packing characterization - mass transfer properties · pdf filepacking characterization - mass...

Download Packing Characterization - Mass Transfer Properties · PDF filePacking Characterization - Mass Transfer Properties Chao Wang Carbon Management Project of PSTC. Advisors: Gary Rochelle

If you can't read please download the document

Upload: dinhquynh

Post on 06-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • Packing Characterization-Mass Transfer Properties

    Chao WangCarbon Management Project of PSTCAdvisors: Gary Rochelle and Frank SeibertResearch Engineer: Micah Perry6th Trondheim CCS ConferenceJune 15, 2011

  • Mass Transfer in a Typical CO2 Capture Process

    *

    2

    2

    22

    2 )(1][

    11

    CO

    CO

    lCO

    CO

    GG cP

    akDAmkaH

    akaK

    ++=

    kGa

    kGa

    kLaa

  • Research objective aeeffective gas-liquid contact area--CO2

    capture absorber kGagas film mass transfer coefficient water

    wash, gas cooler kLa liquid film mass transfer coefficient

    stripper

    Objective: -measure ae, kG and kL for novel structured and random packings

    - develop a fundamental model can predict ae, kG and kL for novel packings.

  • Packed Column

    ID:0.43m

  • Packing InformationPackingName

    RSP 250 FP 1.6 Y HC

    Mellapak2X

    RSR #0.5 1 PlasticPall Ring

    Type Hybrid High Capacity

    60 angle Random metal

    Random plastic

    Surface Area

    (m2/m3)

    250 295 205 250 210

    Corrugation Angle

    N/A 45 60 N/A N/A

    Channel Side, S (m)

    N/A 0.017 0.02 N/A N/A

    Void fraction,

    0.92 0.95 0.99 N/A N/A

  • Effective gas-liquid contact area

    Absorption of CO2 into 0.1 N NaOH solution Pseudo first order reaction Liquid phase control

    RTZkyy

    u

    RTZKyy

    ua

    G

    outCO

    inCOG

    G

    outCO

    inCOG

    e '

    )ln()ln(2

    2

    2

    2

    =

    2

    ,2'][

    CO

    LCOOHg H

    DOHkk

    =

  • Gas-liquid contact area of MP2X

    ae/ap= 0.70L0.125

    0.6

    0.8

    1.0

    1.2

    0 10 20 30

    Frac

    tiona

    l Are

    a, a

    e/ap

    Liquid Load, GPM/ft2

    uG = 4.87 ft/suG = 3.25 ft/suG = 1.95 ft/s

  • 0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    1,1

    1,2

    1,3

    0,0001 0,001 0,01 0,1

    Frac

    tiona

    l are

    a, a

    e/ap

    +13%

    -13%

    9 structured packingsap: 125 500 m2/m3L: 1 15 mPas: 30 72 mN/m

    116.0

    343/1

    p

    e )()(34.1

    =

    P

    L

    aLg

    aa

    34

    p

    31

    L

    aLg

    Tsais area model (Tsai,2010)

    Tsai R. "Mass Transfer Area of Structured Packing". The University of Texas at Austin. Ph.DDissertation. 2010

  • Gas-liquid contact area

    MP2X(60 angle)

    FP1.6YHC(High Capacity)

    RSP250(Hybrid)

    RSR#0.5(Metal Random)

    1"PPR(Plastic Random)

    Tsai area

    +20%

    -20%

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    5.0E-6 1.0E-5 2.0E-5 4.0E-5 8.0E-5

    Frac

    tion

    al E

    ffec

    tive

    Are

    a a e

    /aP

    Generalized Liquid Superficial Velocity uL/aP (m2/s)

  • Gas Film Mass Transfer Coefficient

    Gas film control (SO2/NaOH solution system) Instantaneous reaction Liquid film resistance can be neglected

    SO2 concentration is measured by two different range SO2 analyzers. Outlet sample SO2 analyzer can detect 0.1 ppb SO2 can use 10 feet packing

    ZRTyyu

    ak outin

    G

    G

    )ln(=

    e

    GG a

    akk =

  • Gas film mass transfer coefficient kG of MP2X

    kG = 0.026uG0.77

    0.00

    0.04

    0.08

    0.12

    0 2 4 6 8

    k G, f

    t/s

    Gas Velocity, ft/s

    5.0 GPM/ft210.0 GPM/ft220.0 GPM/ft2

  • kG summary

    FP1.6YHCn=1.05

    RSP250n=0.8RSR#0.5

    n=0.96

    1"PPRn=0.87 MP2X

    n=0.73

    0.005

    0.01

    0.02

    0.04

    0.5 1 2

    k G/(

    m/s

    )

    Gas Superficial Velocity uG (m/s)

    kG=kG,uG=1m/s*(uG/1)n

  • Modified Rocha-Bravo-Fair1 kG Model

    33.088.0 )())((032.0GG

    G

    GP

    GLEGE

    GP

    G

    Dauu

    Dak

    +

    =

    33.08.0 )())((054.0GG

    G

    G

    GLEGE

    G

    G

    DSuu

    DSk

    +

    =

    sin)1( LGS

    GE huu

    =

    1.Rocha JA, Bravo JL, Fair, JR. Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance.2. Mass-Transfer Model. Ind Eng Chem Res. 1996;35:16601667.

  • kG model

    ShG=0.0317*ReG0.88ScG0.33

    +20%

    -20%

    2

    4

    8

    16

    150 300 600

    ShG=k

    Gd e

    q/D

    G

    Re=uGEGdeq/G

    MP2X

    FP1.6YHC

    RSP250

    Average Deviation16.2%

  • Liquid film Mass Transfer Coefficient

    )/ln( LoutLinLL ccZuak =stripping:

    Liquid film control (Air/Toluene/Water system)

    No chemical reactions

    Mass transfer resistance mainly in liquid film

    e

    LL a

    akk =

  • Liquid film mass transfer coefficient kL of MP2X

    kL = 2E-05uL0.6809

    0E+0

    1E-4

    2E-4

    3E-4

    0 10 20 30

    k L, f

    t/s

    Liquid Load, GPM/ft2

    uG = 4.87 ft/suG = 3.25 ft/suG = 1.95 ft/s

  • kL summary

    FP1.6YHCn=0.76

    RSP250n=0.71

    RSR#0.5n=0.811"PPR

    n=0.63

    MP2Xn=0.70

    8E-6

    2E-5

    3E-5

    6E-5

    5.0E-6 1.0E-5 2.0E-5 4.0E-5 8.0E-5

    k L/(

    m/s

    )

    Generalized Liquid Superficial Velocity uL/aP (m2/s)

    kL=kL,uL=0.0067*(uL/0.0067)n

  • Brunazzi2 dimensionless kL model (1997)

    Consider the mixing of liquid phase occurs at junctions. Kapista number Ka

    Includes the flow path length factor, which is Hel/sin Includes packing geometry factor S, liquid film thickness

    2.Brunazzi E, Paglianti A. "Liquid-Film Mass Transfer Coefficient in a column Equipped with Structured Packings." Ind Eng Chem Res. 1997;36:3792-3799

    C

    B

    L KaGzASh =

    elLL H

    ScGz sinRe=L

    LELL

    SU

    =Re

    LL

    LL D

    Sc

    =

    gKa

    L

    L4

    3

    = 5.0)sinsin

    3(

    L

    LS

    L

    L

    hU

    g=

    A=409, B=0.5, C=0.09

    sinLLS

    LE huu =

  • kL model

    ShL=409*Gz0.5Ka-0.09Average Deviation 20.2%

    +20%

    -20%

    100

    200

    400

    800

    1600

    15 30 60 120 240 480

    ShL=

    k Ld e

    q/D

    L

    Gz=ReLScLsin/Hel

    MP2X

    FP1.6YHC

    RSP250

  • Conclusions ae is a function of L, ~uL0.155, not a function of G ,

    Tsais area model:

    kG ~uG0.88, not a function of uLModified RBF kG model:

    kL ~uL0.74, not a function of uGModified RBF kL model:

    116.03/43/1 ])1*()[(42.1p

    L

    p

    e

    aAQg

    aa

    =

    33.088.0Re*0317.0 GGG ScSh =

    09.05.0*409 = KaGzShL

  • Thank You

    Chao Wang

    [email protected]

    Packing Characterization-Mass Transfer PropertiesMass Transfer in a Typical CO2 Capture ProcessResearch objectivePacked ColumnPacking InformationEffective gas-liquid contact area Gas-liquid contact area of MP2XSlide Number 8Slide Number 9Gas Film Mass Transfer CoefficientSlide Number 11Slide Number 12Modified Rocha-Bravo-Fair1 kG ModelSlide Number 14Liquid film Mass Transfer CoefficientSlide Number 16Slide Number 17Brunazzi2 dimensionless kL model (1997)kL modelConclusionsThank You