overview on 1st and 2nd generationtu-freiberg.de › sites › default › files › media ›...

35
2. Juni 2009 Mitglied der Helmholtz-Gemeinschaft Overview on 1 st and 2 nd generation coal-fired membrane power plants (with and without turbo machinery in the membrane environment) L. Blum, E. Riensche , J. Nazarko, R. Menzer, D. Stolten Jülich Forschungszentrum, D-52425 Jülich Institute for Energy Research – Fuel Cells (IEF-3) Fourth International Conference on Clean Coal Technologies CCT2009 - Dresden, Germany 18-21 May 2009 -

Upload: others

Post on 15-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 2. Juni 2009

    Mitg

    lied

    der H

    elm

    holtz

    -Gem

    eins

    chaf

    t

    Overview on 1st and 2nd generationcoal-fired membrane power plants(with and without turbo machinery

    in the membrane environment)

    L. Blum, E. Riensche, J. Nazarko, R. Menzer, D. StoltenJülich Forschungszentrum, D-52425 Jülich

    Institute for Energy Research – Fuel Cells (IEF-3)

    Fourth International Conference on Clean Coal Technologies

    CCT2009- Dresden, Germany 18-21 May 2009 -

  • Bild 2Institute of Energy Research – Fuel Cells (IEF-3)

    • A membrane application of today: CO2 separation from natural gas

    • Coal-fired membrane power plants (MPPs) – Classification

    • Several concepts in development - 1st generation MPPs:Compressors required for membrane operation

    • “IG-SWEEP-JÜL” - Opening the road to 2nd generation MPPsw/o additional turbo machinery in the membrane environmentDriving force by dilution of H2 into a sweep gas (in modified IGCC)

    Contents

  • Bild 3Institute of Energy Research – Fuel Cells (IEF-3)

    Arian Nijmeijer / SHELLOne of the industrial partners of FZJ in the HGF Alliance MEM-BRAIN

    CO2 Removal from Natural Gas by Polymer Membranes

    Natural gas pressure~ 100 bar !!!

  • Bild 4Institute of Energy Research – Fuel Cells (IEF-3)

    Example:NG 100 barCO2 10 mol%

    CO2 Membrane environment

    CO2

    Retentate

    Permeate 1 bar “Pure“ CO2

    Natural “driving force“ for permeation

    pCO2 = 10 bar

    CO2 Removal from Natural Gas (CH4 )

    p ~ pCO2 = 1 bar

    no compressor

    no vacuum pump

    No el. energy is needed

  • Bild 5Institute of Energy Research – Fuel Cells (IEF-3)

    Natural Driving Force

    in

    Membrane Power Plants?

  • Bild 6Institute of Energy Research – Fuel Cells (IEF-3)

    Flue gas70 °C1 bar

    “Pure“CO2Coal

    Airλ~1

    Basicsteam

    power plant

    CO2 Membrane environment

    N2CO2 N2

    Retentate

    Vacuum pump1 barPermeate

    Transport lawfor polymer and porous ceramic membranes:Local CO2 permeation flux density= CO2 permeability * ΔpCO2 (Feed side - Permeate side)

    Post-combustion: Membrane + Vacuum Pump

    30 mbar

    140 mbar

    CO2 14 mol%

    El. Power:106 kWh/t CO2 separatedforCO2 purity: 80 mol%Vacuum: 30 mbar(PRO/II simulation)

    “Driving force“ for permeationCO2 liquefaction: ~100-130 kWh/t CO2

  • Bild 7Institute of Energy Research – Fuel Cells (IEF-3)

    The Idea of a Sweep Gas: Driving Force by Dilution !?

    CO2 Membrane environment

    CO2

    RetentatepCO2 = 140 mbar

    no compressor

    no vacuum pump

    Flue gas

    Sweep gasCO2

    pCO2 ~ 50 mbar 0 mbar

    Sweep gas + CO2

    butCO2 dilution into a sweep gas produces impure CO2 again !!!

  • Bild 8Institute of Energy Research – Fuel Cells (IEF-3)

    besides post-combustion:

    Driving Force

    by Dilution into a Sweep Gas

    in

    Membrane Power Plants?

  • Bild 9Institute of Energy Research – Fuel Cells (IEF-3)

    Coal-Fired Membrane Power Plants

    Classification

  • Bild 10Institute of Energy Research – Fuel Cells (IEF-3)

    3 Capture Principles – 4 Membrane Gas Separation Classes

    Flue gasPost-combustion

    Combustion with airCO2 capture from FG

    OxyfuelO2 separation from air

    Combustion with O2Cooling by CO2 recycling

    Shifted coal gas(pressurized)

    Pre-combustion/H2 or /CO2

    Partial oxidation (gasific.)CO shift to CO2

    H2 or CO2 separationH2 combustionH2 CO2

    CO2 H2

    Air

    N2 O2

    N2 CO2

    Coal + O2

    CO2Conden-sation

    H2O + CO2 + Impurities

    Special polymer membranes:The larger molecule permeates!

    + O2 (N2 )

    from plant

    + ImpuritiesN2 (O2 )

    from membrane

  • Bild 11Institute of Energy Research – Fuel Cells (IEF-3)

    Separated Gas Components: Pure or DilutedFlue gasPost-combustion

    Oxyfuel

    Shifted coal gas

    H2 CO2

    CO2 H2

    Air

    N2 O2

    N2 CO2CO2pureCO2

    diluted

    O2pure

    O2diluted

    Pre-combustion / H2 -sepH2

    pure

    Pre-combustion / CO2 -sep

    H2diluted

    CO2pure

    CO2diluted

    Dilution of CO2impure CO2 again

    no chance forsuccessful sweep !!!

    Dilution of O2 or H22 Chances for

    successful sweep !!!

  • Bild 12Institute of Energy Research – Fuel Cells (IEF-3)

    3 Capture Principles – 3 Technology Platforms6 Capture classes are of interest for MPPs

    not possible 2SPP / Oxyfuel1

    SPP / Post-comb.

    IGCC not possible 4IGCC/ Total-oxyfuel3

    IGCC / Post-comb.

    IGCC+Shift/H2GT 5 and 6IGCC+… / Pre-c.not

    the best solutionnot

    the best solution

    Pre-comb/H2 or /CO2 Oxyfuel Post-combustion

    SPP(Steam Power Plant)

    combustiongasification

    combustion (atm. )Coal

    CoalO2 Steam

    combustionCO shiftgasificationCoal

    O2 SteamExcesssteam

    IGCC: Integrated Gasification Combined Cycle

    CO2 , H2

    CO, H2Air or O2

    Air

    Air or O2

  • Bild 13Institute of Energy Research – Fuel Cells (IEF-3)

    Class 2

    SPP / Oxyfuel

  • Bild 14Institute of Energy Research – Fuel Cells (IEF-3)

    3 Measures for Driving Force in the Membrane

    1

    Feed side (air):Compressor / Expander

    Permeate side (O2 ):Vacuum pump

    Permeate side:Sweep gas = Hot recycled flue gas

    1

    3

    “OTM-Clean”/Pressurized

    “OXYVAC-JÜL”

    “OXYCOAL-AC”

    2

    Pure O2

    Pure O2

    Diluted O2

  • Bild 15Institute of Energy Research – Fuel Cells (IEF-3)

    “OXYVAC-JÜL“: Permeate Compression (Vacuum Pump)Basic variant: Some NG is burned for final air preheating

    Source:Meulenberg, Baumann, Blum, Riensche: Deutsche Patentanmeldung 10 2007 056 841.1 (PT 1.2366) 23.11.2007

    Air Depletedair

    NG

    Recuperativeheat

    CO2

    H2 O

    CO2 Recycling

    Coal

    Vacuumpump

    MIEC Unit

    Steamgenerator

    O2

    1 bar

    50 mbar

    ~800°C

    O2

    ~750°C

    pO2Feed 200 100 mbarpO2Perm 50 50 mbar

    pO2Feed /pO2Perm=4:1 2:1

    CO2Com-press.

    Oxyfuel Unit

    O2

    ~200°C50 mbar 1 bar 1 bar

    Δη = about -10 %pincl. liquefaction

    Oxyfuel unit asin conventionalseparation plant

    Low pressure differences inHT air preheater & HT membrane MIEC(Mixed Ionic Electronic Conductor)

    PRO/II simulation:

  • Bild 16Institute of Energy Research – Fuel Cells (IEF-3)

    “OXYCOAL-AC“: Sweep Gas & Compression

    Flue gas (CO2 , H2 O, O2 , N2 )

    Coal

    20 barAir

    1 barH2 O

    CO2O2 850°C500°C

    750°C

    800°C Clea-ning

    850°C

    Steamgenerator

    Advantage: High driving forces

    Feed

    PermpO2 ~200 ~30 mbarpO2 4000 2000 mbar

    pO2 /pO2 20:1 70:1Feed Perm Theoretical case: Sweep w/o compression

    O2 : ~200 mbar in air~200 mbar in sweep gas Driving force missing

    Reason: Air ratio low (λ~1) in SPPssmall flow rates of cooling mediasmall flow rates for sweep gases

    20 bar

    High temperaturerecuperator

    MIEC

    1 bar

    Δη = about –9 %pincl. liquefaction[Beggel (RWTH) 2008]

  • Bild 17Institute of Energy Research – Fuel Cells (IEF-3)

    Class 4

    IGCC / Total-oxyfuel

    For O2 membranes

    IGCCs have a potential for large sweep gas streams.

    Concepts may be developed in future.

  • Bild 18Institute of Energy Research – Fuel Cells (IEF-3)

    Class 5

    IGCC+Shift/H2GT / Pre-comb./H2-sep

  • Bild 19Institute of Energy Research – Fuel Cells (IEF-3)

    Pre-combustion: Pure H2 is Separated - Combined with RecompressionStandard membrane concept

    Gasif. Clean. C

    ASU

    Steam line

    Pressure level of all process gases: 25 barexcept H2 permeate

    CoalCO2

    Membrane environment

    GT

    ST

    HRSG

    G G~1200°C

    λ~2.5

    H2

    H2

    Compressed air

    press. N2

    25 bar

    O2 incl.CO Shift

    C

    0.5 bar

    Excess airO2 , N2

    Steam

    H2 Recompression

    Flue gasH2 O, N2 , O2

    CO+H2O=CO2+H2

    Energetic losses• Excess steam for shift• H2 recompression !!!

    25 bar

    CO2 , H2 ,Impur.

    Press. CO2 (H2 ),Impurities

    Δη ∼

    -10 %-points[Göttlicher,VDI-Ber. 421, 1999]

    !!!

    for sweeptoo much O2

  • Bild 20Institute of Energy Research – Fuel Cells (IEF-3)

    2nd GENERATION

    MEMBRANE PP CONCEPT:

    WITHOUT ADDITIONAL TURBO MACHINERY

    IN THE MEMBRANE ENVIRONMENT

  • Bild 21Institute of Energy Research – Fuel Cells (IEF-3)

    Membrane Operation w/o Energy SupplyH2 dilution by sweep gas w/o O2

    Membrane environment

    H2

    CO2 + H2 CO2

    Sweep gas= Recycled flue gas

    no compressor

    no vacuum pump

    “IG-SWEEP-JÜL“

    N2 + H2Shifted coal gas

    Sweep gas + permeateto GT burner

    N2

    Sources:Menzer, Riensche, Peters, Blum, Scherer: Deutsche Patentanmeldung DE 10 2008 01 17 71.4, 26.02.2008Riensche, Menzer, Blum: Deutsche Patentanmeldung DE 10 2008 04 80 62.2, 19.09.2008

  • Bild 22Institute of Energy Research – Fuel Cells (IEF-3)

    IGCC Modified to “IG-SWEEP-JÜL“Stoichiometric combustion & Recycling of the flue gas: N2 (O2 -free)

    Gasif. Clean. C

    CC

    ASU

    Steam line

    Pressure level of all process gases: 25 bar

    Coal

    CO2

    Stoich. Air: O2 , N2

    Membrane environment

    GT

    ST

    HRSG

    G G

    Flue gas:N2

    H2 O~1200°C

    λ=1 no O2

    Flue gasrecycling: N2

    H2

    CO2 , H2 Press. CO2

    N2 , H2

    Compressed air

    ~400°C

    Press. N2

    25 bar

    O2 incl.CO shiftPress. N2

    Steam

    Porousceramic membrane

    N2 /H2 ~6 mol/mol

    N2 /H2 ~4 mol/mol

    PRO/II simulation

    Sweep gas 1: N2

    Sweep gas 2: N2

  • Bild 23Institute of Energy Research – Fuel Cells (IEF-3)

    Membrane in “IGSWEEP-JÜL“ - H2 Partial Pressure Profiles

    Feed side

    Permeate side

    5 bar

    25 bar

    00

    H2 Separation degree

    H2Partial

    pressure

    50%

    15 bar

    98%

    High ratio:Sweep gas / permeated H2 ~ 4:1 mol/mol !!!

    Highdrivingforces

    H2 , CO2

    4N2 +H2Sweep gas

    Highest H2 separation degrees possible !!!

    Sweep gas= 4N2 (no H2 !!!)

  • Bild 24Institute of Energy Research – Fuel Cells (IEF-3)

    • “Natural driving forces” for permeation do not exist in MPPs,if pure gas components are separated (CO2 , O2 , H2 ):Compressors consume much energy (comparable to CO2 liquefaction).

    • “IG-SWEEP-JÜL” opens a new PP route of 2nd generation MPPswith “energy-free” dilution of permeating H2 (or O2 ) into a sweep gas.

    • Large sweep gas streams are required and could be foundin IGCC modifications w/o significant additional energy demand.

    • The total efficiency penalty may approach 5 %-points (after optimization):capture ~1 %p (parasitic losses)liquefaction 4 %p

    Conclusions

  • Bild 25Institute of Energy Research – Fuel Cells (IEF-3)

    Coal power plants: ~40% of anthropogenic CO2 emissions !!!We need: worldwide acceptable CCS

    “energy-free” captureoptimal membrane integration

    THANK YOU FOR YOUR ATTENTION

  • Bild 26Institute of Energy Research – Fuel Cells (IEF-3)

    Appendix

  • Bild 27Institute of Energy Research – Fuel Cells (IEF-3)

    What is an Acceptable Capture Technology?

    High CO2 purity! In discussion:CO2 >80 mol% ???CO2 >90 mol% (work hypothesis here)CO2 >95 mol% (MEA as benchmark)

    1

    Low efficiency losses! Hypothesis for successful CCS:All nations of the world may accept year by year

    10% more coal input or10% loss in power production, but not more.

    η ~ 50% for modern PPs

    Acceptable Δη: -5 %-points (CCS)Compression: Δη

    = -3 to -4 %-points [literature]

    For capture: Acceptable Δη: -1 to -2 %-points

    2

  • Bild 28Institute of Energy Research – Fuel Cells (IEF-3)

    Fossil-Fired Power Plants w/o Capture

    SPP pressurizednot realized

    Coal combustionpressurized

    GTST

    IGCCIntegrated Gasif. CC

    only a few exist

    combustiongasificationCoalCO, H2 pressurized

    GTST

    η

    high ~50%O2 Steam Air

    not realized in large scale

    NGCCNG Combined Cycle

    NG Boileronly a few exist

    Natural gas combustionpressurized

    GTST

    η

    high ~58%

    Natural gascombustionatmospheric ST

    atmosphericSPP

    Steam Power Plantη

    ~45%Coalcombustion

    ST

    mean η

    world ~30%

    Oil Fired PPs only a few exist

    GT: Gas TurbineST: Steam Turbine

  • Bild 29Institute of Energy Research – Fuel Cells (IEF-3)

    CO2 Membrane environment

    CO2

    Retentatep = 1 barpCO2 = 140 mbar ~50 mbar

    The Idea of a Sweep Gas for CO2 Dilution

    no compressor

    no vacuum pump

    Flue gas

    Sweep gas w/o CO2CO2

    pCO2 ~ 50 mbar 0 mbar

    Sweep gas + CO2

    A tricky solution, if• sweep gas available (p=1 bar or

  • Bild 30Institute of Energy Research – Fuel Cells (IEF-3)

    CO2 Membrane environment

    CO2

    Retentatep = 1 barpCO2 = 140 mbar

    But How to Remove CO2 from Atmospheric Flue Gas ???

    no compressor

    no vacuum pump

    AirpCO2 =0.3 mbar Air (O2 , N2 )

    CO2 dilution in air ???General question in membrane plant development:Are there other ways besides energy consuming compressionto realize a positive “driving force“ ???

    Coal

    Airλ~1

    Basicsteam

    power plant Fluegas

  • Bild 31Institute of Energy Research – Fuel Cells (IEF-3)

    Feed (Flue gas)

    Permeate

    140 mbar

    30 mbar

    1 bar

    00

    CO2 separation degree

    CO2partial

    pressure

    50% 100%

    Driving force for CO2 decreases, but not for N2

    Driving forcemembrane inlet110 mbar

    Driving forcemembrane outlet40 mbar

    Low Driving Force for Permeation even at Membrane Inlet

    Feed pressure 1 barPermeate pressure 30 mbar

  • Bild 32Institute of Energy Research – Fuel Cells (IEF-3)

    CO2 Impurities – Strongly Important in a Large Oxyfuel Plant

    Clea-ning

    Flue gasCO2 , H2 O, O2 , N2

    CoalAir

    1 barH2 O

    CO2to compr.O2 (N2 )

    cold

    N2

    Expected CO2 purity: about 80-85 mol%Compression Pipeline

    Source: Oxyfuel Conference, Cottbus, April 2007

    Steamgenerator

    ASU

    O2 content: 4-8 mol% Air leackage

    N2 +Ar: 5 mol%O2 : 95 mol%

    cold

    RemarkN2 < 1 mol%

    is target for an excellent O2 membrane[MEMBRAIN proposal 2007]

  • Bild 33Institute of Energy Research – Fuel Cells (IEF-3)

    “OTM-clean/Pressurized“ with Cold Flue Gas RecyclingAir Preheating in Steam Generator

    Feed

    PermpO2 1 1 barpO2 4 2 bar

    pO2 /pO2 4:1 2:1Feed Perm

    Coal

    20 bar

    Air Steamgenerator

    1 bar

    CO2

    800°C

    Clea-ning

    Flue gasCO2 , H2 O, O2 , N2

    H2 O

    1 bar

    O2O2

    Disadvantage: Low driving forces

    OTM-clean cold

  • Bild 34Institute of Energy Research – Fuel Cells (IEF-3)

    IGCC/Total-Oxyfuel: O2 Gasification & O2 Combustion Advantage: 1-stage capture w/o CO shift

    “Small“ASU

    Steam line

    Pressure level of all process gases: 25 bar

    Coal

    Flue gasCO2 , H2 O

    Steam

    Coal gasCO, H2

    O2

    O2

    Air

    “Large“ASU

    Vision for Membrane PPsFor O2 membranes

    large CO2 sweep gas streamswould be available (pressurized):

    pO2(Feed) / pO2(Permeate)= 21/12 ~ 2:1 !!!

    [Göttlicher, VDI-Ber. 421, 1999]

    Source: after SIEMENS, Pictures of the Future, Spring 2008

    Air

    Gasification

    CombinedCycle

    with large (!!!)FG recycle

    stream

  • Bild 35Institute of Energy Research – Fuel Cells (IEF-3)

    Transport Mechanisms of Inorganic Membranes“Dense“ membranes can perfectly select O2 and H2 electrochemically

    O2-

    2 e-

    H

    Multi-layer and/or specific adsorption:

    carbons, zeolites, amorphous SiO2

    MolecularSieves:

    zeolite, carbons, amorphous SiO2

    Ionic transport(solid electrolytes):O2-, H+ in perovskites

    Atomic transport of H:metals, e.g. Ag/Pd, Nb, V, TaAfter: Caro

    (Univ. Hannover)2007

    MIEC: MixedIonic ElectronicConductor,O2 /N2 selectivity~100,000:1 !!!(theoretically)

    800 – 1000°C

    150 – 400°C

    MPEC: Mixed Protonic Electronic Conductor

    MPEC500-800°C

    Slide Number 1Slide Number 2CO2 Removal from Natural Gas by Polymer Membranes�Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35