relations R={P, Q, R}

U/P ={{1,4,5}{2,8}{3}{6,7}}

U/Q ={{1,3,5}{6}{2,4,7,8}}

U/R ={{1,5}{6}{2,7,8}{3,4}}

U/{P,Q}={{1,5}{4}{{2,8}{3}{6}{7}}

U/{P,R}={{1,5}{4}{2,8}{3}{6}{7}}

U/{Q,R}={{1,5}{3}{6}{2,7,8}{4}}

U/R={{1,5}{6}{2,8}{3}{4}{7}}

U/{P,Q}= U/R =>R is dispensable in R

U/{P,R} }= U/R => Q is dispensable in R

U/{Q,R} }≠ U/R => P is indispensable in R

∴DORE(R) ={P}

∴RED(R) = {P,Q} and {P,R}

( U/{∵ P,Q}≠U/{P} , U/{P,Q}≠U/{Q}

U/{P,R}≠U/{P} , U/{P,R}≠U/{R} )

※ a reduct of knowledge is its essential part.

※ a core is in a certain sense its most important part.

Page 19: Overview of Rough Sets

19

Dispensable & Indispensable AttributesLet R and D be families of equivalence relation over U,

if , then the attribute a is dispensable in I ,

if , then the attribute a is indispensable in I ,

The R-positive region of D :

.Ra

XPOSUX

D/R R)D(

)D()D( }){R(R aPOSPOS )D()D( }){R(R aPOSPOS

Page 20: Overview of Rough Sets

20

ex) R={a, c} D={d}

U/{a}={{ 1, 2, 6}{3, 4}{5, 7}}

U/{c}={{ 2}{3, 4}{5, 6, 7}{1}}

U/D={{1,4,6}{2,3,5,7}}

U/IND(R) ={{1}{ 2}{6} {3,4}{5,7}}=U/{a,c}

UU a c d

1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no

}7,6,5,2,1{}}7,5,2}{6,,1{{R)D(D/

R

XPOSUX

}2,1{}}2}{1{{)D(}){R( aPOS

}7,5{}}7,5{{)D(}){R( cPOS

)D()D( }){R(R aPOSPOS

)D()D( }){R(R cPOSPOS

=> the relation ‘a’ is indispensable in R (‘a’ is indispensable attribute)

=> the relation ‘c’ is indispensable in R (‘c’ is indispensable attribute)

Page 21: Overview of Rough Sets

21

Independent

If every c in R is D-indispensable, then we say that R is D-independent

(or R is independent with respect to D)

ex) R={a, c} D={d}

∴ R is D-independent ( , ))D()D( }){R(R aPOSPOS )D()D( }){R(R cPOSPOS

UU a c d

1 1 4 yes

2 1 1 no

3 2 2 no

4 2 2 Yes

5 3 3 no

6 1 3 yes

7 3 3 no

Page 22: Overview of Rough Sets

22

Relative Reduct & Relative Core

The set of all D-indispensable elementary relation in R will be called the D-core of R, and will be denoted as CORED(R)

※ a core is in a certain sense its most important part.

The set of attributes is called a reduct of R,

if C is the D-independent subfamily of R and

=> C is a reduct of R ( REDD(R) )

※ a reduct of knowledge is its essential part.

※ REDD(R) is the family of all D-reducts of R

ex) R={a, c} D={d}

CORED(R) ={a, c} REDD(R) ={a, c}

RC

).D()D( RPOSPOSC

)()( RREDRCORED

Page 23: Overview of Rough Sets

23

An Example of Reducts & Core

U Headache Muscle pain

Temp. Flu

U1 Yes Yes Normal No U2 Yes Yes High Yes U3 Yes Yes Very-high Yes U4 No Yes Normal No U5 No No High No U6 No Yes Very-high Yes

U={U1, U2, U3, U4, U5, U6} =let {1,2,3,4,5,6}

Ω={headache, Muscle pan, Temp, Flu}={a, b, c, d}

condition R={a, b, c}, decision D={d}

U/{a}={{1,2,3}{4,5,6}}

U/{b}={{1,2,3,4,6}{5}}

U/{c}={{1,4}{2,5}{3,6}}

U/{a,b}={1,2,3}{4,6}{5}}

U/{a,c}={{1}{2}{3}{4}{5}{6}}

U/{b,c}={{1,4}{2}{3,6}{5}}

U/R={{1}{4}{2}{5}{3}{6}}

U/D={{1,4,5}{2,3,6}}

POSR(D)={{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{a}(D)={{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{b}(D)={{{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{c}(D)={{5}}={5}

• relation ‘a’, ‘b’ is dispensable• relation ‘c’ is indispensable

=> D-core of R =CORED(R)={c}

to find reducts of R={a, b, c}

• {a, c} is D-independent and POS{a, c}(D)=POSR(D)

(∵POS{a}(D)={} ≠POS{a, c}(D)

POS{c}(D)={1,4,3,6} ≠POS{a, c}(D) )

• {b, c} is D-independent and POS{b, c}(D)=POSR(D) => {a, c} {b, c} is the D-reduct of R

POSR-{ab}(D)={{1,4}{3,6}}={1,4,3,6}POSR-{ac}(D)={{5}}={5}POSR-{bc}(D)={}

Page 24: Overview of Rough Sets

24

U Headache Muscle pain

Temp. Flu

U1 Yes Yes Normal No U2 Yes Yes High Yes U3 Yes Yes Very-high Yes U4 No Yes Normal No U5 No No High No U6 No Yes Very-high Yes

U Musclepain

Temp. Flu

U1,U4 Yes Normal No

U2 Yes High YesU3,U6 Yes Very-high YesU5 No High No

U Headache Temp. Flu

U1 Yes Norlmal NoU2 Yes High YesU3 Yes Very-high YesU4 No Normal NoU5 No High NoU6 No Very-high Yes

Reduct1 = {Muscle-pain,Temp.}

Reduct2 = {Headache, Temp.}CORE = {Headache, Temp} ∩ {Muscle Pain, Temp}

   = {Temp}

Page 25: Overview of Rough Sets

25

Dependency in knowledge

Given knowledge P, Q U/P={{1,5}{2,8}{3}{4}{6}{7}} U/Q={{1,5}{2,7,8}{3,4,6}}

If , then Q depends on P (P Q)⇒)Q()P( INDIND

Page 26: Overview of Rough Sets

26

Partial Dependency of knowledge

I=<U, Ω> and Knowledge Q depends in a degree k (0≤k≤1 ) from knowledge P

(P⇒k Q)

ex) U/Q={{1}{2,7}{3,6}{4}{5,8}}

U/P={{1,5}{2,8}{3}{4}{6}{7}}

POSP(Q) = {3,4,6,7}

the degree of dependency between Q and P

: (P⇒0.5 Q )

If k = 1 we say that Q depends totally on P. If k < 1 we say that Q depends partially (in a degree k) on P.

QP,

Ucard

POScardk

)Q()Q( P

P

5.08

4)Q()Q( P

P Ucard

POSk

Page 27: Overview of Rough Sets

27

Significance of attributes

ex) R={a, b, c}, decision D={d}

U/{a}={{1,2,3}{4,5,6}}

U/{b}={{1,2,3,4,6}{5}}

U/{c}={{1,4}{2,5}{3,6}}

U/{a,b}={1,2,3}{4,6}{5}}

U/{a,c}={{1}{2}{3}{4}{5}{6}}

U/{b,c}={{1,4}{2}{3,6}{5}}

U/R={{1}{4}{2}{5}{3}{6}}

U/D={{1,4,5}{2,3,6}}

POSR(D)={{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{a}(D)={{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{b}(D)={{{1,4,5}{2,3,6}}={1,2,3,4,5,6}

POSR-{c}(D)={{5}}={5}

011)()( {b}-RR DD significance of attribute ‘b’ :

83.06/56/11)()( {c}-RR DD significance of attribute ‘c’ :

∴ the attribute c is most significant, since it most changes the positive region of U/IND(D)

011)()( {a}-RR DD significance of attribute ‘a’ :

Page 28: Overview of Rough Sets

28

Discernibility Matrix

Let I = (U, Ω) be a decision table,

with U={x1, x2, .., xn}

C={a, b, c} : condition attribute set , D={d} : decision attribute set

By a discernibility matrix of I, denoted M(I)={mij}n×n

mij is the set of all the condition attributes that classify objects xi and xj into different classes.

U1 U2 U3 U4 U5 U6U1U2 cU3 c -U4 - a, c a, c

U5 - a, b a, b, c -

U6 a, c - - c b, c

- : same equivalence classes of the relation IND(d)

< Decision Table >

U Headache Muscle pain

Temp. Flu

U1 Yes Yes Normal No U2 Yes Yes High Yes U3 Yes Yes Very-high Yes U4 No Yes Normal No U5 No No High No U6 No Yes Very-high Yes

(a) (b) (d)(c)< Discernibility Matrix >

Page 29: Overview of Rough Sets

29

Compute value cores and value reducts from the M(I)

the core can be defined now as the set of all single element entries of the discernibility matrix,

is the reduct of R, if B is the minimal subset of R such that

for any nonempty entry c ( ) in M(I)

},),(:{)( jisomeforamRaRCORE ij

RB

cB c

U1 U2 U3 U4 U5

U2 c

U3 c -

U4 - a, c a, c

U5 - a, b a, b, c -

U6 a, c - - c b, c

d-CORE(R) d-reducts : {a, c} {b, c}

Page 30: Overview of Rough Sets

CHAPTER 6. Decision Tables

Page 31: Overview of Rough Sets

31

• Proposition 6.2Each decision table can be uniquely decomposed

into two decision tables and such that in and in , where and

– compute the dependency between condition and decision attributes

– decompose the table into two subtables

),,,( DCAUT ),,,( 11 DCAUT

),,,( 22 DCAUT DC 1 1T DC 0 2T)(1 DPOSU C

)(/2 )(

DINDUXC XBNU

Page 32: Overview of Rough Sets

32

• Example 1.

U a b c d e

1 1 0 2 2 0

2 0 1 1 1 2

3 2 0 0 1 1

4 1 1 0 2 2

5 1 0 2 0 1

6 2 2 0 1 1

7 2 1 1 1 2

8 0 1 1 0 1

condition

attribute

decision attribute

U a b c d e

3 2 0 0 1 1

4 1 1 0 2 2

6 2 2 0 1 1

7 2 1 1 1 2

U a b c d e

1 1 0 2 2 0

2 0 1 1 1 2

5 1 0 2 0 1

8 0 1 1 0 1

Table 2

Table 3

Table 1

• Table 2 is consistent, Table 3 is totally inconsistent

→ All decision rules in Table 2 are consistent

All decision rules in Table 3 are inconsistent

Page 33: Overview of Rough Sets

33

• simplification of decision tables : reduction of condition attributes• steps

1) Computation of reducts of condition attributes which is equivalent to elimination of some column from the decision tables

2) Elimination of duplicate rows

3) Elimination of superfluous values of attributes

Page 34: Overview of Rough Sets

34

• Example 2

U a b c d e

1 1 0 0 1 1

2 1 0 0 0 1

3 0 0 0 0 0

4 1 1 0 1 0

5 1 1 0 2 2

6 2 1 0 2 2

7 2 2 2 2 2

U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

condition

attribute

decision attribute

e-dispensable condition attribute is c.

let R={a, b, c, d}, D={e}

CORED(R) ={a, b, d}

REDD(R) ={a, b, d}

remove column c

Page 35: Overview of Rough Sets

35

• we have to reduce superfluous values of condition attributes in every decision rules

→ compute the core values1. In the 1st decision rules

• the core of the family of sets

• the core value is

U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

}}4,1{},3,2,1{},5,4,2,1{{}]1[,]1[,]1{[ dbaF

dbadba ]1[]1[]1[]1[ },,{ }1{}4,1{}3,2,1{}5,4,2,1{

}2,1{]1[,1)1(,0)1(,1)1( edba

}1{}4,1{}3,2,1{]1[]1[ db

}4,1{}4,1{}5,4,2,1{]1[]1[ da

}2,1{}3,2,1{}5,4,2,1{]1[]1[ ba

0)1( b

Page 36: Overview of Rough Sets

36

2. In the 2nd decision rules• the core of the family of sets

• the core value is

3. In the 3rd decision rules• the core of the family of sets

• the core value is

U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

}}3,2{},3,2,1{},5,4,2,1{{}]1[,]1[,]1{[ dbaF

}2{]1[]1[]1[]1[ },,{ dbadba

}2,1{]1[,0)1(,0)1(,1)1( edba

}2,1{]1[]1[},2{]1[]1[},3,2{]1[]1[ badadb

1)1( a

}}3,2{},3,2,1{},3{{}]0[,]0[,]0{[ dbaF

}3{]0[]0[]0[]0[ },,{ dbadba

}4,3{]0[,0)0(,0)0(,0)0( edba

}3{]0[]0[},3{]0[]0[},3,2{]0[]0[ badadb

0)0( a

Page 37: Overview of Rough Sets

37

4. In the 4th decision rules• the core of the family of sets

• the core value :

5. In the 5th decision rules• the core of the family of sets

• the core value is

U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

}}4,1{},6,5,4{},5,4,2,1{{}]0[,]0[,]0{[ dbaF

}4{]0[]0[]0[]0[ },,{ dbadba

}4,3{]1[,1)0(,1)0(,1)0( edba

}5,4{]0[]0[},4,1{]0[]0[},4{]0[]0[ badadb

1)0(,1)0( db

}}7,6,5{},6,5,4{},5,4,2,1{{}]2[,]2[,]2{[ dbaF

}5{]2[]2[]2[]2[ },,{ dbadba

}7,6,5{]2[,2)2(,1)2(,1)2( edba

}5,4{]2[]2[},5{]2[]2[},6,5{]2[]2[ badadb

2)2( d

Page 38: Overview of Rough Sets

38

6. In the 6th decision rules• the core of the family of sets

• the core value : not exist

7. In the 7th decision rules• the core of the family of sets

• the core value : not exist

U a b d e

1 1 0 1 1

2 1 0 0 1

3 0 0 0 0

4 1 1 1 0

5 1 1 2 2

6 2 1 2 2

7 2 2 2 2

}}7,6,5{},6,5,4{},7,6{{}]2[,]2[,]2{[ dbaF

}6{]2[]2[]2[]2[ },,{ dbadba

}7,6,5{]2[,2)2(,1)2(,2)2( edba

}6{]2[]2[},7,6{]2[]2[},6,5{]2[]2[ badadb

}}7,6,5{},7{},7,6{{}]2[,]2[,]2{[ dbaF

}7{]2[]2[]2[]2[ },,{ dbadba

}7,6,5{]2[,2)2(,2)2(,2)2( edba

}7{]2[]2[},7,6{]2[]2[},7{]2[]2[ badadb

U a b d e

1 - 0 - 1

2 1 - - 1

3 0 - - 0

4 - 1 1 0

5 - - 2 2

6 - - - 2

7 - - - 2

Page 39: Overview of Rough Sets

39

• to compute value reducts– let’s compute value reducts for the ~1. 1st decision rules of the decision table

– 2 value reducts1. 2.

– Intersection of reducts : → core value

}2,1{]1[}1{}4,1{}3,2,1{]1[]1[ edb

eda ]1[}4,1{}4,1{}5,4,2,1{]1[]1[

edebea ]1[}4,1{]1[,]1[}3,2,1{]1[,]1[}5,4,2,1{]1[

1)1(and0)1( db0)1(and1)1( ba

0)1( b

eba ]1[}2,1{}3,2,1{}5,4,2,1{]1[]1[

Page 40: Overview of Rough Sets

40

2. 2nd decision rules of the decision table

– 2 value reducts : – Intersection of reducts : → core value

3. 3rd decision rules of the decision table

– 1 value reduct : – Intersection of reducts : → core value

}2,1{]1[}3,2{]1[]1[ edb

ebaeda ]1[}2,1{]1[]1[,]1[}2{]1[]1[

edebea ]1[}3,2{]1[,]1[}3,2,1{]1[,]1[}5,4,2,1{]1[

0)1(and1)1(or0)1(and1)1( bada

0)1( a

}4,3{]0[}3,2{]0[]0[ edb

ebaeda ]0[}3{]0[]0[,]0[}3{]0[]0[

edebea ]0[}3,2{]0[,]0[}3,2,1{]0[,]0[}3{]0[

0)0( a0)0( a

Page 41: Overview of Rough Sets

41

4. 4th decision rules of the decision table

– 1 value reduct : – Intersection of reducts : → core value

5. 5th decision rules of the decision table

– 1 value reduct :

– Intersection of reducts : → core value

}4,3{]0[}4{]0[]0[ edb

ebaeda ]0[}5,4{]0[]0[,]0[}4,1{]0[]0[

edebea ]0[}4,1{]0[,]0[}3,2,1{]0[,]0[}5,4,2,1{]0[

0)1(and1)1( db

2)2( d

0)1(and1)1( db

edebea ]2[}7,6,5{]2[,]2[}6,5,4{]2[},7,6,5{]0[}5,4,2,1{]2[

2)2( d

}7,6,5{]2[}5{]2[]2[},7,6,5{]2[}6,5{]2[]2[ 22 dadb

}7,6,5{]2[}5,4{]2[]2[ 2 ba

Page 42: Overview of Rough Sets

42

6. 6th decision rules of the decision table

– 2 value reducts :

– Intersection of reducts : → core value : not exist

edebea ]2[}7,6,5{]2[,]2[}6,5,4{]2[},7,6,5{]2[}7,6{]2[

2)2(or2)2( da

}7,6,5{]2[}7,6{]2[]2[},7,6,5{]2[}6,5{]2[]2[ edaedb

}7,6,5{]2[}6{]2[]2[ eba

Page 43: Overview of Rough Sets

43

7. 7th decision rules of the decision table

– 3 value reducts

– Intersection of reducts : → core value : not exist

– reducts : = 24 solutions to our problem

},7,6,5{]2[}7,6{]2[ ea

2)2(or2)2(or2)2( dba

edeb ]2[}7,6,5{]2[,]2[}7{]2[

U a b d e

1 1 0 Ⅹ 1

1′ Ⅹ 0 1 1

2 1 0 Ⅹ 1

2 ′ 1 Ⅹ 0 1

3 0 Ⅹ Ⅹ 0

4 Ⅹ 1 1 0

5 Ⅹ Ⅹ 2 2

6 Ⅹ Ⅹ 2 2

6 ′ 2 Ⅹ Ⅹ 2

7 Ⅹ Ⅹ 2 2

7 ′ Ⅹ 2 Ⅹ 2

7″ 2 Ⅹ Ⅹ 2

3211122

}7,6,5{]2[}7,6{]2[]2[},7,6,5{]2[}7{]2[]2[ edaedb

}7,6,5{]2[}7{]2[]2[ eba

Page 44: Overview of Rough Sets

44

One solution Another solution

U a b d e

1 1 0 Ⅹ 1

2 1 Ⅹ 0 1

3 0 Ⅹ Ⅹ 0

4 Ⅹ 1 1 0

5 Ⅹ Ⅹ 2 2

6 Ⅹ Ⅹ 2 2

7 2 Ⅹ Ⅹ 2

U a b d e

1 1 0 Ⅹ 1

2 1 0 Ⅹ 1

3 0 Ⅹ Ⅹ 0

4 Ⅹ 1 1 0

5 Ⅹ Ⅹ 2 2

6 Ⅹ Ⅹ 2 2

7 Ⅹ Ⅹ 2 2

U a b d e

1,2 1 0 Ⅹ 1

3 0 Ⅹ Ⅹ 0

4 Ⅹ 1 1 0

5,6,7 Ⅹ Ⅹ 2 2

U a b d e

1 1 0 Ⅹ 1

2 0 Ⅹ Ⅹ 0

3 Ⅹ 1 1 0

4 Ⅹ Ⅹ 2 2

identical

enumeration is not essential

minimal solution

Page 45: Overview of Rough Sets

45

10.4 Pattern Recognition[ Table10 ] : Digits display unit in a calculator

assumed to represent a characterization of “hand written” digits

UU a b c d e f G0 1 1 1 1 1 1 01 0 1 1 0 0 0 02 1 1 0 1 1 0 13 1 1 1 1 0 0 14 0 1 1 0 0 1 15 1 0 1 1 0 1 16 1 0 1 1 1 1 17 1 1 1 0 0 0 08 1 1 1 1 1 1 19 1 1 1 1 0 1 1

a

b

c

d

e

fg

▶ Out task is to find a minimal description of each digit

and corresponding decision algorithm.

Page 46: Overview of Rough Sets

46

compute the core attributesUU b c d e f g0 1 1 1 1 1 01 1 1 0 0 0 02 1 0 1 1 0 13 1 1 1 0 0 14 1 1 0 0 1 15 0 1 1 0 1 16 0 1 1 1 1 17 1 1 0 0 0 08 1 1 1 1 1 19 1 1 1 0 1 1

UU a c d e f g0 1 1 1 1 1 01 0 1 0 0 0 02 1 0 1 1 0 13 1 1 1 0 0 14 0 1 0 0 1 15 1 1 1 0 1 16 1 1 1 1 1 17 1 1 0 0 0 08 1 1 1 1 1 19 1 1 1 0 1 1

[ drop attribute a ]

[ drop attribute b ]

decision rules are inconsistent

Rule1 : b1c1d0e0f0g0 → a0b1c1d0e0f0g0 Rule7 : b1c1d0e0f0g0 → a1b1c1d0e0f0g0

Page 47: Overview of Rough Sets

47

UU a b d e f g0 1 1 1 1 1 01 0 1 0 0 0 0

2 1 1 1 1 0 13 1 1 1 0 0 14 0 1 0 0 1 15 1 0 1 0 1 16 1 0 1 1 1 17 1 1 0 0 0 08 1 1 1 1 1 19 1 1 1 0 1 1

UU a b c e f g0 1 1 1 1 1 01 0 1 1 0 0 02 1 1 0 1 0 13 1 1 1 0 0 14 0 1 1 0 1 15 1 0 1 0 1 16 1 0 1 1 1 17 1 1 1 0 0 08 1 1 1 1 1 19 1 1 1 0 1 1

←[drop attribute c]

[drop attribute d]→

UU a b c d f g0 1 1 1 1 1 01 0 1 1 0 0 02 1 1 0 1 0 13 1 1 1 1 0 14 0 1 1 0 1 15 1 0 1 1 1 16 1 0 1 1 1 17 1 1 1 0 0 08 1 1 1 1 1 19 1 1 1 1 1 1

UU a b c d e g0 1 1 1 1 1 01 0 1 1 0 0 02 1 1 0 1 1 13 1 1 1 1 0 14 0 1 1 0 0 15 1 0 1 1 0 16 1 0 1 1 1 17 1 1 1 0 0 08 1 1 1 1 1 19 1 1 1 1 0 1

[drop attribute f]→

←[drop attribute e]

decision rules are

consistent

decision rules are

inconsistent

Page 48: Overview of Rough Sets

48

UU a b c d e f0 1 1 1 1 1 11 0 1 1 0 0 02 1 1 0 1 1 03 1 1 1 1 0 04 0 1 1 0 0 15 1 0 1 1 0 16 1 0 1 1 1 17 1 1 1 0 0 08 1 1 1 1 1 19 1 1 1 1 0 1

[drop attribute g]

∴ attribute c, d : dispensable

attribute a, b, e, f, g : indispensable

the set {a, b, e, f, g} : core

sole reducts : {a, b, e, f, g}

decision rules are inconsistent

Page 49: Overview of Rough Sets

49

compute reduct • all attribute set : {a, b, c, d, e, f, g}• core : {a, b, e, f, g} • reduct : {a, b, e, f, g}

UU c d a b e f G0 1 1 1 1 1 1 01 1 0 0 1 0 0 02 0 1 1 1 1 0 13 1 1 1 1 0 0 14 1 0 0 1 0 1 15 1 1 1 0 0 1 16 1 1 1 0 1 1 17 1 0 1 1 0 0 08 1 1 1 1 1 1 19 1 1 1 1 0 1 1

Page 50: Overview of Rough Sets

50

compute the core values of attributes for table11

UU a b e f G0 1 1 1 1 01 0 1 0 0 02 1 1 1 0 13 1 1 0 0 14 0 1 0 1 15 1 0 0 1 16 1 0 1 1 17 1 1 0 0 08 1 1 1 1 19 1 1 0 1 1

The core value in rule 1 and 4 : a0

The core value in rule 7 and 9 : a1

UU b a e f G0 1 1 1 1 01 1 0 0 0 02 1 1 1 0 13 1 1 0 0 14 1 0 0 1 15 0 1 0 1 16 0 1 1 1 17 1 1 0 0 08 1 1 1 1 19 1 1 0 1 1

The core value in rule 5 and 6 : b0

The core value in rule 8 and 9 : b1

[Table12 : Removing the attribute a ] [Table13 : Removing the attribute b ]

Page 51: Overview of Rough Sets

51

UU e a b f G0 1 1 1 1 01 0 0 1 0 02 1 1 1 0 13 0 1 1 0 14 0 0 1 1 1

5 0 1 0 1 16 1 1 0 1 17 0 1 1 0 08 1 1 1 1 19 0 1 1 1 1

The core value in rule 2 ,6 and 8 : e0

The core value in rule 3 ,5 and 9 : e1

UU f a b e G0 1 1 1 1 01 0 0 1 0 02 0 1 1 1 13 0 1 1 0 14 1 0 1 0 15 1 1 0 0 16 1 1 0 1 17 0 1 1 0 08 1 1 1 1 19 1 1 1 0 1

[ Table14 : Removing the attribute e ][ Table 15 : Removing the attribute f ]

UU g a b e f0 0 1 1 1 11 0 0 1 0 02 1 1 1 1 03 1 1 1 0 04 1 0 1 0 15 1 1 0 0 16 1 1 0 1 17 0 1 1 0 08 1 1 1 1 19 1 1 1 0 1

The core value in rule 2 and 3 : f0The core value in rule 8 and 9 : f1

[ Table 16 : Removing the attribute g ]

Page 52: Overview of Rough Sets

52

core value for all decision rules

UU a b e f G0 _ _ _ 0

1 0 _ _ _

2 _ 1 0 _

3 _ 0 0 1

4 0 _ _ _ _5 _ 0 0 _ _6 _ 0 1 _ _7 1 _ _ _ 08 _ 1 1 1 19 1 1 0 1 _

[Table17]: all core value for table11

• rule 2, 3, 5, 6, 8, 9 are consistent.

• rule 0, 1, 4, 7 are inconsistent.

• to make the rules consistent ⇒ adding proper additional attributes

UU a b e f G0 1 1 1 1 01 0 1 0 0 02 1 1 1 0 13 1 1 0 0 14 0 1 0 1 15 1 0 0 1 16 1 0 1 1 17 1 1 0 0 08 1 1 1 1 19 1 1 0 1 1

[Table11]

UU a b e f g0 x x 1 x 00’ x x x 1 01 0 x x 0 x1’ 0 x x x 02 x x 1 0 x3 x x 0 0 14 0 x x 1 X4’ 0 x x x 15 x 0 0 x x6 x 0 1 x x7 1 x 0 x 07’ 1 x x 0 08 x 1 1 1 19 1 1 0 1 x

[Table 18] All possible value reduct for table11

Page 53: Overview of Rough Sets

53

UU a b e f g0 x x 1 x 00’ x x x 1 01 0 x x 0 x1’ 0 x x x 02 x x 1 0 x3 x x 0 0 14 0 x x 1 X4’ 0 x x x 15 x 0 0 x x6 x 0 1 x x7 1 x 0 x 07’ 1 x x 0 08 x 1 1 1 19 1 1 0 1 x

Table18• We have 16=24 minimal decision algorithms.

• One of the possible reduced algorithms

: e1g0 (f1g0) → 0

a0f0 (a0g0) → 1

e1f0 → 2

e0f0g1 → 3

a0f1 (a0g1) → 4

b0e0 → 5

b0e1 → 6

a1e0g0 (a1f0g0) → 7

b1e1f1g1 → 8

a1b1e0f1 → 9

a

b

c

d

e

fg