paralleltime-domainboundary elementmethod for 3 ...naumann/pint2015/lukas.pdf ·...

29
Parallel Time-Domain Boundary Element Method for 3-Dimensional Wave Equation PinT 2015, Dresden, May 28, 2015 D.Luk´aˇ s , M. Merta, J. Zapletal, and A. Veit V ˇ SB–Technical University of Ostrava, Czech Rep. University of Chicago email: [email protected]

Upload: doannga

Post on 04-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

PinT 2015, Dresden, May 28, 2015

D. Lukas, M. Merta, J. Zapletal, and A. Veit

VSB–Technical University of Ostrava, Czech Rep.University of Chicago

email: [email protected]

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Parallel fast BEM and applications

Laplace equation with mixed boundary conditions

Ω ⊂ R2 lipschitz domain, Γ := ∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅

−u(x) = 0, x ∈ ΩγD u(x) := u(x) = g(x), x ∈ ΓD

γN u(x) :=dudn(x) = h(x), x ∈ ΓN

Fundamental solution

G(x,y) := −1

2πln ‖x− y‖ satisfies −yG(x,y) = δx in the distributional sense

Representation formula (”v(y) := G(x,y)”)

∀x ∈ Ω : u(x) =

Γ

γNu(y)G(x,y) dl(y)−

Γ

u(y) γN,yG(x,y) dl(y)

We are left to calculate u on ΓN and γNu on ΓD.

Parallel fast BEM and applications

Shape optimization of a DC electromagnet, FEM-BEM coupling

Ωi: ferromagnetic yoke

Ωi

Ωe: air

Ωe: air

Ωe

Jcoil

Ωm sample

Ωo: focusing optics

Γ: boundary

L., Postava, Zivotsky: J Magn Magn Mater ’10, Math Comput Simulat ’12

Parallel fast BEM and applications

Acoustics of a railway wheel

A joint work with J. Szweda, Department of mechanics, VSB–TU Ostrava

Parallel fast BEM and applications

Acoustics of a railway wheel

Parallel fast BEM and applications

Fast BEM: geometry clustering, H-matrices, ACA/FMM

Parallel fast BEM and applications

Scattering of infrared light in a DLP projector

Ei

Es

Omegam Omegap

E

Parallel fast BEM and applications

Homogenization of periodic structures

L., Bouchala, Theuer, Zapletal: Numer Math (submitted)

Parallel fast BEM and applications

Parallel fast BEM using cyclic graph decompositions

01

2

3

4

5

67

8

9

10

11

12

rotate

G0

G1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

L., Kovar, Kovarova, Merta: Numer Alg (online first)

Solution to the system of 2.7M DOFs on 273 cores in 16 minutes.

Parallel fast BEM and applications

3d wave equation, simult. space-time discretization

Veit, Merta, Zapletal, L.: IJNME (submitted)

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Boundary integral formulation of sound-hard scattering

Sound-hard scattering

Given the scatterer Ω and the causal incident wave uinc, we look for the scattered field u:

uinc

u

Γ Ω

u−u = 0 in Ω× [0, T ],

u(., 0) = u(., 0) = 0 in Ω,

∂u

∂n= −

∂uinc

∂non Γ× [0, T ],

+ rad. cond.

Boundary integral formulation of sound-hard scattering

Boundary integral ansatz

We search for u in the form of the retarded double-layer potential

u(x, t) = −1

Γ

n(y) · (x− y)

‖x− y‖

(φ(y, t− ‖x− y‖)

‖x− y‖2+φ(y, t− ‖x− y‖)

‖x− y‖

)dS(y),

which satisfies the wave equation and the initial conditions. It remains to fulfill theNeumann boundary condition

limΩ∋x→x∈Γ

n(x) · ∇xu(x, t)︸ ︷︷ ︸

=:(Wφ)(x,t)

= g(x, t) on Γ× [0, T ],

where g := −∂uinc

∂n.

Boundary integral formulation of sound-hard scattering

Weak boundary integral formulation [Bamberger, HaDuong ’86]

Find φ ∈ V such thata(ξ, φ) = b(ξ) ∀ξ ∈ V,

where

a(ξ, φ) :=

∫ T

0

Γ

Γ

n(x) · n(y)

4π‖x− y‖ξ(x, t) φ(y, t− ‖x− y‖)

+curlΓξ(x, t) · curlΓφ(y, t− ‖x− y‖)

4π‖x− y‖

dS(y) dS(x) dt,

b(ξ) :=

∫ T

0

Γ

g(x, t) ξ(x, t) dS(x) dt.

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Time-domain boundary element method

Discrete ansatz

Replace V by a finite-dimensional subspace V h,∆t spanned by the tensor-product of Ntemporal and M spatial basis functions:

φh,∆t(x, t) :=N∑

l=1

M∑

j=1

αjl ϕj(x) bl(t).

We arrive at the (N M)× (N M) block linear systemA1,1 . . . A1,L... . . . ...

AL,1 . . . AL,L

α1...αL

=

b1...bL

,

where

(Ak,l)i,j := a (ϕi(x) bk(t), ϕj(y) bl(t)) , (bk)i := b (ϕi(x) bk(t)) , (αl)j := αjl .

Time-domain boundary element method

Matrix: a deeper look

(Ak,l)i,j =

suppϕi

suppϕj

n(x) · n(y)

4π‖x− y‖ϕi(x)ϕj(y)

=:Ψk,l(‖x−y‖)︷ ︸︸ ︷∫ T

0

bk(t) bl(t− ‖x− y‖) dt dS(y) dS(x)

+

suppϕi

suppϕj

curlΓϕi(x) · curlΓϕj(y)

4π‖x− y‖

∫ T

0

bk(t) bl(t− ‖x− y‖) dt︸ ︷︷ ︸

=:Ψk,l(‖x−y‖)

dS(y) dS(x),

Piecewise smooth time-ansatz expensive quadrature

due to nontrivial intersection of the light cone

suppΨk,l, supp Ψk,l

withsuppϕi × suppϕj.

Time-domain boundary element method

C∞-smooth (partition of unity) temporal basis [Sauter, Veit ’14]

0.5 1.5 2.5

0.2

0.4

0.6

0.8

t [s]

b0 b1 b2 b3

allows for Sauter-Schwab quadrature

over suppϕi × suppϕj.

(Ak,l)i,j =

suppϕi

suppϕj

n(x) · n(y)

4π‖x− y‖ϕi(x)ϕj(y)

=:Ψk,l(‖x−y‖)∈C∞(R)︷ ︸︸ ︷∫ T

0

bk(t) bl(t− ‖x− y‖) dt dS(y) dS(x)

+

suppϕi

suppϕj

curlΓϕi(x) · curlΓϕj(y)

4π‖x− y‖

∫ T

0

bk(t) bl(t− ‖x− y‖) dt︸ ︷︷ ︸

=:Ψk,l(‖x−y‖)∈C∞(R)

dS(y) dS(x),

To accelerate the assembly, Ψ and Ψ are replaced by piecewise Chebyshev interpolants.

Time-domain boundary element method

Convergence of ‖φh,∆t(x, .)− φanalytical(x, .)‖L2(0,T ) on the sphere

Ω the unit sphere, φanalytical a spherical harmonic function, x ∈ Γ

1st-order time-basis functions 2nd-order time-basis functions

101

102

10−3

10−2

10−1

1/N

Number of timesteps

Err

or

5 10 20 40

10−5

10−4

10−3

1/N 2

Number of timesteps

Err

or

Time-domain boundary element method

Matrix structure

The matrix is sparse and it has a block-Hessenberg structure.

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Parallelization, preconditioning, numerical experiments

Parallel implementation

• For equidistant time stepping only the blueparts have to be assembled.

• We employ a hybrid MPI-OpenMP model:

– pairs of triangles corresponding tononzero entries are evenly distributed toMPI nodes,

– on each node the assembly is performedusing OpenMP.

• We use up to 64 Intel Xeon E5 nodes (1024cores) of the cluster Anselm, VSB-TU Os-trava.

Parallelization, preconditioning, numerical experiments

Weak parallel scalability of the assembly

Submarine surface decomposed into 5604 triangles, 40 time steps

Parallelization, preconditioning, numerical experiments

Preconditioning

We approximate the upper Hessenberg matrixby an inexact lower triangular preconditioner:

A :=

(AI,I AI,II

AII,I AII,II

)≈

(AI,I 0

AII,I AII,II

)=: A

in the recursive fashion so that AI,I and AII,II

are again the inexact lower triangular precondi-tioners to the upper Hessenberg matrices AI,I

and AII,II , respectively.

Parallelization, preconditioning, numerical experiments

Numerical experiments

We compare convergence of preconditioned restarted GMRES, deflated GMRES, andflexible GMRES.

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Outline

• Parallel fast BEM and applications

• Boundary integral formulation of sound-hard scattering

• Time-domain boundary element method

• Parallelization, preconditioning, numerical experiments

• Conclusion, outlook, references

Parallel Time-Domain Boundary Element Methodfor 3-Dimensional Wave Equation

Conclusion, outlook

X Time-domain BEM for 3d wave equation, adaptivity in time,

X parallely scalable assembly and postprocessing,

→ mapping properties of the operator, preconditioning,

→ extension to the elastic wave equation.

References

• Analysis: Bamberger, Ha Duong, Math. Meth. Appl. Sci. ’86

• Numerics: Sauter, Veit, Numer. Math. ’14

• Parallelization: Veit, Merta, Zapletal, L., Int. J. Numer. Meth. Eng., submitted

• Parallel fast BEM: L., Kovar, Kovarova, Merta, Numer. Alg. ’15 (online first)

http://homel.vsb.cz/∼luk76