parameter testing guide

67
 DOCUMENTTYP E 1 (6 7)  TypeUnit Or Depar t mentHere  Type You rNam eH ere TypeDateHere 3G Radio Optimisation Parameter Testin g Guid e No. of Pages: 55 Checked by: 3G Rad io Cop Author: Pekka Ranta Approved by:

Upload: gonzalo-saavedra

Post on 02-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 1/67

 

DOCUMENTTYPE 1 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

3G Radio Optimisation

Parameter Testing Guide 

No. of Pages:

55

Checked by:

3G Radio Cop

Author:

Pekka Ranta

Approved by:

Page 2: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 2/67

Page 3: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 3/67

Page 4: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 4/67

 

DOCUMENTTYPE 4 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1. CALL SETUP PERFORMANCE

1.1 Idle Mode Performance

Both Intial cell selection to good enough cell and Cell reselection to better cell shouldhappen to increase the call setup success rate (CSSR) and speed up the call setup time.

 This should be tested in different environment.

Poor cell reselection can lead to poor call setup time distribution (as UE needs to sendseveral RRC Connection Requests).

 The graphs below shows the difference in call set up performance due to poor cellreselection and corrected cell reselection. The graph is drawn of the CDF of percentage of calls vs. the call set up time for poor cell reselection case and improved cell reselection

case. When the results are compared it could be seen that in for the first case percentageof calls with less call set up time is less than in the second case.  

Poor Cell Reselection: performance

Corrected Reselection: performance 

Call Setup Delay (PDF & CDF)

0

10

20

30

40

50

60

70

80

90

100

0 0 to 3000 3000 to 5000 5000 to 8000 8000 to 10000 >10000

Setup Time [ms]

PDFCDF

Call Setup Delay (PDF & CDF)

0

10

20

30

40

50

60

70

80

90

100

0 0 to 3000 3000 to 5000 5000 to 8000 8000 to 10000 >10000

Setup Time [ms]

PDFCDF

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

  <   3 .   5  s

   3 .   5  s -

   3 .   7  s

   3 .   7  s -

   3 .   9  s

   3 .   9  s -

   4 .   1  s

   4 .   1  s -   4 .   3  s

   4 .   3  s -   4 .   5  s

   4 .   5  s -   4 .   7  s

   4 .   7  s -   4 .   9  s

   4 .   9  s -   5 .   1  s

   5 .   1  s -   5 .   3  s

   5 .   3  s -   5 .   5  s

  >   5 .   5  s

Setup Time (seconds)

Call Setup Delay CDF

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

  <   3 .   5  s

   3 .   5  s -

   3 .   7  s

   3 .   7  s -

   3 .   9  s

   3 .   9  s -

   4 .   1  s

   4 .   1  s -   4 .   3  s

   4 .   3  s -   4 .   5  s

   4 .   5  s -   4 .   7  s

   4 .   7  s -   4 .   9  s

   4 .   9  s -   5 .   1  s

   5 .   1  s -   5 .   3  s

   5 .   3  s -   5 .   5  s

  >   5 .   5  s

Setup Time (seconds)

Call Setup Delay CDF

Page 5: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 5/67

 

DOCUMENTTYPE 5 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

 There can be cell reselection during RRC Connection Setup procedure. In case of cellreselection the call setup time from the end user side is increased by minimum of T300 (asthe UE can only transmit new RRC Connection Request when the T300 has expired) 

1. First RRC Connection request.

2. BTS of Cell A does not hear the request or UE does not hear the RRC ConnectionSetup message from BTS.

3. UE notices that Cell B is having better Ec/No and reselects to Cell B.

4. 2nd RRC Connection Request sent after T300 has expired in UE (T300 started in UEwhen 1st RRC Connection Request has been sent by the UE).

 The scenario above can also happen in such a way that there are several RRC Connection

requests sent in phase 1 and in phase 4 due to poor coverage & poor cell reselectionperformance.

1.1.1 Parameters

 There are parameters related to initial cell selection and cell reselection. They areexplained briefly:

  Minimum required qualit y level in the cell (EcNo) (QqualMin) 

  Minimum required RX level in t he cell (RSCP) (QrxlevMin) 

  Cell reselection triggering time (Treselection)

With Treslection parameter of 0 s the cell reselection could take place immediatelywhen the UE notices that there is difference between the cells’ Ec/No values.

  Cell reselection hysteresis 2 (Qhyst2)

 This will add some hysteresis to the neighboring cell evaluation (target for the cellreselection).

Note that Qhyst1 is used only in case the cell selection and re-selection qualitymeasure is set to CPICH RSCP (default is CPICH Ec/No so Qhyst 1 is not used inintra-FDD reselection).

  Cell Re-selection Quality Off set 2 (AdjsQoffset2)

 This parameter is used in the cell re-selection and ranking between WCDMA cells. The value of this parameter is subtracted from the measured CPICH Ec/No of theneighbor cell before the UE compares the quality measure with the cell re-selection/ranking criteria.

  S intrasearch (Sintrasearch)

 This parameter is used by the UE to calculate the threshold (CPICH Ec/No) to startintra frequency (SHO) measurements (Sintrasearch above QqualMin value).

Page 6: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 6/67

 

DOCUMENTTYPE 6 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Default values for some of the parameters are below.

Parameters Default value

 Treselection 0 s

Qhyst 2 4 dB

AdjsQoffset2 0 dB

Sintrasearch 4 dB

Qqualmin -20 dB

Qrxlevmin -115 dBm

 The Qqualmin and Qrxlevmin parameters should be tuned carefully as the result could bethat with certain values no calls can be made.

In case the cell does not fulfill the suitable cell criteria i.e. S-criteria the UE cannot accessthe cell and therefore the UE is out of the coverage.

1.1.2 Testing Scenarios

Every single test should include minimum 50 call attempts. Test should be performed fordifferent UE types and network type should be taken into account as well.

In case there is underlying GSM 900/1800 network from the same operator (and ISHO is

working) it might be beneficial to have other settings (and to have forced cell reselection toGSM) than those mentioned in this example (which is done in the single mode WCDMAnetwork).

Start the measurements at Ec/No ~-8dB with Qqualmin =-20 dB, Sintrasearch =12dB. 

Below is one example of different set of parameters to be tested:

ParameterDefault (param

dictionary/optimal)Set1 Set2 Set3

Sintrasearch 4dB/10dB 14dB 12dB 14dB

Qhyst2 4dB/2dB 0 2 2

 Treselection 0s/2s 1 0 0

 This set should be tested in dirrerent areas like: Urban, rural, high speed train, highwayarea and possible with and without the border of two RNCs (including registration due toLocation update)

Slow moving conditions (walking speed)

Average speed conditions (<50km/h)

Fast speed conditions (~100km/h)

Page 7: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 7/67

 

DOCUMENTTYPE 7 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

High speed trains if exist (~200km/h)

Inter RNC and Intra RNC cases where applicable

1.1.3 Tools & Test Procedure

 The tools for these tests are

1. Kenny with Nemo for AMR test

2. Scanner

 The procedure could be the following:

1. Start Scanner, Kenny (other Ues) with NEMO (other tools)

2. Make AMR short calls in given routes having 15s idle period and record and checkresult.

3. Record with Idle mode

1.1.4 Example Results

 The following analysis has to be done for idle mode cell reselection:

1. Scanner Data analysis

2. Call setup success rate with the failure reason (e.g. reselection problem =UEhanging in wrong cell)

3. Call setup time

Note! In all following test cases Sanyo 801 (qualcom chipset) UE (and in some cases Nokia6650 UE) is used. It is suggested that different types of UEs are used. Parameter valuesare different from network to network due to NW plan and therefore all these parametersshould be tuned in every network! 

1.1.4.1 Scanner data analysis

Page 8: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 8/67

 

DOCUMENTTYPE 8 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Chart from scanner data shows best server’s Ec/No value vs. percentage of samples wheresecond best server is x dB lower than best server.

With common channel setting in this network: Base Ec/No (own cell) is around -4 dB sothere only 1 cell at Ec/No >-4 dB.

From the scanner data chart it is found that in the case where the cell reselection happens

at about Ec/No –8dB, there is 95% possibility that second best server will have EcNo valuemore than 2dB lower than the best server. In other words, at EcNo –8 dB the neighboringcell having EcNo less than 2 dB from the serving cell is only 5 % and 95 % will havedifference of EcNo from the serving cell more than 2 dB. This means that the cellreselection has 80% probability not to lead to ping-pong. 

If the reselection is done at about –16dB there is only 30% possibility that the second bestserver is more than 2dB lower than best server (this does not leave enough room fordeviation between best and second best server).

1.1.4.2 Call setup Analysis

 There are some example results related to call setup success rate vs. CPICH EcNo andCPICH RSCP values to find a suitable value for Qqualmin and Qrxlevmin. So we do thefollowing analysis:

1. CSSR vs. CPICH EcNo and CPICH RSCP

2. BLER vs. CPICH EcNo and CPICH RSCP to see the quality of the call

In the following tests only Sanyo 801 UE is used and AMR calls are generated.

Page 9: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 9/67

 

DOCUMENTTYPE 9 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Page 10: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 10/67

 

DOCUMENTTYPE 10 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1.1.5 Conclusions for this network

Call setup is still success even RSCP<-112 dBm and/or Ec/No<-18 dB at about 70 %probability.

 The CPICH RSCP < –112dBm condition can happen especially in indoor situations andCPICH Ec/No < -18dB can happen in indoors or in occasionally in pilot pollution areas(especially when traffic increases)

BLER is not so good in above situation but there is a possibility for handover to the othercells and to balance the BLER.

As there is relationship between S criteria and Qqualmin, Qqualmin value setting and

Sintrasearch in combined are affecting the cell reselection monitor point.

For this network it is recommended to leave the Qqualmin and Qrxlevmin as –15dBand –115dBm respectively especially in WCDMA single mod e networks.

Minimum Required CPICH RSCP and Ec/No (From Sanyo UE drive test statistics)

CSSR =90% EcNo =-16 dB RSCP =-112 dBm

Page 11: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 11/67

 

DOCUMENTTYPE 11 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

BLER <1% Prob =90% EcNo =-6 ~-7 dB RSCP =-80

BLER <3% Prob=90% EcNo =-14 dB RSCP =-112 dBm

For Urban area (Urban 1 and 2) where the UE is slow moving with speed less than 50km/h,the cell reselection should be slower in case of inter RNC reselection ->for LA/RA bordersit is recommended to have slower reselection (in this test case Qhyst2 =2dB, Treselection=3s). For intra RNC reselection case all the tested parameter sets work more or less thesame but set 1 is recommended.

For Rural area where the UE speed is somewhere between 50km/h and 100km/h the call

setup performance is more or less the same for all the cases but in terms of CPICHdistribution and number of cell reselections point of view the set 1 is recommended (set 1clearly reduces the ping ponging in poor dominance environments)

For high speed train from call setup performance point of view the set 1 performs clearlythe best. Also from number of cell reselections and CPICH Ec/No distribution point of viewset 1 is recommended.

For high way case the set 1 performs the best from call setup success rate point of viewand from number of reselections and CPICH Ec/No distribution point of view the set 1 isrecommended.

Set 1 is recommended for all t ypes of area except at LAC boundary, slower cellreselection (default) should be used.

Page 12: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 12/67

 

DOCUMENTTYPE 12 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1.2 RRC Connection Establishment Performance

In RRC Connection Establishment Success rate, the emphasis should be on:

RRC Setup performance and RRC Connection Access Success: in both cases thetesting is concentrated on RRC Setup success rate, and number of sent RRCConnection Requests.

The impact of minimal UE tx power (preample power) to the cell capacity

Different UE performance (in the following test examples Nokia 6650 and Sanyo801 UEs are used).

Call setup delay

In open loop power control the Initial PRACH pre-amble power is defined by the UEaccording to

In case the BTS doesn’t hear the preamble the UE resends the preamble withPowerRampStepPRACHpreamble higher power. In one PRACH cycle the power can beincremented PRACH_preamble_retrans times.

If the PRACH cycle fails it will be repeated up-to RACH_tx_Max times. Potential CPICHRSCP measurement inaccuracies in the UEs are causing the pre-ample cycle(s) to fail withcertain probability which is dependant on the radio conditions and the parameter settings inthe network.

It has been assumed that the measurement inaccuracies are more severe right after theUE wakes up from sleep in idle mode.

In case PRACH procedure was initiated in order to set-up a RRC connection, the PRACHprocedure, in case of failure, will be retried N300 times with an interval of T300.

With N300 (3) and T300 (3s) parameters one may define how many times the UE isallowed to try to establish an RRC connection and what’s the interval between theattempts.

Too low values may cause RRC connection setup difficulties

Too high values may bias the RRC statistics to look too bad. N300 * T300 should bereasonable (for example <=6s). Note: meaningful only in cases where RNC hasreceived the RRC connection setup request message)

Core network paging parameters may be considered as well so that it’s guaranteedthat RRC connection setup attempt always ends before the last page is sent fromCN (9 s).

Ptx =CPICHtransmissionPower-RSCP(CPICH)+RSSI(BS) +PRACHRequiredReceivedCI

Page 13: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 13/67

 

DOCUMENTTYPE 13 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1.2.1 Parameters

RRC Connection Setup performance can be improved by tuning mainly the open looppower control (OLPC) parameters.

 The parameters are listed below:

  N300, RRC CONNECTION REQUEST retransmission counter (MS counter).

 This parameter is part of System Information Block 1.

  T300, RRC CONNECTION REQUEST retransmission timer (MS timer).

 This parameter is part of System Information Block 1.

  PRACH Preamble Retrans Max (PRACH_preamble_retrans)

 The maximum number of preambles allowed in one preamble ramping cycle.PRACH Preamble Retrans Max is part of "PRACH power offset".

  RACH maximum number of preamble cycles (RACH_tx_Max)

Maximum number of RACH preamble cycles defines how many times the PRACHpre-amble ramping procedure can be repeated before UE MAC reports a failure onRACH transmission to higher layers.

  Power offset l ast preamble and PRACH message

(PowerOffsetLastPreamblePRACHmessage )

 The power offset between the last transmitted preamble and the control part of the

PRACH message (added to the preamble power to receive the power of themessage control part).

  Power ramp step on PRACH preamble (PowerRampStepPRACHpreamble)

 The power ramp step on PRACH preamble when no acquisition indicator (AI) isdetected by the UE.

  Required received C/I on PRACH (PRACHRequiredReceivedCI)

 This UL required received C/I value is used by the UE to calculate the initial outputpower on PRACH according to the Open loop power control procedure. If this valueis too low then the PRACH preamble ramping up takes too long time. If it is too highthen it may cause blocking or high noise rise at BS since the UE measurement onRSCP has a poor accuracy.

  Maximum UE transmiss ion power on PRACH (UETxPowerMaxPRACH) 

 This parameter defines the maximum transmission power level a UE can use onPRACH. The value of the parameter also affects the cell selection and reselectionprocedures.

Page 14: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 14/67

 

DOCUMENTTYPE 14 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Parameters Default Value

PRACH_preamble_retrans 8

RACH_tx_Max 8

PowerOffsetLastPreamblePRACHmessage 2dB

PowerRampStepPRACHpreamble 2dB

PRACHRequiredReceivedCI -25 dB

UETxPowerMaxPRACH 21

The RRC Connection Access success is highly depending on the used UEs so all theused UEs should be tested carefully before making any changes.

 The access phase can be affected by tuning the timer T312 and counter N312 (both in UE)as explained below:

Longer the time (T312 high and high N312) the UE has to establish the L1 synchronizationthe higher probability successful physical channel establishment is and better call set upsuccess rate. However longer the time for L1 synchronisation, the longer is call setup time.

  T312

 The timer for supervising successful establishment of a physical channel (MS timerused in idle and connected mode).

  N312

 This parameter defines the maximum number of "in sync" indications received fromL1 during the establishment of a physical channel (UE counter used in idle andconnected mode).

Page 15: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 15/67

 

DOCUMENTTYPE 15 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

 The recommended value for T312 is 6s minimum with which the RRC Connection Accesssuccess is highest and the call setup delay is minimised.

N312 is recommended to be tested with the values of 4 and 2 at least to see the impact of call setup success and time (also certain UEs can work better with N312 =2)

All the above mentioned parameters can be tuned to improve the RRC Connection Setupperformance. However, it should be noted that some of the UEs (especially the ones withqualcom chipset) have fixed values for some of those parameters (an example from Sanyois given):

PRACH_preamble_retrans & RACH_tx_Max =8 & 8

PowerOffsetLastPreamblePRACHmessage =not fixed

PowerRampStepPRACHpreamble =3dB

PRACHRequiredReceivedCI =not fixed

1.2.2 Testing Scenarios

Result evaluation should be based on drive test log analysis as well as counter analysisrelated to RRC setup success rate/CSSR.

It should be noted that even though the emphasis is on the CSSR and call setup delay, theUE tx power should not be forgotten and it should be tested as well so that we use minimalUE tx power. The different set of parameters could be

Parameter Default Set 1

PRACHRequiredReceived CI -25 dB -20 dB

 The effect of parameter changes to UE tx power levels can be analysed based on drivetesting logging e.g. the CPICH RSCP vs. Last (detected) preamble Tx power. Also CPICHEc/No could be analysed but the UE does NOT use the CPICH Ec/No in the preamblepower calculations and therefore it is not analysed.

Different sets should be tested with several Ues, below scenarios for Sanyo 801 UE.

Default Set Set10 Set11 Set12

PRACHRequiredReceivedCI -13 -21 -21 -18

PowerOffsetLastPreamblePRACHmessage 2 5 2 2

Default Set Set10 Set11 Set12

PRACHRequiredReceivedCI -13 -21 -21 -18

PowerOffsetLastPreamblePRACHmessage 2 5 2 2

Page 16: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 16/67

 

DOCUMENTTYPE 16 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1.2.3 Tools & Test Procedure

 The tools for these tests are

1. Logging tool for voice, UDI and PS (1 service at one time), also Kenny with Nemofor voice test as reference

2. Scanner

3. RNC online monitoring to check the load (PrxTotal and PtxTotal) of the cells

 The test procedure could be the following:

1. Start Scanner, UE (Nokia, Sanyo etc) for Short voice and Kenny Short AMR @moderate/good coverage

2. Make 50 AMR short call, record and check result.

3. Make 50 AMR short call, record and check result.

4. Make 50 UDI (TV) short call, record and check result.

5. Make 50 PS short call with 10 ping test each, record and check result.

6. Initiate 1 PS call (repeatedly with 3MB file and no PDP drop), Start UDI call one by oneuntil call blocked. Check the reason (cell load) for the last failed call, change to AMR andcontinue until call block. Check the reason (cell load)

7. Move to cell edge, re test item 1-6 again

8. Chang parameters as to following set. Repeat step 1-6 again

9. Change parameter back to orignal value

1.2.4 Example Results

If counters are used for RRC connection success they are (service level table)

Also there is counter calculating how many repeates there has been related to the sameconnection

  RRC Conn Setup Att Repeats: 

%100* _  _  _ 

 _  _  _  _  _  _ 

 ATT STPCONN  RRC 

CMPSTPCONN  RRC  RateCompSetup RRC 

%100* _  _  _ 

 _  _  _  _  _  _ 

 ATT STPCONN  RRC 

CMP ACC CONN  RRC  RateComp Estab RRC 

Page 17: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 17/67

 

DOCUMENTTYPE 17 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Also it is possible to look at cell reselection time

From the graphs below it is clear that there is improvement in number of RRC ConnectionRequest messages needed per call. For –20dB case, 100% of established calls are setupwith only 1 RRC Connection Request message while for –25 dB case 88% of establishedcalls are setup with only 1 RRC Connection Request message.

RRC Connection Request

RRC Connection Setup Complete

UE RNC

RRC Connection Setup

RRC Connection Request

RRC Connection Setup Complete

UE RNC

RRC Connection Setup

sTM SETUP RRC  DENOM 

TM SETUP RRC  AVE 100/

 _  _  _ 

 _  _  _ 

X Triggering Point

100%

0% 0% 0%

88%

2% 5% 6%

0%

20%

40%

60%

80%

100%

1 2 3 4

# RRC Connection Reque st Messages per call setup

     %

PRACH req. C/I =-20dB PRACH req. C/I = -25dB

Page 18: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 18/67

 

DOCUMENTTYPE 18 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

It is clear there is improvement in the number of sent preambles per RRC ConnectionRequest for –20dB case. Here 50% of the calls needed less than or equal to 4 preambleswhere as for –25dB case the preambles requires are approximately 6.5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8

PRACH req. C/I =-25dB PRACH req. C/I =-20dB

Page 19: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 19/67

 

DOCUMENTTYPE 19 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

PRACHRequiredReceivedCI: Call setup delay

From the graph above it is seen that there is improvement in call setup delay for –20dBcase. Nearly 65% of the established calls are through with only 3.5 – 3.7s delay and themore than 5.5s delay “tail” disappears (in this case).

Effect on used powers

As it can be seen from the chart the power difference between set10, set11 and set12 isnot so significant but clearly the current default set is having on average 5dB higher Txpower.

96.2%

100.0%

94%

95%

96%

97%

98%

99%

100%

-25dB -20dB

Call Setup Success Rate

CPICH RSCP vs Last preamble power

-50

-40

-30

-20

-10

0

10

20

30

-110 -100 -90 -80 -70 -60 -50 -40 -30

CPICH RSCP [dBm]

   L  a  s   t   P  r  e  a  m   b   l  e   P  o  w  e  r   [   d   B

Default

Set10

Set11

Set12

線形 (Default)

線形 (Set10)

線形 (Set11)

線形 (Set12)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

  <   3 .   5  s

   3 .   5  s -

   3 .   7  s

   3 .   7  s -

   3 .   9  s

   3 .   9  s -

   4 .   1  s

   4 .   1  s -   4 .   3  s

   4 .   3  s -   4 .   5  s

   4 .   5  s -   4 .   7  s

   4 .   7  s -   4 .   9  s

   4 .   9  s -   5 .   1  s

   5 .   1  s -   5 .   3  s

   5 .   3  s -   5 .   5  s

  >   5 .   5  s

Call Setup Delay (seconds) RRC Conn. Req. to Alerting

PRACH req. C/I =-25 PRACH req. C/I =-20

Page 20: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 20/67

 

DOCUMENTTYPE 20 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Recomm endation is to use set 11 or set 12.

Effect on different N312

During the test it was noted that setting N312 to 2 or 4 does not have any significant effecton the call set up success rate.

But the effect on the call set up time is significant and therefore N312 value of 2 wasselected to be used.

1.3 RAB Establishment Performance

During RAB establishment procedure Admission Control will calculate the maximum powerwhat is possible to be used for that radiolink. It could help in some cases to increase themaximum DL DCH power in poor RSCP or EcNo conditions. This could help also certainUE types to have better RAB success.

1.3.1 Parameters

Related to RAB access there are some parameters which could be tested:

  Offset of the P-CPICH and reference service powers (CPICHtoRefRABOffset)

 The parameter defines the offset of the primary CPICH transmission power, and the

maximum DL transmission power of the reference service channel in DL power allocation. The maximum transmission power of the reference service is calculated (in dBm) bysubtracting the value of the parameter from the transmission power of the primary CPICH.

  Eb/No parameter set identifier (EbNoSetIdentifier)

 This parameter defines the identifier of a particular parameter set of the planned Eb/No's.

Parameter Default Value

Page 21: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 21/67

 

DOCUMENTTYPE 21 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

CPICHtoRefRABOffset   2 dB

EbNoSetIdentifier  1

CPICHtoRefRABOffset: has an impact to the max and min possible DL power levels:

 The max DL power is determined by AC as

However it should be noted that the minimum power is increased as well (as the minimumpower is Max power – DL PC Range) which might lead to the situation where too highpowers are allocated even in the good coverage conditions ->too much power is wasted.The power requirement per service is high ly UE type dependent!

 EbNoSetIdentifier 

Another parameter that could have some impact is the EbNoSetIdentifier. It indicates theused EbNo set (2-way diversity =>1, no diversity =>2 and 4-way diversity =>3).

However it should be noted that DL Eb/Nos are the same for each case, therefore theEbNoSetIdentifier parameter has impact only on UL performance.

In UL the set one has 3dB lower Eb/No than set 2 and set 3 has 1dB lower Eb/No that set1. Therefore with Set 2 the UL initial power should be the highest .

DL tx pwr perConnection [dBm]/ BLER [%]

time

Maxpower

Minpower

DL tx pwr perConnection [dBm]/ BLER [%]

time

Max

power

Minpower

DL tx pwr perConnection [dBm]/ BLER [%]

time

Maxpower

Minpower

DL tx pwr perConnection [dBm]/ BLER [%]

time

Max

power

Minpower

time

Max

power

Minpower

ref ref 

eff  RI 

 RI  RI 

  

   maxmax,

 fRabOffset  pichTo

CPICH tx

ref txC 

PP

Re

,

,

ref ref 

eff  RI 

 RI  RI 

  

   maxmax,

 fRabOffset  pichTo

CPICH tx

ref txC 

PP

Re

,

,

),( max _  _ ,max,max, DPCH txdpchref txeff tx P N P RI  MIN P

Page 22: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 22/67

 

DOCUMENTTYPE 22 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

In case there are a lot of UL AC rejections all the following parameters can have impact butonly in case the interference is in spiky in nature.

1.3.2 Testing Scenarios

Different set of parameters having an impact to the RAB establishment could be as follows:

 These parameters should always be tested carefully against the different UE types (testresults below are for Sanyo 801 UE and for AMR calls)

1.3.3 Tools & Test Procedure

 The tools for these tests could be UE logging tool (Kenny with Nemo) for AMR test.

 The procedure could be: make 50 short voice calls with different sets in moderate/goodcoverage and check and count the failures

Also PS calls could be tested.

1.3.4 Example results

 The network counters to look at RAB success are results could be related to RAB setupfails, RAB access fails and RAB active fails.

CPICHtoRefRABOff set and EbNoSetIdenti fier 

It can be seen that the best result can be achieved with the lowest CPICHtoRefRABOffsetvalue (which is expected result) however there seem to be hardly no (at least positive)impact on changing the EbNoSetIdentifier value.

Default Set1 Set2 Set3 Set4

EbNoSetIdentifier  1 2 3 2 2

CPICHRefRABoffset 0 0 0 -3 3

default set1 set2 set3 set4

A Call Setup Failure during RRC Connection Setup Phase (2.1) 0 0 0 0 0B Call Setup Failure during Access Phase due to RACH/FACH (2.2) 0 0 0 0 0C Call Setup Failure due to RRC Connection Reject (2.3) 0 1 0 0 0D Call Setup Failure due to NO RRC Connection Setup Complete (2.9) 0 0 0 0 0

E Call SetUp Failure due to No Initial Direct Transter (2.8) 0 0 0 0 0F Call Setup Failure during Security Procedure (2.5) 3 5 2 1 5G Call Setup Failure during RAB Setup procedure(Without Complete) (2.6) 0 2 1 0 0H Call Setup Failure during RAB Setup procedure(With Complete) (2.7) 0 0 0 0 0I Call Setup Success 27 22 22 29 25 J Ca Setup Faiure ue to Registration 2.4 0 0 0 0 0

 Total Atempt 30 30 25 30 30Call Setup Success 27 22 22 29 25Call Setup Success Ratio 90.00% 73.33% 88.00% 96.67% 83.33%

Page 23: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 23/67

 

DOCUMENTTYPE 23 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

1.4 Call Setup Success Rate (CSSR) & Time

CSSR depends on how well UE respond to the RB Reconfiguration or RB Setup. If UEdoes not have enough time to setup the lower layers for the new RB configuration then callsetup will fail. This could be improved by increasing the Activation Time Offset parameter.

Call setup time could be improved also with the change of SRB bit rate from 3.4kbps to13.6kbps but it would decrease the available Iub capacity for the calls also. This is due tothe reason that the SRB is not changed when reconfiguring to DCCH from CCCH.

So both call setup delay and access performance should be considered and balanced.

1.4.1 Parameters

Call Setup time can be improved by changing parameter  Activat ionTimeOffset and/orchanging the Signaling Radio B earer (SRB) bit rate.

Activation time offset in Nokia RAN is related to radio link setup (for CS data) and radio linkreconfiguration (for PS call).

ActivationTimeOffset part represent the processing delay of RNC and BTS. TheSignalingDelayOffset is RNC internal parameter that implies a required offset based on e.g.the SRB bit rate, the actual procedure and the lenght of a RRC message.

Connection Frame Number (CFN) is used in NBAP and RRC messages, when a radio linkis reconfigured. It is used to indicate the activation time of the reconfiguration, and it is setby the PS. The CFN, which is set to the "activation time" field in L3 messages, is (the CFNprovided by FP +(ActivationTimeOffset +SignalingDelayOffset)/10) mod 256.

Difference between CFN of Activation Time and FP_CFN is increase depend on theincreasing value of Activation Time offset.

SignalingDelayOffset is a hard-coded table of values as function of SRB bit rate, proceduretype and RAB type it was introduced in RAN1.5.2ED2 to optimise call setup delay. Thedelay is mapped as shown in next picture.

Page 24: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 24/67

 

DOCUMENTTYPE 24 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Note: In RAN04 the activation time offset is calculated in different way.

1.4.2 Testing Scenarios

Different Activation time offset parameters should be tested, also SRB bitrate will affectwhich value to use.

Parameter DefaultValue

Set1 Set2 Set3

 Activat ionTimeOffset 300 ms 700 ms 1000ms 1300ms

It should be noted however that ActivationTimeOffset change requires also that all the UEscan support the shorter times of sending the response to e.g. :

Radio Bearer Setup

Radio Bearer Reconfiguration

Service SRB 3,4 SRB 13,6AMR 280 70CS 280 70PS 200 502*PS 320 803*PS 440 110AMR + 1*PS 400 100

AMR + 2*PS 520 130AMR + 3*PS 640 160CS +1*PS 400 100CS +2*PS 520 130CS +3*PS 640 160

Service SRB 3,4 SRB 13,6

AMR 240 60CS 240 60PS 160 402*PS 280 703*PS 400 100AMR + 1*PS 360 90AMR + 2*PS 480 120AMR + 3*PS 600 150CS +1*PS 360 90CS +2*PS 480 120CS +3*PS 600 150

Service SRB 3,4 SRB 13,6All services 80 20

RB Procedures

Transport channel procedures

Physical channel and measurement pro cedures

Page 25: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 25/67

 

DOCUMENTTYPE 25 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Physical Channel Reconfiguration, etc.

ActivationTimeOffset tests has to be done for several different UEs in on field conditions tosee that all the UEs can respond within specified timers. Also the impact of cell reselectionduring the radio bearer setup should be verified.

In case certain UEs are having problems in responding to RB Setup (CS) or RBReconfiguration (PS) with complete, this can be seen as increase in PMI ticket :radio_connection_lost_c, timer_expired_c and counters: RAB_ACC_FAIL … MS (RBSetup) and RRC_CONN_ACT_FAIL_RNC (RB setup).

1.4.3 Tools & Test Procedure

 The tools for these tests are

1. Kenny (other Ues) with Nemo (other logging tools) for PS data test

 The procedure could be the following:

1. Make continious FTP download

2. 15 s Idle period

3. FTP transfer with 1 Mbyte file

4. Make steps 1-3 in SHO area also

1.4.4 Example Results

 The results what to look here is related to call setup success rate and call setup time.

Call setup success rate CSSR depend on the EcNo level. The figure below shows that withEc/No <-12 the CSSR is less than 95%

Page 26: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 26/67

 

DOCUMENTTYPE 26 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

In example pictureas below 5UEs for SANYO701 and 5UEs for SANYO801 are used. EachUE has10 calls so a total of 50calls for each AMR 701 and 801.

 The difference of the call setup time between ActivationTimeOffset of 1500ms and 200msis 1300ms, and between ActivationTimeOffset of 1500ms and 500ms is 1000ms

Call Setup Failu re & Time: AMR

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

  x  > -   4

 -   4  >  =  x  > -   6

 -   6  >  =  x  > -   8

 -   8  >  =  x  > -   1

   0

 -   1   0  >  =  x  > -   1

   2

 -   1   2  >  =  x  > -   1

   4

 -   1   4  >  =  x  > -   1

   6

 -   1   6  >  =  x  > -   1

   8

 -   1   8  >  =  x

Call SetUp Success Call SetUp Failure during RRC connection request phaseCall SetUp Failure during access phase due to RACH/FACH Call SetUp Failure due to RRC connection rejectCall SetUp Failure during security procedure Call SetUp Failure during RA B setup procedure(Without Complete)Call SetUp Failure during RAB setup procedure(With Complete) Call SetUp Failure due to No CM service erquest with RRC Connection SetUp CompleteCall SetUp Failure due to No RRC Connection SetUp Complete

Page 27: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 27/67

 

DOCUMENTTYPE 27 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Call Setup Failu re & Time: UDI

Call setup delay with di fferent SRBs

1 RRCConnectionRequest <=> RRCConnectionSetup

2 RRCConnectionSetup <=> RRCConnectionSetupComplete

3 RRCConnectionSetupComplete <=> MM CM Serv ice Request

4 MM CM Service Request <=> MM Authentication Request

5 MM Authentication Request <=> MM Authentication Response

6 MM Authentication Res ponse <=> SecurityModeCommand  

7 SecurityModeCommand <=> SecurityModeComplete

8 SecurityModeComplete <=> CC SetUp

9 CC SetUp <=> CC Call Proceeding

10 CC Call Proceeding <=> RadioBearerSetup

11 RadioBearerSetup <=> RadioBearerSetupComplete

12 RadioBearerSetupComplete <=> CC Alerting

Page 28: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 28/67

 

DOCUMENTTYPE 28 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Change of SRB Bit rate

UE

SRB (kbps)

Offset (msec) 200 1500 200 1500 200 1500 200 1500 200 1500 200 1500

117(CONNECT ACKNOWLEDGE) 3.766 5.045 3.671 4.734 3.434 5.087 2.873 4.115 3.780 5.090 2.959 4.220

Difference -1.279 -0.000 -1.374 -0.311 -1.653 -0.000 -2.214 -0.972 -1.310 -0.000 -2.131 -0.870

NECv3.25 Kenny1389 SHARP

3.4k 13.6k 3.4k 13.6k 3.4k 13.6k

Page 29: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 29/67

 

DOCUMENTTYPE 29 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Also the RRC Connection Access phase Success Rate should be evaluated whenchanging the SRB bit rate. For some UEs there might be improvement with higher SRB bit

rate (in this case Sanyo / Sharp UEs are mainly use).

94

95

96

97

98

99

100

   1   5  /  0   7  /   2  0

  0  4

   1  6  /  0   7  /   2  0

  0  4

   1   7  /  0   7  /   2  0

  0  4

   1  8  /  0   7  /   2  0

  0  4

   1  9  /  0   7  /   2  0

  0  4

   2  0  /  0   7  /   2  0

  0  4

   2   1  /  0   7  /   2  0

  0  4

   2   2  /  0   7  /   2  0

  0  4

   2   3  /  0   7  /   2  0

  0  4

   2  4  /  0   7  /   2  0

  0  4

   2   5  /  0   7  /   2  0

  0  4

   2  6  /  0   7  /   2  0

  0  4

   2   7  /  0   7  /   2  0

  0  4

   2  8  /  0   7  /   2  0

  0  4

   2  9  /  0   7  /   2  0

  0  4

   3  0  /  0   7  /   2  0

  0  4

   3   1  /  0   7  /   2  0

  0  4

  0   1  /  0  8  /   2  0

  0  4

  0   2  /  0  8  /   2  0

  0  4

  0   3  /  0  8  /   2  0

  0  4

  0  4  /  0  8  /   2  0

  0  4

  0   5  /  0  8  /   2  0

  0  4

  0  6  /  0  8  /   2  0

  0  4

  0   7  /  0  8  /   2  0

  0  4

  0  8  /  0  8  /   2  0

  0  4

  0  9  /  0  8  /   2  0

  0  4

   1  0  /  0  8  /   2  0

  0  4

   1   1  /  0  8  /   2  0

  0  4

   1   2  /  0  8  /   2  0

  0  4

   1   3  /  0  8  /   2  0

  0  4

   1  4  /  0  8  /   2  0

  0  4

   1   5  /  0  8  /   2  0

  0  4

   1  6  /  0  8  /   2  0

  0  4

   1   7  /  0  8  /   2  0

  0  4

RRC Setup SuccessRate RRC Access SuccessRate RRC Setup & Access SuccessRate

SRB 13.6kbpsSRB 3.4kbps

Page 30: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 30/67

 

DOCUMENTTYPE 30 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

2. SHO PERFORMANCE

 The focus for soft handover tests mainly related to optimize SHO overhead, SHO successrate and average Active set size (and active set update period). Also call drop rate shouldbe checked with different sets.

It is not possible to optimize only SHO Over Head but also dropped call rates and SHOsuccess rate (how many measurement reports are responded successfully) must beconsidered.

Also change of SHO will have impact into

Throughput

Rate of bit rate modifications (how many upgrades and downgrades)

 The SHO failures are mainly related to

Initial Synchronization Failure of the new added RL

Active Synchronization Failure of the existing RL(s)

Some typical SHO OverHeads are:

Soft handover overhead distribution on cell basis shown below

Median value 49% on cell basis (no weighting with traffic)

Average value 47% (with traffic weighting)

0 50 100 150 2000

100

200

300

400

500

600

Page 31: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 31/67

 

DOCUMENTTYPE 31 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

It should be noted that during RAB Assignment procedure (i.e. between RAB AssignmentRequest and RAB Assignment Response) the SHO activation is not possible ->measurement reports are rejected (e1a and e1c) or buffered (e1b); from UE logs point of view between CALL PROCEEDING and ALERTING.

 This known restriction (parallel procedure not allowed) is not taken into account by thecounters i.e. all the Measurement Report repetition counters for SHO are updated asfailures.

2.1 Parameters

 The parameters related to SHO performance are listed below.

  CPICH EcNo Filter Coeffi cient (EcNoFilt erCoefficient) 

In the CELL_DCH state the UE physical layer measurement period for intrafrequency CPICH Ec/No measurements is 200 ms. The Filter Coefficient parametercontrols the higher layer filtering of physical layer CPICH Ec/No measurementsbefore the event evaluation and measurement reporting is performed by the UE.

   Addi tion Window (Add it ionWindow) 

Addition Window determines the relative threshold (A_Win) used by the UE tocalculate the reporting range of event 1A.

   Addi tion Time (Addit ionTime) 

When a monitored cell enters the reporting range (addition window), the cell mustcontinuously stay within the reporting range for a given period of time before the UEcan send a Measurement Report to the RNC in order to add the cell into the activeset (event 1A).

  Drop Window (Drop Window) 

Drop Window determines the relative threshold (D_Win) which is used by the UE tocalculate the reporting range of event 1B.

  Drop Time (DropTime) 

When an active set cell leaves the reporting range (drop window), the cell mustcontinuously stay outside the reporting range for a given period of time before theUE can send a Measurement Report to the RNC in order to remove the cell from theactive set (event 1B).

 Replacement Window (ReplacementWindow)

When the number of cells in the active set has reached the maximum specified bythe parameter MaxActiveSetSize and a monitored cell becomes better than anactive set cell, the UE transmits a Measurement Report to the RNC in order toreplace the active cell with the monitored cell (event 1C).

  Replacement Time (ReplacementTime)

Page 32: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 32/67

 

DOCUMENTTYPE 32 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

When the number of cells in the active set has reached the maximum, and a  monitored cell enters the reporting range (replacement window), the monitored cellmust continuously stay within the reporting range for a given period of time beforethe UE can send a Measurement Report to the RNC in order to replace an active setcell with the monitored cell (event 1C). 

  Maximum Active Set Si ze (MaxActiveSetSize)

 This parameter determines the maximum number of cells which can participate in asoft/softer handover.

   Acti ve Set Weighting Coeeficient (Act iveSetWeightingCoeff ic ient ) 

Active Set Weighting Coefficient (W) is used to weight either the measurementresult of the best active set cell (M_best) or the sum of measurement results of allactive set cells (M_sum) when the UE calculates the reporting range for the events1A (cell addition) and 1B (dropping of cell).

Parameters Default value

CPICH Ec/No Filter Coefficient 600 ms

Addition Window 2.5 dB

Addition Time 100ms

Drop Window 4 dB

Drop Time 640

Replacement Window 2 dB

Replacement Time 100 ms

Maximum Active Set Size 3

Active Set Weighting Coefficient 0

 The following parameters are not necessary to be tested:

CPICH Ec/No Filtering Co-efficient

Addition Time & Drop time

Replacement time

Comentario [SGy1]: 4

Page 33: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 33/67

 

DOCUMENTTYPE 33 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

2.2 Tools & Test Procedures

 The tools for these tests are

1. Logging tool for voice, UDI and PS (1 service at one time), also Nokia UEs withNemo tool

2. Scanner

 The test procedure could be the following (close to cell edge):

1. Start Scanner and logging UE (Nokia, Sanyo etc) for continious call in a givenroute

2. Make continious AMR call in a given route (60min), record and check result.

3. Make continious UDI call in a given route (60 min), record and check result.

4. Make continious PS call (60 min, 1 MB file size), record and check result.

5. Chang parameters as following set. Repeat steps 1-4 again

6. Change parameter back to orignal value

Different soft handover parameters will help syncronisation problems between radio links.When new radio link is added to the Active set the L1 synchronisation between the UE andthe added BTS must be achieved. The UL/DL synchronisation procedures are needed toestablish reliable new connection between BTS and UE.

Some of the initial synchronisation failures are due to the fact that there can be differencein the UL noise rise levels of the adjacent cells.

In case, a lot of initial synchronisation failures for SHO links are seen then one possibility isto try to reduce those by delaying the additions.

Based on the picture above the Cell B might not hear the UE at all when the SHO isinitiated (based on DL Ec/No). This should be clarified from the PrxTotal measurementsand counters.

Normal cell =UL & DLcoverage are balanced

Cell having increased ULinterference level =DL(CPICH) coverage biggerthan UL coverage

Cell A Cell B

Normal cell =UL & DLcoverage are balanced

Cell having increased ULinterference level =DL(CPICH) coverage biggerthan UL coverage

Cell A Cell B

Page 34: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 34/67

 

DOCUMENTTYPE 34 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Active synchronisation failures can be caused by all the restrictions there is to execute theSHO algorithm (i.e. to add new cell or do replacement) and therefore the SHO is delayedand the UE is hanging in poor cell.

-Parallel processes (e.g. RB Reconfiguration on going)

-Previous SHO procedure not completed (e.g. ASU complete message notreceived)

Or then just the AS modification is initiated too late and the signal from the existingconnection degrades very rapidly causing RL failure before AS modification can beinitiated.

In case there are a lot of Active Synchronisation Failures detected, one action could be toadvance the SHO activity e.g. using cell individual offsets or in general use different FMCS

(usually these conditions are improved when addition is done earlier e.g. add 4dB and drop6dB).

For the above case, it is desirable to change the timing by applying ADJSEc/Nooffset

 There are some cases that drops happened because H/O timing was delayed(Actually it is difficultto judge as there are many cases that drops happened with no respond of Measurement Reportregardless of the level). It is possible that such case happensat some places like shadow of building, tunnel, and gate way of elevated road where dominant can be changed suddenly.

When UE sends Report, it does not have enough level to receive ActiveSetUpdate Msg. Therefore, there are possibilities that call drop happenedbecause of H/O failure.

It can be avoided by setting earlier timing (timing for sending outMeasurement report )of H/O between targeted cells.

Use FMC parameter Use ADJSEcNooffset

Impact all of FMCtargeted areas

Impact only between 2targeted cells

 There are some cases that drops happened because H/O timing was delayed(Actually it is difficultto judge as there are many cases that drops happened with no respond of Measurement Reportregardless of the level). It is possible that such case happensat some places like shadow of building, tunnel, and gate way of elevated road where dominant can be changed suddenly.

When UE sends Report, it does not have enough level to receive ActiveSetUpdate Msg. Therefore, there are possibilities that call drop happenedbecause of H/O failure.

It can be avoided by setting earlier timing (timing for sending outMeasurement report )of H/O between targeted cells.

Use FMC parameter Use ADJSEcNooffset

Impact all of FMCtargeted areas

Impact only between 2targeted cells

Page 35: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 35/67

 

DOCUMENTTYPE 35 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

2.3 Testing Scenarios/Example Results

Below is one example sets related to CPICH EcNo filter co-efficient and replacement timeto be tested in the field.

Based on this example the suggestion for the optium set is below (based on call drop rate)

SHO Tuning: CPICH Ec/No Fil ter Coefficient

Parameters Value

Addition Window (dB) 2.5

Addition Time (ms) 100

Drop Window (dB) 4

Drop Time (ms) 640

Replacement Window (dB) 2

Replace Time (ms) 100

Maximum Active Set Size 3

CPICH Ec/No filter Coefficient 0, 1, 2, 3, 4, 5, 6

Active Set Weighting Coefficient 0

0 (200ms)2 (400ms)

3 (600ms), default

By comparing the results of different parameter sets,the default value3should

be the optimal one---highest SHO gain, good KPIsand proper SHO overhead.

3 (600ms), default

4 (800ms)

5 (1100ms)

6 (1600ms)

By comparing the

results of differentparameter sets, the

default value3shouldbe the optimal one---

highest SHO gain,good KPIs and proper

SHO overhead.

0 (200ms)2 (400ms)

3 (600ms), default

By comparing the results of different parameter sets,the default value3should

be the optimal one---highest SHO gain, good KPIsand proper SHO overhead.

3 (600ms), default

4 (800ms)

5 (1100ms)

6 (1600ms)

By comparing the

results of differentparameter sets, the

default value3shouldbe the optimal one---

highest SHO gain,good KPIs and proper

SHO overhead.

Cluster Suggestion

Apr, J P Default Proposal1 Proposal2 Default *1 NewSet 1 &9 Additional New Set New Set

CPICH Ec/No filter co-efficient 02

(400msec)2

(400msec)2

(400msec)3

(600msec)3

(600ms)3

(600ms)3

(600ms)Addition Window 2 2.5 3 2 2 2 2 2Addition Time 320 160msec 320 320 320 320 320 320Drop Window 6 dB 4 dB 6 dB 6 6 6 6 6Drop Time 640 640ms 640ms 640 640 640 640 640

Replacement Window 2 dB 2 dB 2 dB 2 2 2 2 2Replacement Time 320 160ms 320ms 320 100 160 100 320

FMCS HOPS Parameter Area1 RNC X & Y Clus ter Sug gest ion

Apr, J P Default Proposal1 Proposal2 Default *1 NewSet 1 &9 Additional New Set New Set

CPICH Ec/No filter co-efficient 02

(400msec)2

(400msec)2

(400msec)3

(600msec)3

(600ms)3

(600ms)3

(600ms)Addition Window 2 2.5 3 2 2 2 2 2Addition Time 320 160msec 320 320 320 320 320 320Drop Window 6 dB 4 dB 6 dB 6 6 6 6 6Drop Time 640 640ms 640ms 640 640 640 640 640

Replacement Window 2 dB 2 dB 2 dB 2 2 2 2 2Replacement Time 320 160ms 320ms 320 100 160 100 320

FMCS HOPS Parameter Area1 RNC X & Y

Page 36: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 36/67

 

DOCUMENTTYPE 36 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

SHO Tuning: Addi tion and Drop Time

SHO Tuning: Addi tion and Drop Windod

Page 37: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 37/67

 

DOCUMENTTYPE 37 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Page 38: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 38/67

 

DOCUMENTTYPE 38 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

SHO Tuning: Maximum Active Window Set Size

Page 39: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 39/67

 

DOCUMENTTYPE 39 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

SHO Tuning: Active set Weighting coefficient

 The active set weighting coefficient has been noted to improve the DCR as well as the DLBLER for certain UEs

 This is most likely due to that some UEs have problems in proessing power and in case of 3 Radio Links in Active Set the processing power runs out and the UE performance interms of BLER and DCR can be degraded

Default Set Set1 Set2

 Active Set Weight Coeff icient 0 1 0.5

 ALL 1 0.5 0

Dominant Ec/Io (dB) -7.68 -7.68 - 7.63Combined Ec/Io (dB) -5.79 -5.71 - 5.81BLER 0.38 0.61 0.65

Active Set NumCell 1.25 1.31 1.36

 ALL 1 0.5 0

Dominant Ec/Io (dB) -7.06 - 6.72 - 7.07Combined Ec/Io (dB) -6.68 - 6.18 - 6.54BLER 0.81 0.64 1.73

Active Set NumCell 1.19 1.28 1.30

Num of Measurement report msg for each event

 AMR UDI Kenny

 Average value (Dominant Ec/No, Combined Ec/No, BLER, ActiveSet Num cell)

 AMR UDI

 ALL 1 0.5 0

1a 250 204 152

1b 219 186 1441c 18 43 29

 ALL 1 0.5 0

1a 206 180 168

1b 170 176 1471c 21 17 74

 ALL 1 0.5 0

1a 26 195 168

1b 23 186 1471c 26 52 74

 ALL 1 0.5 0

Drop 2 2 3 ALL 1 0.5 0

1 3 7

 ALL 1 0.5 0

0 0 0

Num of Drop

 AMR UDI Kenny

Sanyo

Ec/No [dB]

Add threshold W=0 : -4dB

Add threshold W=0.5 : -3.4dB

drop threshold W=0 : -8dB

drop threshold W=0.5 : -6.55dB

W=0: SHO window :Add – Drop =4dB

W=0.5: SHO window :Add – Drop =3.15dB

(SC1:- 2dB, SC2:- 4dB, SC3:- 7dB)

[ActiveSet: SC1 and SC3]

[ActiveSet: SC1, SC2 and SC3]

• SHO activity (Add、Remove) should increase

(i.e. measurementreports(Add、Remove))

• Average Active Set Sizeshould decrease

• SHO overhead should

decrease• Active Set Size=3 should

decrease

• Replacement amountshould decrease

Page 40: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 40/67

Page 41: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 41/67

 

DOCUMENTTYPE 41 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

 This parameter defines, in bytes, the threshold of data in the RLC buffers of SRB0, SRB1, SRB2, SRB3, SRB4 and all NRT RBs that triggers the uplinktraffic volume measurement report, when the UE is in Cell_FACH state.

  Uplink traffic volume measurement time to trigger  (TrafVolTimeToTriggerUL)

 This parameter defines, in ms, the period of time between the timing of eventdetection and the timing of sending a traffic volume measurement report.

  Uplink traffic volume measurement pending t ime after tri gger 

(TrafVolPendingTimeUL)

 This parameter indicates the period of time, in seconds, during which it isforbidden to send any new traffic volume measurement reports with thesame measurement ID, even if the triggering condition is fulfilled again.

  UL/DL Activation Timer 

 This timer is used on MAC -c to detect idle periods on data transmission(NRT RBs and SRBs) for the UE, which is in Cell_FACH state. Based on thistimer the MAC -c shall give the No_Data indication to the RRC, which furthercan change the state of the RRC from Cell_FACH state to the Cell_PCHstate (or URA_PCH state).

  InactivityTimerDownlinkDCHxxx (xxx=8, 16,32,64,128,256,384 kbits/s)

 The time indicating how long the radio and transmission resources arereserved after silence detection on downlink DCH before release procedures.

 The Cell_PCH to Idle mode state transitions can be controlled by two parameters:

  MSActivitySupervision timer 

   And periodical cel l update t imer T305

Parameters Default Value

 TrafVolThresholdULLow 128 bytes

 TrafVolThresholdDLhigh 1024 bytes

 TrafVolTimeToTriggerUL 0 ms

 TrafVolPendingTimeUL 2000ms

UL/DL Activity timer 20s

InactivityTimerDownlinkDCH 2s-5s

Page 42: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 42/67

 

DOCUMENTTYPE 42 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

It is recommended to test UL/DL activation timer: This timer is set when the MS istransferred to CELL_FACH state due to inactivity, or MS inactivity is detected inCELL_FACH state.

Default value: 20s

Also it is recommended to test different InactivityTimerDownlinkDCH values. If there is lot of PS traffic then smaller (2s-3s) timer for this parameter will save DCH capacity.

MSActivitySupervision timer is used in RRC states CELL_PCH (and URA_PCH) forsupervising the inactivity of NRT RAB(s).

 Timer is started when a state transition to either of these states is executed.

MSActivitySupervision timer is stopped when any activity of NRT RAB(s) is detected and

the UE is moved to CELL_FACH or CELL_DCH state.

 Timer is restarted (from the initial value) when the inactivity of NRT RAB(s) detected againand the UE is moved back to the CELL_PCH or URA_PCH again.

In expiry of the MSActivitySupervision timer when the first "inactive state indication" (i.e.Cell/URA Update, which does not cause the (re)initiation of the signaling or data flow) isreceived from the MS, the RNC asks SGSN to release the Iu connection.

Note: If the parameter value is set to zero:

state transition to Cell_PCH/URA_PCH is not allowed when inactivity is detected inCell_FACH state, the UE will be switched to the Idle Mode

when the DCH specific inactivity timers (InactivityTimerUplinkDCH andInactivityTimerDownlinkDCH) is/are set to value ‘DCH inactivity supervision notused’, the UE will be switched to the Idle Mode within 5 minutes (an internal fixed-value timer in RRC entity) when inactivity is detected in Cell_DCH state

3.1.2 Testing Scenarios

As already said above the different inactivity timers (InactivityTimerDownlinkDCH, range 2-5s) could be tested to see how much they affect to RRC/RAB failure due toincreased/decreased DCH holding time. These KPIs could be taken from network statistics.

One interesting test is related to Downlink Traffic Volume measurement high thresholdparameter.

From the FTP Download result of test, it is said that big volume data downloading such as

FTP can complete faster when upgraded to 384kbps(in case of15000- 20000 byte andhigher). This kind of necessary upgrade to 384kbps still works even after the parameterchange to 3072 byte.

Parameter Default Set1 Set2 Set3 TrafVolThresholdDLHigh 1024 bytes 2048 bytes 3072 bytes 4096 bytes

Page 43: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 43/67

 

DOCUMENTTYPE 43 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

3.1.3 Tools & Test Procedure

 The tools needed in these tests are:

1. Ue logging tool (Kenny with Nemo)

2. Nethawk/ISCU logging tool

 The test procedure could be like (Use different routes with/without SHO and in weakcoverage area)

1. Make PS call for different data volumes(5 kB, 10kB, 100kB, 500 kB, 1MB)downloading from FTP server. Test could be also done for MMS with smaller data

volumes (1 kB, 2kB, 3kB, 10 kB)

2. At the same, take the Nethawk/ISCU log

3. Stop the logging if UE go to CelL-FACH or Idle or leave the cell (SHO)

4. Change back parameter after testing

3.1.4 Example Results

Below are some results from different DL traffic volume threshold parameter(TrafVolThresholdDLhigh). From the results can be seen the total time spend indownloading the data and the how much there have been readio beared reconfigurations.

Page tests (small data up to 10 kB):

Num of used bearer status f or each parameter set

Bearer Status: the transition of the Bearer and state to show the page form the Idle state to completion

Page 44: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 44/67

 

DOCUMENTTYPE 44 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Average download time with certain inactivity timers for all pages:

MMS and FTP results (bigger amount of data:

OSS statistics : Radio bearer holding time and the total sum of Bitrate usage (64,128 and384 kbits/s)

 Average of t he B-Time and W-Time for each beare status (unit: second)

B-Time: From the first radio bearer reconfiguration(initial 64k)to download activati on completion

[Time of radio bearer reconfiguration(for cell- FACH) af ter download completion] - [Time of First radio bearer reconfiguration(for init ial)]

- Inact ivit yTimerDownlinkDCH(384k->2s, 128k->2s, 64k->3s)

W-Time: From the starting to show the page(push the button) in the Idle stateto complet ion t o show the page(Progress bar completion)

Bearer stat us and Download t ime (Long Mail)

Bearer status and Download t ime (FTP)

B-Time: From the fi rst radio bearer reconfiguration(init ial 64k) to download activationcompletion

[Time of DEACTIVATE PDP CONTEXT REQUEST] - [Time of First radio bearer reconfigurat ion(for i nit ial) ]

W-Time: From the starting to show the page(push the butt on) in the Idle state to completionto show the page(Progress bar complet ion)

In MMS test, all cases completed downloading faster with 64k (wit hout upgrading to

384k) as far as the Mail Volume(Max.12kB) we have tested this time is concerned.

In FTP test, File Downloading for 10kB or bigger f ile upgraded to 384k in all cases.

Page 45: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 45/67

 

DOCUMENTTYPE 45 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

3.2 Dynamic Link Optimisation

With Dynamic Link Optimisation feature the bitrate performance could be optimized bycomparing throughput, the usage of DL PtxDPCH power and CPICH EcNo values witheach other.

Coverage expectation could be verified with link budget calculations. Thus the requiredEc/No and Path loss may be needed for each area. (Characteristic is decided by speed,bitrate, and load) ->Cell Range

Below are some examples of cell ranges

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

   0   4   /   1   2   /   1

   0   4   /   1   2   /   2

   0   4   /   1   2   /   3

   0   4   /   1   2   /   4

   0   4   /   1   2   /   5

   0   4   /   1   2   /   6

   0   4   /   1   2   /   7

   0   4   /   1   2   /   8

   0   4   /   1   2   /   9

   0   4   /   1   2   /   1   0

   0   4   /   1   2   /   1   1

   0   4   /   1   2   /   1   2

   0   4   /   1   2   /   1   3

   0   4   /   1   2   /   1   4

   0   4   /   1   2   /   1   5

   0   4   /   1   2   /   1   6

   0   4   /   1   2   /   1   7

   0   4   /   1   2   /   1   8

   0   4   /   1   2   /   1   9

   0   4   /   1   2   /   2   0

   0   4   /   1   2   /   2   1

   0   4   /   1   2   /   2   2

   0   4   /   1   2   /   2   3

   0   4   /   1   2   /   2   4

   0   4   /   1   2   /   2   5

   0   4   /   1   2   /   2   6

   0   4   /   1   2   /   2   7

   0   4   /   1   2   /   2   8

   0   4   /   1   2   /   2   9

   0   4   /   1   2   /   3   0

   0   4   /   1   2   /   3   1

   0   5   /   1   /   1

   0   5   /   1   /   2

   0   5   /   1   /   3

   0   5   /   1   /   4

   0   5   /   1   /   5

   0   5   /   1   /   6

   0   5   /   1   /   7

   0   5   /   1   /   8

   0   5   /   1   /   9

   0   5   /   1   /   1   0

   0   5   /   1   /   1   1

   0   5   /   1   /   1   2

   0   5   /   1   /   1   3

   0   5   /   1   /   1   4

   0   5   /   1   /   1   5

   0   5   /   1   /   1   6

   0   5   /   1   /   1   7

   0   5   /   1   /   1   8

   0   5   /   1   /   1   9

   0   5   /   1   /   2   0

   0   5   /   1   /   2   1

   0   5   /   1   /   2   2

   0   5   /   1   /   2   3

   0   5   /   1   /   2   4

   0   5   /   1   /   2   5

   0   5   /   1   /   2   6

   0   5   /   1   /   2   7

   0   5   /   1   /   2   8

   0   5   /   1   /   2   9

   0   5   /   1   /   3   0

   0   5   /   1   /   3   1

Ratio_DUR_PS_BACKG_64_DL_IN_SRNC Ratio_DUR_PS_BACKG_128_DL_IN_SRNCRatio_DUR_PS_BACKG_384_DL_IN_SRNC

0

20000000

40000000

60000000

80000000

100000000

120000000

   0   4   /   1   2   /   1

   0   4   /   1   2   /   2

   0   4   /   1   2   /   3

   0   4   /   1   2   /   4

   0   4   /   1   2   /   5

   0   4   /   1   2   /   6

   0   4   /   1   2   /   7

   0   4   /   1   2   /   8

   0   4   /   1   2   /   9

   0   4   /   1   2   /   1   0

   0   4   /   1   2   /   1   1

   0   4   /   1   2   /   1   2

   0   4   /   1   2   /   1   3

   0   4   /   1   2   /   1   4

   0   4   /   1   2   /   1   5

   0   4   /   1   2   /   1   6

   0   4   /   1   2   /   1   7

   0   4   /   1   2   /   1   8

   0   4   /   1   2   /   1   9

   0   4   /   1   2   /   2   0

   0   4   /   1   2   /   2   1

   0   4   /   1   2   /   2   2

   0   4   /   1   2   /   2   3

   0   4   /   1   2   /   2   4

   0   4   /   1   2   /   2   5

   0   4   /   1   2   /   2   6

   0   4   /   1   2   /   2   7

   0   4   /   1   2   /   2   8

   0   4   /   1   2   /   2   9

   0   4   /   1   2   /   3   0

   0   4   /   1   2   /   3   1

   0   5   /   1   /   1

   0   5   /   1   /   2

   0   5   /   1   /   3

   0   5   /   1   /   4

   0   5   /   1   /   5

   0   5   /   1   /   6

   0   5   /   1   /   7

   0   5   /   1   /   8

   0   5   /   1   /   9

   0   5   /   1   /   1   0

   0   5   /   1   /   1   1

   0   5   /   1   /   1   2

   0   5   /   1   /   1   3

   0   5   /   1   /   1   4

   0   5   /   1   /   1   5

   0   5   /   1   /   1   6

   0   5   /   1   /   1   7

   0   5   /   1   /   1   8

   0   5   /   1   /   1   9

   0   5   /   1   /   2   0

   0   5   /   1   /   2   1

   0   5   /   1   /   2   2

   0   5   /   1   /   2   3

   0   5   /   1   /   2   4

   0   5   /   1   /   2   5

   0   5   /   1   /   2   6

   0   5   /   1   /   2   7

   0   5   /   1   /   2   8

   0   5   /   1   /   2   9

   0   5   /   1   /   3   0

   0   5   /   1   /   3   1

DUR_PS_BACKG_64_DL_IN_SRNC DUR_PS_BACKG_128_DL_IN_SRNCDUR_PS_BACKG_384_DL_IN_SRNC

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

   0   4   /   1   2   /   1

   0   4   /   1   2   /   2

   0   4   /   1   2   /   3

   0   4   /   1   2   /   4

   0   4   /   1   2   /   5

   0   4   /   1   2   /   6

   0   4   /   1   2   /   7

   0   4   /   1   2   /   8

   0   4   /   1   2   /   9

   0   4   /   1   2   /   1   0

   0   4   /   1   2   /   1   1

   0   4   /   1   2   /   1   2

   0   4   /   1   2   /   1   3

   0   4   /   1   2   /   1   4

   0   4   /   1   2   /   1   5

   0   4   /   1   2   /   1   6

   0   4   /   1   2   /   1   7

   0   4   /   1   2   /   1   8

   0   4   /   1   2   /   1   9

   0   4   /   1   2   /   2   0

   0   4   /   1   2   /   2   1

   0   4   /   1   2   /   2   2

   0   4   /   1   2   /   2   3

   0   4   /   1   2   /   2   4

   0   4   /   1   2   /   2   5

   0   4   /   1   2   /   2   6

   0   4   /   1   2   /   2   7

   0   4   /   1   2   /   2   8

   0   4   /   1   2   /   2   9

   0   4   /   1   2   /   3   0

   0   4   /   1   2   /   3   1

   0   5   /   1   /   1

   0   5   /   1   /   2

   0   5   /   1   /   3

   0   5   /   1   /   4

   0   5   /   1   /   5

   0   5   /   1   /   6

   0   5   /   1   /   7

   0   5   /   1   /   8

   0   5   /   1   /   9

   0   5   /   1   /   1   0

   0   5   /   1   /   1   1

   0   5   /   1   /   1   2

   0   5   /   1   /   1   3

   0   5   /   1   /   1   4

   0   5   /   1   /   1   5

   0   5   /   1   /   1   6

   0   5   /   1   /   1   7

   0   5   /   1   /   1   8

   0   5   /   1   /   1   9

   0   5   /   1   /   2   0

   0   5   /   1   /   2   1

   0   5   /   1   /   2   2

   0   5   /   1   /   2   3

   0   5   /   1   /   2   4

   0   5   /   1   /   2   5

   0   5   /   1   /   2   6

   0   5   /   1   /   2   7

   0   5   /   1   /   2   8

   0   5   /   1   /   2   9

   0   5   /   1   /   3   0

   0   5   /   1   /   3   1

Sum of DUR_PS_BACKG

Each Duration(Bearer holding time)[left top graph ] and the tot al sum (64k、128k、384k)[ left bottom graph] had almost tri pled f rom End of Dec, 2004 unti lt he mid-Jan. of 2005.

The ratio of each Bearer fr om total sum [r ight t op graph] remains almost i n thesame level as below:

64k→ about 69%、128k→ about 2%、384k→ 29%

Due to TrafVolThresholdDLHigh change done on Jan 21, t he rati o changed to:

64k→ about 84%、128k→ about 0.6%、384k→ 15%

384k ratio reduced almost by half.

Since Users for small volume data such as Vodafone Live! & MMS completeddownloading without upgrading t o 384kbps, the ratio seems to be reduced. Thismeans unnecessary upgrading to 384kbps is eli minated and eff icient use of capacity achieved.

1024kB 3072kBTrafVolDLThreHigh = 1024kB 3072kBTrafVolDLThreHigh =

1024kB 3072kBTrafVolDLThreHigh =

Page 46: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 46/67

 

DOCUMENTTYPE 46 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

 The cell range is the result of Link budget calculation tables below with the worst services(e.g. CS64). This same link budget table is used in estimating trigger point for downgrade. 

As shown in link budget, the services coverage is controlled by various parameters. Thoseparameters in RAN parameter are

Total WPA power (20 W or 8W)

Max Power per connection is selected by the minimum of these criteria

PtxDPCHMax (WBTS) =-3dB(meaning WPA – 3 dB=40 dBm or 36 dBm)

CPICHRefRABOffset

PtxDLAbsMAX (NRT only)

Pmax: UE power =21dBm, 24 dBm

With the mentioned parameter, one could use to allow pathloss to consider the possiblethreshold to be used.

For example, Metro 8W WPA:

Total WPA power =8W

Max Power per connection is selected by one of these criteria

PtxDPCHMax (WBTS) =-3 dB (meaning 36 dBm)

Page 47: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 47/67

 

DOCUMENTTYPE 47 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

From CPICHRefRABOffset calculation, Max Ptx =40.18 dBm

PtxDLAbsMAX (NRT only) =to be tested

 Therefore, the max power per connection is min(36dBm,PtxDLAbsMax) and this will bethe bottleneck for PS384 coverage as UE power is not limitation. (referred to belowresult)

As a result, the parameter test set for PtxDLAbsMax will be 36 dBm or lower.

3.2.1 Parameters

 The parameters having impact on the PS data performance are described below.

  Planned maximum downli nk transmission power of a radio link

(PtxDLabsMax)

 The planned maximum downlink transmission power of radio link. This parameter isused in the downlink power allocation when CCTrCH includes one or more DCH's of interactive or background traffic class RAB's.

  Initial and Minimum Allowed Bit RateDL (MinAllowedBitRateDL)

 This parameter defines the minimum allowed bit rate in downlink that can beallocated by the PS.

  Maximum downl ink b it rate fo r PS domain NRT data (MaxBitRateDLPSNRT) 

 This parameter defines the maximum downlink user bit rate allowed in a cell for anNRT PS domain RAB.

Parameters Default Value

PtxDlabsmax 50 dBm

MinAllowedBitRateDL  64 kbps

MaxBitRateDLPSNRT 384 kbps

Page 48: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 48/67

 

DOCUMENTTYPE 48 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

3.2.2 Testing Scenarios

 Target for tests are to take sample to make statistic for CPICH value, BitRate, Throughputand PtxDPCH and specially verify the relationship of those to link power PtxDPCH.

Also BitRate performace (throughput per bitrate) could be verified

Below are some testing scenarios to be tested.

 The load case could be generated with second UE having UDI call.

Other set could be as following:

3.2.3 Tools & Test Procedure

 The tools needed in these tests are:

3. Ue logging tool (Kenny with Nemo)

4. Scanner

5. Nethawk/ISCU logging tool

 There will be different test procedures for fixed bitrate / moving test. For fixed bitrate theprocedure could be like

5. Make PS call for 2M downloading from FTP server.

Default Set1 Set2PtxDLab sMax 43 43 38 or 36InitialAndMinimumAllowedBitrateDL 384kbps 64kbps 64kbpsMaxBitRateDLPSNRT 384kbps 384kbps 384kbps

Ref Name Priori ty Parameter Values Test* Time

PS_01 FIX RATE TEST FOR URBAN

AREA (CELL EDGE)

P1 MaxBitRateDLPSNRT

MinAllowedBitRateDL

Max/Min =

384/384, 128/128, 64/64

M 1day

PS_ 02 FIX RATE TEST FOR RURALAREA (COVERAGE EDGE)

P1 MaxBitRateDLPSNRT

MinAllowedBitRateDL

Max/Min =

384/384, 128/128, 64/64

M 1day

PS_03 FIX RATE TEST with Load (LOADCONDITION)

P1 MaxBitRateDLPSNRT

MinAllowedBitRateDL

Max/Min =

384/384, 128/128, 64/64

M 1day

PS_04 MOVING TEST FOR URBANAREA

P1 PtxDLabsMax

Ptx_DPCH_max

Parameter set is decidedaccording to the result of P1-3

A 3days

PS_ 05 MOVING TEST FOR RURALAREA

P1 PtxDLabsMax

Ptx_DPCH_max

Parameter set is decidedaccording to the result of P1-3

A 3days

TOTAL (days)  9

Page 49: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 49/67

 

DOCUMENTTYPE 49 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

6. Call is not released after comlpeted the 2M downloading and download again

7. At the same, take the Nethawk/ISCU log.

8. Stop the logging if UE go to CelL-FACH or Idle or leave the cell (SHO)

9. Performed the test for different BTS type (Supreme, Metrosite)

10. Change back parameter after testing

For bitrate change (different max and min bitrate in the cell) the procedure could be

1. Make PS call for 1M downloading from FTP server.

2. Call is released after completed the 1M downloading and setup again

3. At the same, take the Nethawk/ICSU log.

4. Change back parameter after testing

3.2.4 Example Results

 The results will be related to the

PtxDCH vs CPICH RSCP (for each BitRate)

PtxDCH vs CPICH Ec/No (for each BitRate)

Time vs PtxDCH, RSCP, Ec/No, BitRate

CPICH Ec/No vs Ratio of each RAB(Bit Rate)

CPICH RSCP vs Ratio of each RAB(Bit Rate)

CPICH EbNo/RSCP vs. BLER

Path loss vs Ratio of each RAB(Bit Rate)

CPICH Ec/No vs Path Loss

Failure Analysis (in case) [OSS, ICSU(if necessary)]

Time spend on the certain bitrate

Upgrade/Downgrade times

Page 50: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 50/67

 

DOCUMENTTYPE 50 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

CPICH Ec/No vs Ratio of each RAB(Bit Rate), CPICH RSCP vs Ratio of each RAB(BitRate)

How many % assigned the each BitRate for the each step of the Ec/No or RSCP

 To make the statistics by the moving test data

CPICH RSCP vs BLER, CPICH Ec/No vs BLER (for Each Bit Rate)

How many % of the each step of the BLER for the each step of the Ec/No or RSCP

 To make the statistics by the moving test data

RB Status Statistics(vs EcNo)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>-4 -4 to -6 -6 to -8 -8 to -10 -10 to -12 -12 to -14 -14 to -16 -16 to -18 <-18

Ec/No [dB]

sf8

sf16

sf32

100.00%

0.00%0.00%

51.03%

38.30%

10.67%

40.72%

47.55%

11.73%

30.34%

56.40%

13.26%

17.03%

57.16%

25.81%

11.54%

56.09%

32.37%

11.32%

37.74%

50.94%

5.21%

18.75%

76.04%

6.98%

4.65%

88.37%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

>-4 -4 to -6 -6 to -8 -8 to -10 -10 to -12 -12 to -14 -14 to -16 -16 to -18 <-18

Ec/No [dB]

RB Status Statistics(vs EcNo)

sf32

sf16

sf8

384 128 64

RB status for each EbNo

- ~- - ~-

Page 51: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 51/67

Page 52: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 52/67

 

DOCUMENTTYPE 52 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Time vs PtxDCH, RSCP, Ec/No, BitRate

 Time base graph for PtxDCH, RSCP, Ec/No, BitRate and Throughput

 To make the graph by 1 cell base data.

0

64000

128000

192000

256000

320000

384000

448000

   5   5  :   4   6 .   3

   5   6  :   0   1 .   8

   5   6  :   1   7 .   5

   5   6  :   3   3 .   1

   5   6  :   4   8 .   8

   5   7  :   0   4 .   5

   5   7  :   2   0 .   1

   5   7  :   3   5 .   8

   5   7  :   5   1 .   5

   5   8  :   0   7 .   2

   5   8  :   2   2 .   8

   5   8  :   3   8 .   5

   5   8  :   5   4 .   2

   5   9  :   0   9 .   9

   5   9  :   2   5 .   6

   5   9  :   4   1 .   3

   5   9  :   5   6 .   9

   0   0  :   1   2 .   6

   0   0  :   2   8 .   3

   0   0  :   4   4 .   0

   0   0  :   5   9 .   6

   0   1  :   1   5 .   3

   0   1  :   3   0 .   9

   0   1  :   4   6 .   6

   0   2  :   0   2 .   3

   0   2  :   1   8 .   0

   0   2  :   3   3 .   7

   0   2  :   4   9 .   4

   0   3  :   0   5 .   0

   0   3  :   2   0 .   7

   0   3  :   3   6 .   4

   0   3  :   5   2 .   1

   0   4  :   0   7 .   7

   0   4  :   2   3 .   4

   0   4  :   3   9 .   1

   0   4  :   5   4 .   7

   0   5  :   1   0 .   4

   B   i   t   R  a   t  e   [   b  p  s   ]

0

5

10

15

20

25

30

35

40

   P

   t  x   D   C   H   [   d   B  m   ]

DL Bitrate current2 Ptx_ave_dBm

-130

-120

-110

-100

-90

-80

-70

-60

   R   S   C   P   [   d

   B  m   ]

-25

-20

-15

-10

-5

0

   E  c   /   N  o   [   d   B

CP IC H Dominant RS CP (dBm) C PICH Dominant Ec/No (dB) + Throughput

Page 53: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 53/67

 

DOCUMENTTYPE 53 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

PtxDCH vs CPICH RSCP, PtxDCH vs CPICH Ec/No (for each Bit Rate)

How many % of the each step of the DCh Power for the each step of the Ec/No or RSCP

 To make the graph by 1 cell base data.

Times on dif ferent bearers’ spreading factors

Default Set1 Set2

sf8 36:45.873 24:27.095 16:37.340

sf16 00:00.000 12:30.764 24:27.813

sf32 02:07.373 08:43.990 08:46.952FACH 14:37.097 09:26.672 10:19.881

Idle 00:37.344 00:21.919 00:10.115

Times on dif ferent bearers’ spreading factors

Default Set1 Set2

sf8 36:45.873 24:27.095 16:37.340

sf16 00:00.000 12:30.764 24:27.813

sf32 02:07.373 08:43.990 08:46.952FACH 14:37.097 09:26.672 10:19.881

Idle 00:37.344 00:21.919 00:10.115

PtxDCH vs CPICH RSCP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-4 -6 -8 -10 -12 -14 -16 -18 -20

Ec/No

   [   %   ]

~38

~36

~34

~32

~30

~28

Ec/No or RSCP

Page 54: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 54/67

 

DOCUMENTTYPE 54 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Upgrade, Downgrade times

Dylo conclusions:

DLO_conclusions.ppt

 

=>sf8 =>sf16 =>sf32 =>FACH =>Idle

sf8 8 59

sf16 4 36sf32 68 34 11

FACH 1 101 3

=>sf8 =>sf16 =>sf32 =>FACH =>Idlesf8 129

sf16sf32 3

FACH 122 5 5

=>sf8 =>sf16 =>sf32 =>FACH =>Idle

sf8 17 46

sf16 1 51

sf32 67 39 11FACH 6 98 3

Default

Set1

Set2

=>sf8 =>sf16 =>sf32 =>FACH =>Idle

sf8 8 59

sf16 4 36sf32 68 34 11

FACH 1 101 3

=>sf8 =>sf16 =>sf32 =>FACH =>Idlesf8 129

sf16sf32 3

FACH 122 5 5

=>sf8 =>sf16 =>sf32 =>FACH =>Idle

sf8 17 46

sf16 1 51

sf32 67 39 11FACH 6 98 3

Default

Set1

Set2

0

50000

100000

150000

200000

250000

300000

350000

400000

   1   5  :  4   2  :  0  4

 ,  0  6

   1   5  :  4   2  :  4   3

 ,  6   5

   1   5  :  4   3  :   1   7

 ,  0  6

   1   5  :  4   3  :   5  0

 ,   5  6

   1   5  :  4

  4  :   2   3

 ,  8   2

   1   5  :  4

  4  :   5   7

 ,  0  6

   1   5  :  4

   5  :   3  0

 ,   5  6

   1   5  :  4

  6  :  0   3

 ,  9  9

   1   5  :  4

  6  :   3  8

 ,  0  6

0

5

10

15

20

25

30

35

40

45

 Throughput

bps/W

BTS Tx Power

Page 55: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 55/67

 

DOCUMENTTYPE 55 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4. INTER-SYSTEM HANDOVER

4.1 3G to GSM Handover 

Here optimization parameters are mainly related to ISHO thresholds, filtering time (howlong time certain level (RSCP, or EcNo) is averaged before UE is seding the report to theRNC) and decision making. Triggers for RT and NRT services could be set differently.Each triggering procedure makes use of filters, hysteresis and thresholds which are used tocontrol the inter-system handover behaviour.

 The purpose of the hysteresis and filters is to improve the accuracy of the measurements.

 The purpose of the thresholds is to control 3G boundary of the different services. Below ispicture about these parameters.

4.1.1 Parameters

1. Triggering process:

Parameters that belong to this process defines the starting of the GSM measurements:filters, hysteresis, timers and thresholds

2. GSM Measurement reporting process

Following parameters control the reporting of the GSM measurements

GsmMinMeasInterval: Establish minimum time between successive GSM measurements

GsmMaxMeasPeriod: Maximum duration of the GSM measurements in compressed mode

3. Decision Algorit hm

UE Tx Pow er (Event 6 A)•Threshold:GsmUETxPwrThrXX•L3 filter:GsmUETxPwrFilterCoeff •Hysteresis margin:GsmUETxPwrTimeHyst•Data rate thresholdHHOMAxAllowedBitrateUL

UL Quality•Timer:ULQualDetRepThreshold•Data rate thresholdHHOMAxAllowedBitrateUL

DL DPCH pow er •Threshold:GsmDLTxPwrThrXX

•Data rate thresholdHHOMAxAllowedBitrateDL

(XX=AMR,CS,NrtPS,RtPS)

CPICH RSCP (Event 1F)•Thresholds:HHoRscpThresholdHHoRscpCancelL3 filter: HHoRscpFilterCoefficient•Timers:HHoRscpTimeHysteresisHHoRscpCancelTime

CPICH Ec/I o (Even t 1F)•Thresholds:HHoEcNoThresholdHHoEcNoCancel•L3 filter:EcNofilterCoefficient•Timers:HHoEcNoTimeHysteresisHHoEcNoCancelTime

AdjgTxPwrMaxTCH Adj gRxLevMin HO( n)GsmMeasAveWindo w

GsmMeasRepIntervalGsmNcellSearchPerio dGsmMinMeasIn ter valGsmMaxMeasPerio d

1. Handover Triggering

Handover Executi on

2G-to -3G back prevent ion

GsmMinHoInterval

2. GSM measuremen t repor ti ng

1. Triggering

2. GSM measuring

3. Decision

3. Decision Algorit hm

UE Tx Pow er (Event 6 A)•Threshold:GsmUETxPwrThrXX•L3 filter:GsmUETxPwrFilterCoeff •Hysteresis margin:GsmUETxPwrTimeHyst•Data rate thresholdHHOMAxAllowedBitrateUL

UL Quality•Timer:ULQualDetRepThreshold•Data rate thresholdHHOMAxAllowedBitrateUL

DL DPCH pow er •Threshold:GsmDLTxPwrThrXX

•Data rate thresholdHHOMAxAllowedBitrateDL

(XX=AMR,CS,NrtPS,RtPS)

CPICH RSCP (Event 1F)•Thresholds:HHoRscpThresholdHHoRscpCancelL3 filter: HHoRscpFilterCoefficient•Timers:HHoRscpTimeHysteresisHHoRscpCancelTime

CPICH Ec/I o (Even t 1F)•Thresholds:HHoEcNoThresholdHHoEcNoCancel•L3 filter:EcNofilterCoefficient•Timers:HHoEcNoTimeHysteresisHHoEcNoCancelTime

AdjgTxPwrMaxTCH Adj gRxLevMin HO( n)GsmMeasAveWindo w

GsmMeasRepIntervalGsmNcellSearchPerio dGsmMinMeasIn ter valGsmMaxMeasPerio d

1. Handover Triggering

Handover Executi on

2G-to -3G back prevent ion

GsmMinHoInterval

2. GSM measuremen t repor ti ng

1. Triggering

2. GSM measuring

3. Decision

Page 56: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 56/67

 

DOCUMENTTYPE 56 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

GsmMeasRepInterval: Reporting period of the GSM measurements during compressedmode

3. Decision process:

Parameters that participate in the selection of the best target cell:

AdjgRxLevMinHO(n): Minimum RX level of the GSM cell to do handover (default=-95dBm)

4. ISHO cancellation parameters:

Cancellation parameters are built for CPICH EcNO and CPICH RSCP triggeringfunctionality only

4.1.2 Testing Scenarios

Proper ISHO testing is possible with UE logging in routes with different speeds.

Below are some set of tests +results for EcNo, RSCP and UeTxPwr thresholds with AMR.

Routes EcNo (IS-HO Success) % IS-HO

Threshol d /(Atte mp ts) suc ce ss r at e

Route 2 -11 12/12 100%

-12 12/12 100%-14 3/9 33.3%

Route 4 -11 7/9 77.7%

-12 8/9 88.8%-14 7/9 77.7%

Route 6 -11 13/16 81.25%

-12 13/16 81.25%-14 9/20 45%

-11 32/37 86.50%

Total -12 33/37 89.20%

-14 19/38 50%

Route s RSCP (IS-HO Success) % IS-HO

Th re sh old /(Atte mp ts) su cce ss ra te

-105 9/9 100%

Route 2 -106 9/9 100%-107 8/9 88%

Route 3 -105 10/10 100%

-106 14/15 93.3%-107 11/15 73.3%

-105 8/9 88%Route 4 -106 8/9 88%

-107 6/9 66%

-105 21/25 84%

Route 6 -106 16/20 80%-107 -- --

-105 48/53 90.5%

T otal -106 47/53 88.7%

-107 25/33 75.8%

Rou te s UE Tx Pw r (IS -HO Su cc ess) % IS-HO

Threshold /(Atte mp ts) Success r ate

-1 6/6 100%

Route 2 -3 6/6 100%-5 6/6 100%

-1 10/10 100%

Route 3 -3 9/9 100%-5 9/10 90%

Route 4 -1 6/6 100%-3 6/6 100%

-5 6/6 100%-1 22/30 73.30%

Route 6 -3 27/30 90.00%-5 22/25 88%

-1 44/52 84.60%

Total -3 48/51 94.00%

-5 43/47 91.50%

Page 57: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 57/67

 

DOCUMENTTYPE 57 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Below are some different testing scenarios for filtering and timehysteresis for AMR.

For PS data there some parameters could be set differently to trigger compressed mode.ISHO for PS data is done with Cell Change Order from Utran (CCO). The parameters forPS data triggers are

RSCP Set 1 Set 2 Set 3

HHoRscpThreshold -105 dBm -105 dBm -105 dBm

HHoRscpFilterCoefficient 200 ms 400 ms 200 ms

HHoRscpTimeHysteres is 640 ms 100 ms 100 ms

CPICH EcNo Set 1 Set 2 Set 3 Set4

HHoEcNoThreshold -12 dB -12 dB -12 dB -12 dB

HHoEcNoTimeHysteres is 60 ms 80 ms 100 ms 200 ms

EcNoFilterCoefficient 600ms 600 ms 600 ms 600 ms

UE Tx Pow er  Set 1 Set 2 Set 3 Set 4GsmUETxPwrThrAMR -5 dB -5 dB -5 dB -5 dB

GsmUETxPwrFilterCoeff  10 ms 480ms 10 ms 10 ms

GsmUETxPwrTimeHyst 1280 ms 100ms 100ms 320ms

UL Tx Pow er  GsmUETxPwrThrNrtPS -1 dB -1, -3 dB

GsmUETxPwrFilterCoeff  10 ms 10ms

GsmUETxPwrTimeHyst 1280 ms 320ms

DL DCH GsmDLTxPwrThrNrtPS -1 dB -1, -3 dB

Page 58: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 58/67

 

DOCUMENTTYPE 58 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4.1.3 Example results

Below are some more results for the EcNo filtering and timehysteresis parameters.

Below are some more results for the RSCP filtering and timehysteresis parameters.

Route 1

13.4100 100 100

677

8.5

663

11.4

669

0

200

400

600

800

Ave. distance(m) std(m) %Success IS-HO

Set1

Set2

Set3

Route 2

562

44

575

63

555

22 90 88 88

0

200

400

600

800

Ave. distance(m) std(m) %Success IS-HO

Set1

Set2Set3

Route 2

10783 89 80

677

361

11.4

375

40

0

100

200

300

400

Ave. distance(m) std(m) %Success IS-HO

Set1

Set3

Set4

CPICH EcNo Set 1 Set 2 Set 3 Set4

HHoEcNoThreshold -12 dB -12 dB -12 dB -12 dB

HHoEcNoTimeHysteres is 60 ms 80 ms 100 ms 200 ms

EcNoFilterCoefficient 600ms 600 ms 600 ms 600 ms

Set 3 has the lowest standarddeviation and acceptable IS-HOsuccess rate

 The use of higher hysteresis, e.g.,HoEcNoTim eHysteresis=200 ms(set4) produce the worst IS-HOsuccess rate.

ParameterEcNoFil te rCoef fi cien t has

been optimized for SHO(optimized value=600 ms)

RSCP Set 1 Set 2 Set 3

HHoRscpThreshold - 105 dBm -105 dBm - 105 dBm

HHoRscpFilterCoefficient 200 ms 400 ms 200 ms

HHoRscpTimeHysteresis 640 ms 100 ms 100 ms

Route 2

795

42 100

766

1188

743

17100

0

200

400

600

800

1000

Ave. distance(m) std(m) %Success IS-HO

Set1

Set2

Set3

Route 4

685

15100

677

2888

644

8100

0

200

400

600

800

Ave. distance(m) std(m) %Success IS-HO

Set1

Set2Set3

Page 59: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 59/67

 

DOCUMENTTYPE 59 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

Below are some more results for the UE tx Pwr filtering and timehysteresis parameters.

4.2 GSM to 3G handover 

Handover process to 3G is presented below.

 The BSC initiates an inter-system handover attempt to the WCDMA RAN if:

Route 2

750

46100

859

53 50

726

23

739

23100

88

0

200

400

600

800

1000

Distance (m) Std (m) %Success IS-HO

  m  e   t  e  r  s

Setting 1

Setting 2

Setting 3

Setting 4

Route 4

682

2988

716

2888

654

21

671

2290

88

0100

200300

400

500600

700800

Distance (m) Std (m) %Success IS-HO

Setting 1

Setting2

Setting 3

Setting 4

Route 5

548

56100

603

19 25

519

1009

0

100

200

300

400

500

600

700

Distance (m) Std (m) %S uccess IS-HO

  m  e   t  e  r  s Setting 1

Setting2

Setting 3

UETx Power  Set 1 Set 2 Set 3 Set4

GsmUETxPwrThrAMR -5 dB -5 dB -5 dB -5 dB

GsmUETxPwrF ilterCoeff  10 ms 480ms 10 ms 10 ms

GsmUETxPwrTimeHyst 1280 ms 100ms 100ms 320ms

Set 4 was not tested in this route due to thechange of the radio conditions caused by themodification of the antenna direction of the

serving cell.

Set 4 provides the best balancebetween IS-HO success rate,

distance (3G coverageextension) and standarddeviation (accuracy)

Handover Triggering thresholds set in BSCHandover Triggering thresholds set in BSC

Inter-RAT measurements starts in casetheRXLEV of the serving cell is above orbelow the given thresholdQsearch_C,

(threshold for Multi-RAT MS)

Inter-RAT measurements starts in casetheRXLEV of the serving cell is above orbelow the given thresholdQsearch_C,

(threshold for Multi-RAT MS)

Handover decision is done in case of load of the serving cell > load_Threshold

and CPICHEc/No (MET) > Min Ec/No

threshold

Handover decision is done in case of load of the serving cell >load_Threshold

and CPICHEc/No (MET) > Min Ec/No

threshold

MS selects the target UTRAN cell basedon measurement results

MS selects the target UTRAN cell basedon measurement results

Handover command is send to MSCHandover command is send to MSC

Page 60: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 60/67

 

DOCUMENTTYPE 60 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

A neighbour WCDMA RAN cell is available (coverage).

The cell-specific penalty timer does not exist in the BSC for the WCDMA RAN cell.

Ec/No measured by the mobile has to exceed the handover threshold minimum

CPICH Ec/Io level (MET).

Traffic load of the serving GSM cell exceeds the threshold (load).

 The operator defines the load threshold by the parameters minimum traffic loadfor a speech call  (LTSC). 

 The procedure of the traffic load checking is similar compared to the BSC initiated Traffic Reason Handover. The BSC initiates only as many inter-system handoversas the number of ongoing calls in the serving GSM cell is over the traffic loadthreshold. That is, the serving GSM cell is not emptied into the WCDMA RAN.

4.2.1 Parameters

 The main parameters to optimize GSM handover to 3G are

MET (Min. EcNo threshold)

MET tuning implies a compromise between blocked calls (GSM) and droppedcalls(3G).

MET should be higher than CPICH EcNo threshold for IS-HO 3G->GSM (default=–12 dB), in order to avoid ping-pongs and dropped calls.

At least 3dB difference between MET and CPICH EcNo threshold is suggested.

Proposed MET value is –9 dB.

Qsearch_C

Qsearch_C implies a compromise between the lifetime battery and the availability of the terminal to handover to 3G.

it would be good to know the 3G coverage levels so that IS-HO can happen quickly.

In the other side, UE may unnecessarily measure 3G cells when there is noconditions for ISHO.

In later BSS release, 3G measurements will start according to the load conditions.

Despite the lifetime battery, it would be good not to add obstacles to the terminal to

move to 3G.

Thus, proposed value in BSS 10.5 is “always” (if 3G coverage exists).

Page 61: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 61/67

 

DOCUMENTTYPE 61 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4.2.2 Testing Scenarios

GSM ISHO scenarios could be related to the occupancy of GSM speech load e.q. when tohandover from GSM to 3G. If the value (LTSC) of this parameter is set as 0, then AMRISHO to 3G should happen. However this will depend on the operators’ strategy how tomake AMR ISHO. Operator could also decide not to make AMR ISHO to GSM, but only PSdata could make cell reselection to 3G. Also the neighbour definition could be defined inone direction only: 3G->GSM.

4.3 3G to GSM cell Reselection

Cell reselection does not happen only during Idle mode, also ISHO for PS data is done ascell reselection.

 The reselection process from 3G to GSM is presented below.

4.3.1 Parameters

 The most important parameters are mentioned already above:

Qhyst1 (hysteresis between GSM RSSI and 3G RSCP)

AdjgOffset1 (offset to be extracted from GSM RSSI)

qQualMin +sSearchRAT (start of Inter-System measurements)

4.3.2 Testing Scenarios

When to trigger the cell reselection to 2G depends greatly on:

how much the 3G network is requested to be utilised

target is to maximise the utilisation of WCDMA network but…

First rankin g of all the cells based onCPICH RSCP (WCDMA) an d RSSI (GSM)

Rs = CPICH RSCP + Qhyst1Rn= Rxlev(n) - Qoffset1

Rn (GSM) > Rs (WCDMA) And

Rxlev (GSM) >QrxlevMin

YesNo

Cell re-select ionto GSM

Neigh bo ur WCDMA or GSMcell calculatio n w ith o ffset

parameter 

Serv in g WCDMA cellcalculation, w ith

hysteresis parameter 

UE star ts GSM measurem ent s if CPICH Ec/No < qQualMin + sSearchRAT

SintraSearch

SinterSearch

SsearchRAT

CPICH EcNo

qQualMin

Second rank ing on ly f or WCDMAcell s based on CPICH Ec/No

Rs = CPICH Ec/No + Qhyst 2Rn=CPICH_Ec/No(n)-Qoff set 2

Cell re-selecti on toWCDMA cell o f highest

R value

Page 62: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 62/67

 

DOCUMENTTYPE 62 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

what is the desired CSSR

…at the same time maximise the quality

minimise the possibility of ping – pong

Due to very different fading conditions, there should be couple of different parameter setsfor 3G ->2G reselection

Outdoor, typical outdoor to dedicated indoor (in case of missing 3G indoor)

3G border

  Special indoor cases without dedicated 3G where the UE speed is high (e.g.tunnels) 

Some extra protection against ping-pong reselections between the bands maybe needed ->therefore Qhyst1 parameter could be set to 2dB or 4dB, default 0 dB.

Also in some special cases where WCDMA ->GSM reselection is needed to specific GSMcell the AdjgQoffset1 parameter could be set to such that it will “promote” certain GSMneighbour (e.g. value 20dB to use for high-speed train or highway tunnels without 3Gcoverage)

So different Scenarios could be like in following:

General outdoo r 

&

Outdoor to indoor 

General outdoo r 

&

Outdoor to indoor 

General outdoo r 

&

Outdoor to indoor 

Special Indoor casesSpecial Indoor casesSpec ial In doo r c ases Out door bo rd er  Outdoor border Outdoor border 

3G ->2G3G ->2G EcNo<-14dBRxlev>-95 dBmRxlev>RSCP +2dB

EcNo<-14dBRxlev>-95 dBmRxlev>RSCP +2dB

EcNo<-6 dBRxlev>-105dBmRxlev+20dB>RSCP +2dB

EcNo<-6 dBRxlev>-105dBmRxlev+20dB>RSCP +2dB

EcNo<-10dBRxlev>-95 dBmRxlev>RSCP+2dB

EcNo<-10dBRxlev>-95 dBmRxlev>RSCP+2dB

First rankin g of all th e cells based onCPICH RSCP (WCDMA) an d RSSI (GSM)

Rs = CPICH RSCP + Qhyst1Rn= Rxlev(n ) - Qoffset1

Page 63: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 63/67

 

DOCUMENTTYPE 63 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4.4 GSM to 3G Cell Reselection

 The reselection process from GSM to 3G is presented below

4.4.1 Parameters

 The idle state parameters are sent to the GPRS capable mobile in the Packet SystemInformation PSI 3quater (if PBCCH is allocated), or SI 2quater (if PBCCH is not allocated)messages on the PBCCH or BCCH

GPRS threshold to search WCDMA RAN cells (QSRP)

GPRS minimum fdd threshold (GFDM)

GPRS fdd cell reselect offset (GFDD)

 The set below is repeated for every neighbour WCDMA RAN cell:

WCDMA downlink carrier frequency (FREQ)

downlink transmission diversity (DIV)

scrambling code (SCC)

In GSM the UE is usually set to measure the 3G neighbours all the time I.e. Qsearch_I andQsearch_P are both set to 7 

Check levels every 5sfrom serving GSM cell

and best 6 GSMneighbour cells

UE starts WCDMA measurements if Rxlevrunning average (RLA_C) is below or above

certain threshold:RLA_C Qsearch_I and Qsearch_P (GPRS)

UE starts WCDMA measurements if Rxlevrunning average (RLA_C) is below or above

certain threshold:RLA_C Qsearch_I and Qsearch_P (GPRS)

UE can select WCDMA cell if the level of theserving GSM and non-serving GSM cells has been

exceeded by certain offset for a period of 5 s:CPICH RSCP > RLA_C +FDD_Cell_Reselect_Offset

UE can select WCDMA cell if the level of theserving GSM and non-serving GSM cells has been

exceeded by certain offset for a period of 5 s:CPICH RSCP > RLA_C +FDD_Cell_Reselect_Offset

UE will re-select WCDMA cell in case it'squality is acceptable:

CPICH Ec/No Minimum_FDD_Threshold

UE will re-select WCDMA cell in case it'squality is acceptable:

CPICH Ec/No Minimum_FDD_Threshold

Compare levelsof all GSM cells

to WCDMA

neighbour

Check qualityof neighbour

WCDMA cells, nopriorities between

WCDMAneighbours 0

   5 .   0

   8  :   T   h   i  s  m  a  y   t  a   k  e  u  p   t  o   3   0

  s

UE starts WCDMA measurements if Rxlevrunning average (RLA_C) is below or above

certain threshold:RLA_C Qsearch_I and Qsearch_P (GPRS)

UE starts WCDMA measurements if Rxlevrunning average (RLA_C) is below or above

certain threshold:RLA_C Qsearch_I and Qsearch_P (GPRS)

UE can select WCDMA cell if the level of theserving GSM and non-serving GSM cells has been

exceeded by certain offset for a period of 5 s:CPICH RSCP > RLA_C +FDD_Cell_Reselect_Offset

UE can select WCDMA cell if the level of theserving GSM and non-serving GSM cells has been

exceeded by certain offset for a period of 5 s:CPICH RSCP > RLA_C +FDD_Cell_Reselect_Offset

UE will re-select WCDMA cell in case it'squality is acceptable:

CPICH Ec/No Minimum_FDD_Threshold

UE will re-select WCDMA cell in case it'squality is acceptable:

CPICH Ec/No Minimum_FDD_Threshold

Compare levelsof all GSM cells

to WCDMA

neighbour

Check qualityof neighbour

WCDMA cells, nopriorities between

WCDMAneighbours 0

   5 .   0

   8  :   T   h   i  s  m  a  y   t  a   k  e  u  p   t  o   3   0

  s

Page 64: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 64/67

 

DOCUMENTTYPE 64 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

In case the reselection is wanted to happen immediately when the 3G is “good enough” justbased on CPICH Ec/No value (RSCP threshold is not used i.e. reselection is done RSCP >Rxlev – infinity)

 The “rule” to set the FDD_Qmin value has not been possible to be fulfilled until thespecification change (05.08 v8.18.0, 2003-8) has been implemented to the UEs – as below

Reselect in case WCDAM RSCP >GSMRXLev(RLA_C) +28dB

28dB15

24dB14

……

-24dB2

Reselect in case WCDAM RSCP >GSMRXLev(RLA_C) –28dB

-28dB1

Always select irrespective of RSCP value0

Comment:Mappedto:

FDD_Qoffset(FDD_Cell_Reselect_Offset )

Reselect in case WCDAM RSCP >GSMRXLev(RLA_C) +28dB

28dB15

24dB14

……

-24dB2

Reselect in case WCDAM RSCP >GSMRXLev(RLA_C) –28dB

-28dB1

Always select irrespective of RSCP value0

Comment:Mappedto:

FDD_Qoffset(FDD_Cell_Reselect_Offset )

Fdd_Qmin mapping

Aif parameter 0 1 2 3 4 5 6 7

Fdd_Qmin (old) [dB] -20 -19 -18 -17 -16 -15 -14 -13

Fdd_Qmin (new) [dB] -20 -6 -18 -8 -16 -10 -14 -12

Page 65: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 65/67

 

DOCUMENTTYPE 65 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4.4.2 Testing Scenarios

As a general rule the value for to search 3G cell (FDD_Qmin parameter) can be set to 2…3dB higher than threshold to search GSM cell (QqualMin +Ssearch_RAT =-14dB). This is toavoid ping pong.

For the the camping in indoor environment the set-up could be :

Indoor GSM / Outdoor GSM (serving indoor)->Indoor WCDMA / Outdoor WCDMA(serving indoor)

Mobile station measuring WCDMA neighbor only when it is well inside the buildingusing parameter Threshold to search WCDMA RAN Cells

 The defined set-up can be also used in outdoor environment to push the UEs to 3G assoon as possible from the 2G cell to the border 3G cell Reselection from 2G to 3G coverage border cell (3G coverage border or coverage hole)  

A subscriber entering back to the 3G coverage should not be handed over directly to 3Guntil 3G network coverage is good enough to avoid ping – pong between GSM andWCDMA layers

 This can be achieved by setting the parameters so that there is certain probability when theUE reselects back to the WCDMA layer

QqualMin =-18dB

QqualMin +Ssearch_RAT=-14dB

FDD_Qmin >=-12

Camping in 3G Camping in 2G Camping in 3G

CPICH Ec/No

t

FDD_Qmin >= QqualMin + Ssearch_RAT

QqualMin =-18dB

QqualMin +Ssearch_ RAT=-14dB

FDD_Qmin >=-12

Camping in 3G Camping in 2G Camping in 3G

CPICH Ec/No

t

FDD_Qmin >= QqualMin + Ssearch_RAT

WCDMA measurementsnot allowed

WCDMA measurements

Allowed; re-selection enabled

WCDMA

GSM

Page 66: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 66/67

 

DOCUMENTTYPE 66 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

A subscriber in indoors may be served by a 3G outdoor macro cell or by 2G in-building cell

When a subscriber enters the building the UE may reselect or the call can be handed over

to the 2G in-building cell if the current 3G signal gets too weak

 To avoid any unnecessary HOs from 2G to 3G the voice call will then be ended in the 2Gcell

Idle state mobiles and active PS domain service users are guided back to 3G with cellreselection process when the 2G and 3G signals are/become strong enough

 This set-up keeps the user served by a 3G cell as long as possible and guides user servedby 2G cell back to 3G service when a 3G cell is available with certain probability

WCDMA measurements Allowed; re-selection enabled

WCDMA measurements not allowed

General outdoor &

Outdoor to indoor 

General outdoor &

Outdoor to indoor 

General outdoor &

Outdoor to indoor 

Special Indoor casesSpecial Indoor casesSpec ial Indoor cases Out door border  Outdoor border Outdoor border 

3G ->2G3G ->2G EcNo<-14dBRxlev>-95 dBmRxlev>RSCP +2dB

EcNo<-14dBRxlev>-95 dBmRxlev>RSCP +2dB

EcNo<-6 dBRxlev>-105dBmRxlev+20dB>RSCP +2dB

EcNo<-6 dBRxlev>-105dBmRxlev+20dB>RSCP +2dB

EcNo<-10dBRxlev>-95 dBmRxlev>RSCP +2dB

EcNo<-10dBRxlev>-95 dBmRxlev>RSCP +2dB

First rankin g of all th e cells based onCPICH RSCP (WCDMA) an d RSSI (GSM)

Rs = CPICH RSCP + Qhyst1Rn= Rxlev(n) - Qoffset1

Page 67: Parameter Testing Guide

7/27/2019 Parameter Testing Guide

http://slidepdf.com/reader/full/parameter-testing-guide 67/67

 

DOCUMENTTYPE 67 (67)

 TypeUnitOrDepartmentHere TypeYourNameHere TypeDateHere

4.5 Tools & Test Procedure

 The tools for ISHO tests are

1. UE logging tool with AMR and PS data (Nemo with Kenny)

2. Netwhawk/ICSU log

 Test Procedure could be:

1. Define several different routes (different UE speed) in the area where acceptableminimum coverage for both WCDMA and GSM coverage could be seen.

2. Make 50 AMR short calls until ISHO happened, one direction only, record andcheck result.

3. Make 50 PS short calls with FTP downloading (1Mbyte file) until ISHO happened,one direction only, record and check result.

4. Make ISHO steps 1-3 with other direction (GSM to 3G)

5. Take nethawk logs/ICSU logs for measuring the ISHO delays

5. REFERENCES

Nokia J apan : Parameter Testing Reports for Vodafone KK 

Nokia Singapore : Parameter Testing Reports for M1 & StarHub

Nokia Taiwan : Parameter Testing for CHT

Hagedorn Thorsten: Tmobile Parameter Testing

ISHO verification and Optimisation in NTN