parameter estimation for dependent risks: experiments with bivariate copula models

22
Parameter Estimation for Parameter Estimation for Dependent Risks: Dependent Risks: Experiments with Bivariate Experiments with Bivariate Copula Models Copula Models Authors: Florence Wu Michael Sherris Date: 11 November 2005

Upload: gaura

Post on 05-Jan-2016

24 views

Category:

Documents


2 download

DESCRIPTION

Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models. Authors: Florence Wu Michael Sherris Date: 11 November 2005. Aims of Research:. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Parameter Estimation for Dependent Parameter Estimation for Dependent Risks: Experiments with Bivariate Risks: Experiments with Bivariate

Copula ModelsCopula ModelsAuthors:

Florence Wu

Michael Sherris

Date: 11 November 2005

Page 2: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Aims of Research:Aims of Research:

Assess, under varying assumptions, the performance of different methods for estimation of parameters, full MLE, and IFM, for copula base dependent risk models.

Assess the impact of marginal distribution, copula and sample size on parameter estimation for commonly used marginal distributions (log-normal and gamma) and copulas (Frank and Gumbel).

Report and discuss Implications for practical applications.

Page 3: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CoverageCoverage

A (very) brief review of copulas. Outline methods of parameter estimation (MLE,

IFM). Outline experimental assumptions. Report and discuss results and implications.

Page 4: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CopulasCopulas

Portfolio of d risks each with continuous strictly increasing distribution functions with joint probability distribution

FX(x1,…xd) = Pr(X1 x1,…, Xd xd)

Marginal distributions denoted by FX1,…, FXd where FXi(xi) = Pr (Xi xd)

Page 5: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CopulasCopulas

Joint distributions can be written as

FX(x1, …, xd) = Pr(X1 x1,…, Xd xd)

= Pr(F1(X1) F1(x1),…, Fd(Xd) Fd(xd))

= Pr(U1 F1(x1),…, Ud Fd(xd))

where each Ui is uniform (0, 1).

Page 6: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CopulasCopulas

Sklar’s Theorem – any continuous multivariate distribution has a unique copula given by

FX(x1, …, xd) = C(F1(x1), … ,Fd(xd))

For discrete distributions the copula exists but may not be unique.

Page 7: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CopulasCopulas

We will consider bivariate cumulative distribution F(x,y) = C(F1(x), F2(y)) with density given by

Page 8: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

CopulasCopulas

We will use Gumbel and Frank copulas (often used in insurance risk modelling)

Gumbel copula is:

Frank copula is :

Page 9: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Parameter EstimationParameter Estimation

Page 10: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Parameter Estimation - MLEParameter Estimation - MLE

Page 11: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Parameter Estimation – IFMParameter Estimation – IFM

Page 12: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Parameter Estimation – IFMParameter Estimation – IFM

Page 13: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experimental AssumptionsExperimental Assumptions

Experiments “True distribution” All cases assume Kendall’s tau = 0.51. Gumbel copula with parameter = 2 and

Lognormal marginals2. Gumbel copula with parameter = 2 and Gamma

marginals3. Frank copula with parameter = 5.75 and

Lognormal marginals4. Frank copula with parameter = 5.75 and Gamma marginals

Page 14: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experimental AssumptionsExperimental Assumptions

Case Assumptions – all marginals with same mean and variance:– Case 1 (Base):

E[X1] = E[X2] = 1 Std. Dev[X1] = Std. Dev[X2] = 1

– Case 2: E[X1] = E[X2] = 1 Std. Dev[X1] = Std. Dev[X2] = 0.4

Generate small and large sample sizes and use Nelder-Mead to estimate parameters

Page 15: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Experiment Results – Goodness of Fit ComparisonGoodness of Fit Comparison

Case 1 (50 Samples):

Page 16: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Goodness of Fit Experiment Results – Goodness of Fit ComparisonComparison

Case 1 (5000 Samples):

Page 17: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Goodness of Fit Experiment Results – Goodness of Fit ComparisonComparison

Case 2 (50 Samples):

Page 18: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Goodness of Fit Experiment Results – Goodness of Fit ComparisonComparison

Case 2 (5000 Samples):

Page 19: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Parameter Experiment Results – Parameter Estimated Standard Errors (Case 2)Estimated Standard Errors (Case 2)

Page 20: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Run timeExperiment Results – Run time

Page 21: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

Experiment Results – Run timeExperiment Results – Run time

Page 22: Parameter Estimation for Dependent Risks: Experiments with Bivariate Copula Models

ConclusionsConclusions

IFM versus full MLE:– IFM surprisingly accurate estimates especially for the dependence

parameter and for the lognormal marginals Goodness of Fit:

– Clearly improves with sample size, satisfactory in all cases for small sample sizes

Run time:– Surprisingly MLE, with one numerical fit, takes the longest time to run

compared to IFM with separate numerical fitting of marginals and dependence parameters

IFM performs very well compared to full MLE