pakan cacing nereis

Upload: dede-muhamad-kafilatul-filah

Post on 02-Jun-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 pakan cacing nereis

    1/7

    BULLETIN OF MARM E SCIENCE. 67 1 ) : 337-343 , 2M O

    GROWTH, SURVIVAL AND FATTY ACID PROFILE OFNEREIS DIVERSICOLOR 0. F. ~ L E R , 776)

    FED ON SIX DIFFERENT DIETS

    P Fidalgo e Costa L. Narciso and L. Cance la da FonsecaV

    ABSTRACTCultured Nereis diversicolor are used as food for flat fish and shrim p on aqu aculture

    farms. In order to improve cultures ofN. diversicolor we determined the growth andsurvival rates of juvenile worm s fed with six different diets for 60 d in the laboratory.Experiments were carried ou t withI mo old worms and fed every other day a d libitum.Th e six diets were: decap sulatedArtemia cysts, sea bream dry food, Lansy (diet for latepost larval stag e of shrimp), Tetrarnin (fishdry food), extruded soy and pollen. T he pho-toperiod was adjusted to 16L:8D with an average light intensity of 175 Lux. Tem perature

    and salinity were maintained at 20 2C and 15 0,respectively. Three repli cates we resetup for each treatment with six individuals per replicate. Worms fed Lansy had thehighest daily growth rate (13.94 mg d-') and 100 survival rate. Each typ e o f food wasanalyzed for organic matter, caloric an d total lipid content. Th e organic ma tte r content o fsedimentsw s also analyzed. N o direct relationship between grow thand dietary type w asnoted. The fatty acid content of the wormswas related to the spe cific diet. High er levelsof the total lipids, DHA (docosahexaenoic acid) and EPA (eicosapentanoic acid) weremore closely related to the I mo old juvenile worms. H owever, when diets have a highDH AE PA ratio, there do es not appear to be any relationship to juveniles which see ms toindicate that N diversicolor does not have a high DHA requirement. In any event we

    believe that higher HUFA (high unsaturated fatty acid) levels (mainly EPA and DHA)result in hig her survival rates and better growth rates.

    Polychaetes are gaining in importance commercially because they are used as bait forsport and professional fishing and as a food source in aquaculture Gambi et al., 1994;Olive, 1994). Commercial harvesting of polychaetes causes disturbance to the benthiccommunity and the ecosystem. If harvested polychaetes are shipped to areas where thespecies is not native, there is the risk of introducing an allochthonous species to thatregion Garnbi et al., 1994). Commercial rearing of polychaetes offers a solution which is

    both ecologically and environmentally sound to reduce potential environmental problemsof harvesting specimens fiom the field.

    The ragworm ereis diversicolor 0. F. Miiller, 1776) is typically an inhabitant of es-tuarine mud flats in Europe where it is one of the commonest of all shore polychaetesChambers and Milne, 1975; Heip and Herman, 1979; Mettam, 1979; Olive and Ganvood,

    198 Fidalgo e Costa, 1994; Fidalgo e Costa and Cancela da Fonseca, 1995). This spe-cies is nearly restricted to the littoral zone where it lives in a U-shaped burrow in thesediment. Researchers have reported that N. diversicolor utilizes a variety of feedingstrategies: as a herbivore feeding on diatoms and other micro-organisms Harley, 1956 in

    Evens, 197 1); a predator or scavenger Olafsson and Parsson, 1986; Heip and Herman,1979); omnivore Neuhoff, 1979) and facultative filter-feeder Riisgird, 199 1 RiisgArdet al., 1992; Vedel and Riisgsrd, 1993; Riisgird et al., 1996). It has recently been discoveredthat if the phytoplankton concentration is sufficiently high, this species shifts iom predatory/surface deposit-feeding to suspension-feeding Nielsen et al., 1995). Therefore, N. diversicolor

  • 8/10/2019 pakan cacing nereis

    2/7

    8 BULLET IN OF M AR IN E SCIENCE. VOL. 67. NO. 1,2000

    ca n u t il ize d i ffe ren t types o f food, bo th in the f i e ld a nd und er l abora to ry cond i t ions( N e u h o ff, 1 9 7 9 ; G a n v o o d a n d O l iv e , 1 9 81 ; G u e r r i n , 1 9 8 7 ; B a r t el s -H a r d e g e a n d Z e e c k ,1990; Esnaul t e t a l., 1990; Vedel an d Ri isgBrd, 1993 ; Nie lsen e t a l. , 1995 ; Ri isgBrd e t a l . ,1996; Vedel , 19 98).

    T h e f a t ty a c id c o n t e n t o f A diversicolor s e e m s t o p la y a n i m p o r ta n t r ol e in s t i m u l a t i n gg o n a d d e v e l op m e n t a n d s p a w n i n g i n t h e h a t c h e ry - r e ar e d c o m m o n s o l eSolea vulgaris( F li ic h te r a n d Tr o m s d o r f , 1 9 7 4 ) , S e n e g a l e s e s o l eSolea senegalensis ( D i n is , 1 9 8 6 ) a n dp e n a e id s h r i m p Penaeus kerathurus ( L u i s a n d P o nt e, 1 9 9 3 ; L u i s , 1 98 9) . T h e p u r p o s e o ft h is e x p e ri m e n t w a s t o d e t e r m i n e g r o w t h a n d s u r v iv a l r a te s o fA diversicolor f e d w i t h s i xd i f fe r e n t d ie t s in t h e l a b o ra t o ry a n d t o d e t e r m i n e w h i c h f o o d p r o d u c es t h e b e s t g r o w t hra tes s r e la te d t o t h e f a t ty a c i d c o m p o s i t i o n . T h e s e r e s u lt s w i ll b e o f i m p o r t a n c e i n s u p -por t ing f la t f i sh nd s h r i m p b r o o d s i n a q u a c u l t u r e f a r m s .

    One-m onth old laboratory reared w orm s were fed one o f six different types of food ev ery otherday ad libitum for 60 d following the proce dure of G ut rin (1987). The diets were: decapsulated

    rtemia sp. cysts, sea bream ry food (SB D F), Lansy (diet for late post larval stage of shrimp ),Tetramin (fish ry food), soy and pollen. The re were three replicates, with six worms per replicate,for each diet. Worms were placed in 2-L containers. The containers were aerated and the waterchanged w eekly to maintain good w ater quality. Containers were exam ined daily and dead anim alswere removed and the number recorded. Natural sand (250-500pm was dried in a heater a t 90'Cfor 24 h to kill any organisms present. The sand was placed in the container to a depth o f5 cm. Thephotoperiod was adjusted to 16L:8D with an average light intensity o f 175 Lux. Tem perature andsalin ity were maintained at 20 OC an d 15%0. respectively.

    At the end of the experiment, all worm s were w eighed individually (fresh weight) and the growthwas expressed in two ways: (I ) by the da ily growth rate (m g d-l), obtained by the difference be-tween the final and the initial weight average, divided by the number (60) of days and (2) thespec ific growth rate (pd-l) according to Jsrgen sen's formula which is:p = n(W,- WJt-l where W Oan d W, are the average biomass o f the polyc haetes on day 0 a nd day t, respectively, divided by thenumber of days (60). This measure of growth has been used with N.diversicolor by Jsrgensen(1990), R iisglrd ( l9 91 ), RiisgBrd et al. (1992, 1996). Vedel an d RiisgBrd (1993) an d Nielsen et al.

    1995).C~~~lckLA~kL~sls. Organic atter content o f the sediments a nd diets were measured in tripli-

    cate at the en d of the experim ent by loss on ignition for 24 h at 450C (Cancela da Fonseca, 1989).1425 Semim icro Oxygen Bom b Calorimeter was used to me asure the caloric content of diets.Fatty acid compo sitions were determined by capillary gas chrom atography (GC ). Th e lipid ex-

    tracts were saponified for 40 min under nitrogen a t 100C with 0.5M K OH in methanol. The result-ant fatty acids w ere recovered and their methyl e sters prepared by reaction with a 14% BF31CH 30Hsolution for 8 min at 100C under nitrogen (M etcalfe an d Schm itz, 1961). The fatty acid methylesters, after solvent evaporation, were recovered in 2 m1 of isooctane. They were analyzed by GC(Varian 33 00) using a split 12:l an d separated on a 30 m W CO T SPlOOO fused silica 0.32mm i.d.capillary co lumn , opera ted for 7 min at 180C then pro gram me d at 4C min-' to 200 C with 1 m1min-l helium ca m e r gas. Injector port and Flam e Ionization Detector (FID) were kept at 250C.Colu mn performance was m onitored by routine injection witha secondary standard of fatty acidmethyl esters prepared from cod-liver oil.

  • 8/10/2019 pakan cacing nereis

    3/7

    FlDALGO E COST E TA L . . GROWTH,SURVIVAL A N D F A n Y A CIDPROFILE OF NEREIS DIVERSI OLOR 9

    S U RV I VA LN D GROW& EXPERIMENTS.- he greatest growth rates were obtained whenwo rm s were reared w hen the salinity wa s 15OA (Nielsen et al., 1995). Surv ival ofN.diversicolor was 100 when fed Lansy, se a brea m and soy, 94.4 with pollen, 89 withTetramin and 78 with rtemia cysts. G row th rate as mg d-' was greatest when fed Lansy(13.9 mg d-') followed by SBDF (9.4), Tetramin (9.4) and soy (8.8). Low growth rateswere measured on diets ofpo llen (6.9) or rtemia cysts (6.2). The calculated daily growthrate w as greatest on diets of L ansy andTetraanin p= .068 d-l) followed by SB DF (0.06 l ),soy (0.058), rtemia cysts (0.054) an d polle n (0.053 ) (Table1).Th ese results showed thatN diversicolor was able to survive with a sing le food source.

    Table 1 Growth rates and survival ofNereis diversicolor fed on six different diets.

    Diet Growth rate (mg/day) Specific growth rate (d.') Survival( )Lansy 13.9 0.068 100SBDF 9.4 0.06 100Tetramin 9.4 0.068 88.8SOY 8.8 0.058 100

    pollen 6.9 0.053 94.4rtemia 6.2 0.054 77.7

    OR GA NIC ATTER, ALORICONTENTND TOTAL IPIDS.-The organic matter contentwas h igher in worms when fed prepared d iets than from sediments except for soy (Table2). Th is indicates that nearly 50 o f the orga nic matte r present in the diets was used bythe worm s and the remainder either secrete d as mu cus with in tube construction e xcretedin feces. rtemia cysts had the highest ca lor ic value and po llen the lowest.

    Th e fa tty acid composition of the prepared diets an d the worms fed on different diets isgiven in Table 3. Th e majority o f the fatty ac ids inN. diversicolor in all tests were C 16:0,C 18: In-9, C 18: In-7, C 18:2n-6 and C 2 0:5n-3. Les ser amou nts were C 16: In-7, C 18:0,C 18:3n-3, C 20:2n-6 and C 20:4n-6. Th e fatt y acid composition in the worms was unsat-ura ted . Th e fatty acid composition of the rag wo rm s reflects its diet.N. diversicolor is appar-ently able to biosynthesize de novo som e fatty acids suc has C 20 51-3 (EPA) and C 22:6n-3@H A). Anim als fed on diets low in EPA a nd DHA (soy and pollen) always had higheram oun ts of DH A than the food. However, whe n w orms were fed diets rich in DH A (seabream or Lansy), the DHA profiles were lower than the food. This is indicated in theDH AlE PA ratios which were always lower than 1 even when the diet had a higher ratio(Table 3).

    Table 2. Caloric and organic matter content of the diets and organic matter content foundin thesediment.

    rtemia SBDF Lansy Tetra Soy PollenCalories (caVg) average5 422 5 180 4 938 4 836 4 636 4 58 1

    st. dev. 121.1 94.0 144.9 1 18.3 53.8 168.4O.M. average 0.940 0.890 0.900 0.900 0.100 1.000(Diets) st. dev. 0.005 0.000 0.000 0.020 0.005 0.000O.M. average 0.360 0.500 0.470 0.430 0.370 0.630(Sediment) st. dev. 0.050 0.100 0.050 0.050 0.050 0.050

  • 8/10/2019 pakan cacing nereis

    4/7

    Table 3. Fatty acid profile of the diets (P) and the ragwomsNereis diversicolor (W) fed on the six tested diets.

    rtemia SBD F Lansy Tetramin Soy PollenFAME (pg mg- . W.) P W P W P W P W P W C p WEPA 6.4 5.4 6.4 7.8 10.7 9.1 2.6 3.1 0.0 4.2 0.0 3.8DHA 0.1 0.8 8.4 4.9 14.4 6.7 3.1 1.6 0.0 0.7 0.0 .O 5Saturates 17.4 10.5 24.9 16.3 19.5 13.5 23.2 9.2 2.0 10.7 5.6 rMonounsaturates 39.0 16.9 44.4 28.3 23.7 17.9 28.5 11.7 1.2 10.9 3.5

    9 6 :8.4

    Diunsa turates 5.2 4.2 7.7 7.2 7.4 5.5 19.7 8.6 3.9 7.9 6.7 6.3Polyun saturates 18.5 21.8 21.5 20.1 34.0 22.4 12.2 9.9 0.9 13.7 6.2 15.6Unsaturates 63.1 42.9 73.5 55.5 65.1 45.8 60.4 30.3 6.1 32.5 16.5 30.3Branch ed 3.4 1.7 0.9 0.8 0.8 0.8 0.5 0.6 0.1 1.2 0.1 0.7HUFA 11.5 14.1 17.4 20.2 29.8 23.1 9.1 11.4 0.3 13.4 1.4 13.9 gn- 3 10.7 19.5 20.3 18.0 32.0 20.8 10.9 7.5 0.8 9.3 6.1 11.1n-6 9.6 6.3 7.9 9.0 8.2 6.9 20.8 10.9 4.0 12.2 6.8 10.1n-3111-6 ratio 1.1 3.1 2.6 2.0 3.9 3.0 0.5 0.7 0.2 0.8 0 .9 1. oDH AE PA 0.0 0.1 1.3 0.6 1.4 0.7 1.2 0.5 0.1 0.2 0.0 0.3

    Total lipids 16.4 18.2 11.5 13.6 12.7 12.5 20.7 7.9 1.6 9.4 7.5 20.0FAME (pg mg- w) 86.5 55.1 99.4 72.7 85.3 60.1 84.2 40.1 8.1 44.4 19.3 40.6EPA: eicosapapentanoic acid,DHA: docosahexaenoic acid, HUFA: high unsaturated fatty acids, FAME: fatty acid methyl esthers, dw:ry weight, SBDF: seabream ry food.

  • 8/10/2019 pakan cacing nereis

    5/7

    FIDALCO E COSTA ET A L : CROWH SURVIVAL AND FATTY ACID PROF ILE OF HEREIS I Y E R S K O L O X 4

    The n-3111-6 ratio and the total fatty acid methol esters FAME) depended upon thediet. Depending upon the source of the food, vegetable, non-vegetable, marine o r non-marine, the n-3111-6 ratio was more than one for foods of m arine origin Arfemia cysts,SB DF and Lansy) and less than one for foods of non-ma rine origin (Tetramin, soy andpollen) (Table 3).

    The fatty acid prof ile o f the diets played an important role in the survival and growthrates of N. diversicolor in laboratory experiments. These worm s attained greater growthrates compared to those grown in the f ield (Chambers and Milne, 1975; Heip and Herman,1979; Kristensen, 1984). Th e DHA/EPA ratios were always less than on e (Table 3 . Thismay be due to the omnivorous and opportunistic feeding behavior of N diversicolor.

    Typically, carnivorous marine animals have higher DHAEPA ratios. It is worthy of note

    that the worm retains nearly all the EPA from their diet. However, if the amount of EPA islow in the diet, they can biosynthesize it de novo. The process is different with DHA; ifthe amount is high in the diet, the worm can metabolize about 50%. If, however, theamount of DHA is low or absent in the diet, the worm will synthesize it de novo.

    In conclusion, marine diets rich in EPA and DHA allow a higher incorporation of HUFAwhich results in higher survival rates and better growth in cultures of N. diversicolor.

    This work was supported by a grant of the Portuguese National Board of Scientific Research,JNICT (BDl2265192-IG) and by JNICT contract PBICICIMAR~1298192. he authors are gratefulto the anonymous reviewers for commenting on the manuscript.

    Bartels-Hardege, H. D. and E. Zeeck. 1990. Reproductive behaviour of Nereis diversicolor (Annelida:Polychaeta). Mar. Biol. 106: 409-412.

    Cancela da Fonseca, L. 1989. Estudo da influtncia da abertura ao mar sobre urn sistema lagunarcosteiro: lagoa de Santo And Tese de Doutoramento, Univ. Lisboa. 355 p.

    Chambers, M. R. and H. Milne. 1975. Lyfe cycle and production of Nereis diversicolor 0 F Miillerin the Ythan estuary, Scotland. Estuar. Coast. Mar. Sci. 3: 133-144.

    Dinis, M. T. 1986. Quatre Soleidae de I'estuaire du Tage: Reproduction et croissance; essai d'elevagede Solea senegalensis Kaup. These de Doctorat, Univ. Bretagne Occidentale, Brest. 357 p.

    Esnault, G., C. Retihe and R. Lambert. 1990. Food resource partioning in a population of Nereisdiversicolor (Annelida, Polychaeta) under experimental conditions. Pages 453-467 in M. Bamesand R. N. Gibson, e h Proc. 24th European Mar. Biol. Symp., Aberdeen Univ. Press, Aberdeen.

    Fidalgo e Costa, P 1994. First data on the density of the polychaeta Hediste diversicolor 0 F

    Muller 1776 (Annelida, Polychaeta) in the small river of Odeceixe (southwest coast of Portu-gal). Gaia 8: 29-32.

    and L. Cancela da Fonseca. 1995. Resultados Preliminares sobre a Minhoca-da-Pesca Hedisfe diversicolor 0 E Muller 1776) no Sistema Lagunar da Carrapateira (CostaSudoeste de Portugal) 8th Congresso do Algarve: 933-941.

    Fliichter, J. and F. H. Tromsdorf. 1974. Nutritive stimulation of spawning in common sole Soleasolea L.). Berl. Dtsch. Wiss. Kon. Meersforch. 23: 352-359.

  • 8/10/2019 pakan cacing nereis

    6/7

    Gam bi. M. C., A. Castelli, A.Gi ang ran de , P. Lan tera, D. Prevedelli and R . Z. Vandini. 1994. Poly-chaetes ofcom me rcial and ap plied interest in Italy: an overview. Pages 593- 60 3in J C. Dauvin,L. Laubier and D. J. Reish, eds. Actes de la 4em e Conference Intemationale des Po lychttes.Mem . Mus. natl. d'Histoire nat.

    Garwood, P. R. and P. J. W. Olive. 198 1. Th e influe nce of environmental factors on the growth o foocytes in Nereis diversicolor (An nelida ; Polychaeta). Bull. Soc. Zool. France 106: 3 9 9 4 0 2 .

    Guerin, J. P. 1987. ~ l e v a ~ ee Sp ion idls (Annelides, Polychetes) en Cycle com plet.1

    Techniquesd'elevage de I'une des tr formes deMalacoceros fuliginosus des cb tes francaises. Aquacul-ture 62: 2 15-257.

    Harley, M. B. 1956. Th e feeding habits ofNereis diversicolor and related polychaetes. Ph.D. The-sis, Univ. London. Pages 3 7 9 4 0 5in S. M. Evans, ed. Behavior in polychaetes (1971).Q. Ver.Biol. 46.

    Heip, C. and R. Herman. 1979. Production o fNereis diversicolor 0 F. Miiller (Polychaeta) inashallow brackish-water pond. Estuar. Coast. Mar. Sci. 8: 297-305.

    Jm gen sen , C. B. 1990. Bivalve filter feeding: Hy drody nam ics, bioenergetics, physiolog y and ecol-ogy. Olsen an d Olsen, F redensb org. 140 p.

    Kristense n, E.. 1984. Life cyc le, grow th and production in estuarine populations o f the polychaetesNereis virens and N diversicolor. Holarctic Ecol. 7: 249-256.Luis, 0 J. 1989. Co ntri bu i~H o ara o conhecimentoda nutrici5o dePalaemon serratus e Penaeus

    kerathurus (Crustacea, Decapoda), com gnfase para o papel dos lipidos no crescimento ere pr od ue o. Tese de Doutoramento, Univ. Lisboa. 374 p.

    and A. Ponte. 1993. Control o f reproduction o f the shrimpPenaeus kerathurus held incaptivity. J. World Aq uac ult. Soc. 24: 3 1-39.

    and A. M. Passos. 1995. Seaso nal cha nge s in lipid content and com pos ition of the poly-chaete Nereis Hediste) diversicolor. Co mp . Biochem. Physiol. IB: 579-586.

    Me tcalfe, L. D. and A. A. S chrnitz. 1961. Th e rapid prepara tion of fatty acid este rs for gas chro-

    matographic analysis. Analyt. Chem. 33: 363.Mettam, C . 1979. Seasonal chan ges in populations ofNereis diversicolor 0 F. Miiller from SevernEstuary. U.K. Pages 123-130 in E. Naylor and R.G. Hartnoll, eds. Cyc lic phen om en a in marineplants and animals.

    Neuhoff, H.-G. 1979. Effects of seasonally varying factors on aNereis succinea population(polychaeteta, Am elid a). Mar. Ecol. Prog. Ser.1: 263-268.

    Nielsen , A. M,. N. T. Eriksen , J. J. L. Iversen and H. U. Ri isg hd . 1995. Feed ing, grow th and respi-ration in the polychaetesNereis diversicolor (facultative filter-feeder) andN. virens (omnivo-rous) a com parative study. Mar. Ecol. Prog. Ser. 125: 149-158.

    Olafsson, E. B., L.-E. Persson. 1986. Th e interaction betweenNereis diversicolor 0 F. M iiller an d

    Corophium volutator Pallas a s a structuring force in shallow brackish sedim ent.J. Exp. Mar.Biol. Ecol. 103: 103-1 17.Olive, P. J. W. 1994. Polychaete as a world resource: a review of patterns of explotation as sea

    angling and the potential for aquaculture based production. Actes de la 4 t m e ConferenceIntemationale des Polychtte. Mem. M us. natl. d'Histoire nat. 162: 60 3- 6 10.

    and P. R. Ganvood. 1981. Gametogenic cycle and population structure ofNereisdiversicolor and Nereis Nereis) pelagica from n or the ast England.J. Mar. Biol. Ass. U.K. 61:193-21 3.

    Sorgeloos, P., P. Lavens, P. H. Llger, W. Tackaert and D. Versichele. 1986. FAO Manual for theculture of brine sh rimpArtenlia in aqu aculture. Univ. Gh ent. 3 19 p.

    RiisgArd, H. U. 1991. Suspension feeding in the polychaeteNereis diversicolor. Mar. Ecol. Prog.Ser. 70: 29-37.1996. Phytoplankton reduction in near-bottom water cause d by filter-feed ingNereis

    diversicolor mplications for worm growth an d population grazing impa ct. Mar. Ecol. Prog.Ser. 141 47-54.

  • 8/10/2019 pakan cacing nereis

    7/7

    FlDALGO E COST E TA L . :GROWTH, SURVIVAL A N D FA l T Y CID PROFILE OF NEREIS DIVERSICOLOR 4

    , A . Vedel, H. Boye and P. S. Larsen. 1992. Filter-net structure and pum ping activity

    in the polychaete NereisJiversicofor: effects of temperature an d pum p-modelling. Mar. Ecol.Prog. Se r. 83: 79-89.Vedel, A . 1998. Phytoplankton dep letion in the benthic bou ndary layer caused by suspension- feed-

    ing Nereis diversicofor Polychaeta): graz ing imp act and effect of temperature. M ar. Ec ol. Prog.Ser. 163: 125-132.

    and H.U. RiisgArd. 1993. Filter-feeding in the po lychae teNereis diversicofor: growthand bioenergetics. Mar. Ecol. Prog. Ser. 100: 145-152.

    ADDRESSES:F.e.C., L.N.) IMAR/FCUL Loborardrio Maritimo da Guia. Esrmda do Guincho. P-2750 Cascais Portugal. E-mail: . L.C.d.F.) IPIMAR-

    CRIMPSUL AV. de Outubro 8700-305. Olhdo Portugal. E-mail: .