parameter2 baja berdasarkan komposisi (aa)

56
Jenis Material: Baja AISI 4140 Komposisi Kimia (%)-berat Fn Cooling Rate (oC/s) Tebal (mm) C 0.4 128 20 5 Si 0.4 Mn 0.75 Cu 0 Cr 1.05 Mo 0.225 V 0 W 0 Ni 0 P 0.035 S 0.035 Al 0 As 0 A[C] Ti 0 0.55 Nb 0 Co 0 Sn 0 N 0 Tempering Temperature (oC): B 0 O 0 Fe 97.105 Rockwell Hardness (C Scale) Afte t8/5: Cooling Time Between 800°C

Upload: abrianto-akuan

Post on 14-Jun-2015

2.860 views

Category:

Education


2 download

TRANSCRIPT

Page 1: Parameter2 baja berdasarkan komposisi (AA)

Jenis Material: Baja AISI 4140

Komposisi Kimia (%)-berat Fn Cooling Rate (oC/s) Tebal (mm)

C 0.4 128 20 5Si 0.4Mn 0.75Cu 0Cr 1.05Mo 0.225V 0W 0Ni 0P 0.035S 0.035Al 0As 0 A[C]Ti 0 0.55Nb 0Co 0Sn 0N 0 Tempering Temperature (oC):B 0O 0Fe 97.105 Rockwell Hardness (C Scale) After Hardening:

t8/5: Cooling Time Between 800°C and 500°C (s):

Page 2: Parameter2 baja berdasarkan komposisi (AA)

% N % B % O % TiC H (cm^3/100 gr)0 0 0 0 0

60

200

Rockwell Hardness (C Scale) After Hardening: 63

: Cooling Time Between 800°C and 500°C (s):

Page 3: Parameter2 baja berdasarkan komposisi (AA)

PARAMETER: Grange1 Equilibrium Temperature for Austenitization Start (oC) 745.82 Equilibrium Temperature for End of Austenitization (oC) 788.3

Boratto3 Austenite No-Recrystallization Temperature (oC) 929.8

Blás4 Start Temperature of the Transformation Austenite → Ferrite (oC) 677.15 Final Temperature of the Transformation Austenite → Ferrite (oC) -

Steven6 Start Temperature of the Bainitic Transformation, Bs (oC) 562.3

Temperature Required for the Formation of 50% of Bainite (oC) 512.3Temperature Required for the Formation of 100% of Bainite (oC) 442.3

7

Steven (oF)Start Temperature of the Martensitic Transformation, Ms (oC) 324.1Temperature Required for the Formation of 10% of Martensite 306.1Temperature Required for the Formation of 50% of Martensite 239.1Temperature Required for the Formation of 90% of Martensite 139.1Temperature Required for the Formation of 100% of Martensite -62.9

SverdlinStart Temperature of the Martensitic Transformation, Ms (oC) 316.5

Dearden8 Critical Diameter (mm) 1,626

Austenitic9 Density (kg/dm^3) 8.03

Dearden10 Equivalent Carbon – H.A.Z. Hardenability 0.81

Critical Cooling Rate at 700°C (oC/s), produces a fully - - Martensitic structureCritical Cooling Time from 800 to 500°C (s) produces a fully - - Martensitic structure

DNV11 Equivalent Carbon – Hydrogen Assisted Cold Cracking 0.76

Cracking Parameter, Pcm (%) -

Lorenz12 Maximum Hardness for a Martensitic-Bainitic HAZ Microstructure 290.4

(Vickers, 10 kg Load), after Cooling

Page 4: Parameter2 baja berdasarkan komposisi (AA)

Spies13 Brinell Hardness After Hardening and Tempering 589.3

Dearden14 Maximum Hardness (Vickers), after Welding 770.5

Guthmann15 Liquidus Temperature of Steels (oC) 1,494

Takeuchi16 Solidus Temperature of Steels (oC) 1,348

Mizui17 Weld Interface Cracking Susceptibility during Flash Butt Welding 1.018 Tensile Strength After Flash Butt Welding (kg/mm^2) 67.6

Page 5: Parameter2 baja berdasarkan komposisi (AA)

PERSAMAAN/RUMUS:Andrews Roberts Eldis Park Lee & Lee

744.4 - 721.4 820.2 607.4771.1 800.2 730.8 - -

Choquet Unknown #1 Unknown #2 Ouchi Pickering Shiga668.7 648.5 704.2 691.2 827.5 726.5

- 477.6 -

Suehiro Kirkaldy Lee269.0 277.6 604.8

----> (oC) Rowland Andrews (#1) Andrews (#2) Eldis Krauss Grange162.3 310.0 328.32 329.3 325.03 324.1 324.1152.3 - - - - - -115.0 - - - - - -59.5 - - - - - --52.7 - - - - - -

Payson Carapella Nehrenberg316.4 315.4 328.0

Ferritic7.82IIW Bastien Yurioka Kihara Shinozaki Stout0.78 0.67 0.73 0.81 0.54 1.0

- 875.4 - - - -

- - 849.5 - - -

Uwer Mannesmann Graville Hoesch Ito (I) Ito (II) Yurioka0.55 0.52 0.52 0.52 - - 0.62

- - - - 0.52 0.53 -

Page 6: Parameter2 baja berdasarkan komposisi (AA)

Shinozaki255.4

Page 7: Parameter2 baja berdasarkan komposisi (AA)

KETERANGAN

Si ≤ 0.3%; Ni ≤ 2.8%; Cr ≤ 1.5%; Mo ≤ 0,6%

valid under the following alloy range: 0.04% ≤ C ≤ 0.17%; 0.41% ≤ Mn ≤ 1.90; 0.15% ≤ Si ≤ 0.50% ; 0.002% ≤ Al ≤ 0.650; Nb ≤ 0.060%; V ≤ 0.120%; Ti ≤ 0.110%; Cr ≤ 0.67%; Ni ≤ 0.45.

Al, 0.000-0.094% Nb, 0.0019-0.0072% N, 1.0-35°C/s

5.0% Cr, 5.0% Ni and 5.4% Mo.

the following limits: 0.1~0.8% C; 0.35~1.80% Mn;<1.50% Si; <0.90% Mo; <1.50% Cr; <4.50% Ni

A version of this formula divides V by 10

This is the most popular formula for this kind of material.Equation valid under the following conditions: 0.07% ≤ C ≤ 0.22%;0.40% ≤ Mn ≤ 1.40%; Si ≤ 0.60%; V ≤ 0,12% ;Cr ≤ 1.20%; Ni ≤ 1.20%; Cu ≤ 0.50%, Mo ≤ 0.7%, B ≤ 0,005%.

Andrews, valid for low alloy steels with less than 0.6%C.Eldis, for low alloy steels with less than 0.6%C.Park, specifically developed for TRIP steels.Lee, valid for the following alloy range: 0.2% ≤ C ≤ 0.7; Mn ≤ 1.5% ;

Blás, Useful range: 0.024-0.068% C, 0.27-0.39% Mn, 0.004-0.054%

Pickering, Applicable to Plain C Steels.

Lee, specifically developed for TRIP steels.

Andrews, valid for low alloy steels with less than 0.6%C, 4.9% Mn,

Eldis, valid for steels with chemical composition between

Shinozaki, Designed Specifically for Flash Butt Welding

Mannesmann, deduced for pipeline steels

Graville & Hoesch, deduced for pipeline steelsIto (I), deduced for pipeline steels with C < 0.15%

Page 8: Parameter2 baja berdasarkan komposisi (AA)

This formula combines Carbon Equivalent equations from IIW and Pcm

C: 0.20~0.54%; Mn: 0.50~1,90%; Si:0.17~1.40%;Cr: 0.03~1.20%; Temp. Tempering: 500~650°C.

(No Crack = Zero)

Yurioka, for C-Mn and microalloyed pipeline steels

Spies, valid within the following ranges: HRC: 20~65;

Shinozaki, at the Welding Interface

Page 9: Parameter2 baja berdasarkan komposisi (AA)

Temperatur uji (oC) 30True Strain 0.2Strain Rate (s^-1) 10Grain Size (mikron) 5Equivalent Carbon 0.51Pearlite Fraction in Microstructure (%) 63.3

Coiling Temperature (oC) 400Finishing Temperature (oC) 100Cooling Rate (oC/s) 20Plate Thickness (mm) 5Total Hot Rolling Conventional Strain (%) 20

1 Young Modulus (kg/mm^2)

2 Shear Modulus (kg/mm^2)

3 Steel Hot Strength (kg/mm^2)

C-Mn Mild Steels:1 Yield Strength at 0.2% Real Strain (Mpa)2 Tensile Strength (Mpa)3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa)4 Uniform Elongation, Expressed as Real Strain5 Total Elongation, Expressed as Real Strain6 Impact Transition Temperature for 50% Tough Fracture (oC)7 Strain Ageing After 10 Days at Room Temperature (oC)

C-Mn Steels Processed at a Hot Strip Mill1 Ferrite Grain Size (mikron)2 Pearlite Fraction Present in Microstructure (%)3 Pearlite Lamelar Spacing (mikron)4 Yield Strength at 0.2% Real Strain (Mpa)5 Tensile Strength (Mpa)6 Total Elongation (%)

Hot/Cold Rolled and Annealed Mild Steel Langenscheid1 Grain Size of Cold Rolled Strip (mikron), (after 60% CR+Anneal)2 Grain Size of Cold Rolled Strip (mikron), (after 70% CR+Anneal)3 Yield Strength at 0.2% Real Strain (Mpa)4 Yield Elongation (%)5 Strain Hardening Coefficient Measured during Tension Test

Page 10: Parameter2 baja berdasarkan komposisi (AA)

Mild Steel, Full Annealed1 Strain Hardening Coefficient Measured during Tension Test

C-Mn Steels with Ferrite-Pearlite Structure (including HSLA Steels)1 Yield Strength at 0.2% Real Strain (Mpa)2 Tensile Strength (Mpa)3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa)4 Uniform Elongation, Expressed as Real Strain5 Total Elongation, Expressed as Real Strain6 Fracture Appearance Transition Temperature (oC)

Microalloyed Steels1 Precipitation Strengthening (Ashby-Orowan Model), Mpa2 Yield Strength at 0.2% Real Strain (Mpa)

Microalloyed Steels1 Precipitation Strengthening (Mpa), only for steels with V2 Yield Strength at 0.2% Real Strain (Mpa)3 Tensile Strength (Mpa)

Page 11: Parameter2 baja berdasarkan komposisi (AA)

V-Ti-N Steels Processed by Recrystallization Controlled Rolling123 Yield Strength at 0.2% Real Strain (Mpa)4 Tensile Strength (Mpa)

Dual Phase Steels1 Yield Strength (Mpa)2 Tensile Strength (Mpa)3 Strain Hardening Coefficient at 0.2% Real Strain (1/Mpa)4 Uniform Elongation, Expressed as Real Strain

Acicular Ferrite/Low Carbon Bainite Steels1 Strength Due to Dislocations (Mpa)2 Burger’s Vector (cm)3 Yield Strength (Mpa)4 Tensile Strength (Mpa)5 Impact Transition Temperature for 50% Tough Fracture (oC)

Medium C Steels1 Yield Strength (Mpa)2 Tensile Strength (Mpa)3 Impact Transition Temperature for 50% Tough Fracture (oC)

Si Non-Oriented Electrical Steels1 Lower Yield Strength (Mpa)2 Tensile Strength (Mpa)3 Yield Ratio (%)

Neff (%)Ceq (%)

Page 12: Parameter2 baja berdasarkan komposisi (AA)

303 K Elastic Range:Plastic Range:

0.005 mm

-3 = α

Tselikov Keterangan 31,754 -Valid for carbon, alloy and stainless steels between 20 and 900°C.

Wilson 12,213

Misaka16.6

Pickering357.5637.5718.9-0.010.48-24.7133.8

Artigas -Valid under the following conditions: Slab Reheating Temperature:30.5 1250°C; Tfin: 850~880°C; Tcoil: 615~650°C;21.2 Final Thickness: 1.8~4.0 mm; C: 0.08~0.18%; Mn: 0.40~1.00%;0.31 P < 0.020%; S < 0.020%; Si < 0.030%; Al: 0.020~0.050%; N: 0.0030~0.0090%.

8070.66377.0-25.6

Langenscheid -Valid under the following conditions: C: 0.005~0,10%; Mn: 0.40%;21.6 P < 0.016%; S < 0.026%; Si < 0.010%; Al: < 0.040%; N: 0.0020~0.0040%.19.9 Cold rolled steel was box annealed at 700°C;21.9 the time of treatment, including heating of the samples,4.6 was equal to 32 hours, being followed by furnace cooling.

0.26

Page 13: Parameter2 baja berdasarkan komposisi (AA)

Morrison0.49

Pickering665.5

1538.6692.8-0.101.1

-40.7

Pickering -The Friction Stress σo (Mpa) value depends on the previous treatment of283.6 the material, and can be found in the table below:628.1

70

defined by the formula below (Mpa).-The effect of solid solution strengthening from another alloy elementssolubilized in ferrite can be included in this equation,using the following linear coefficients:

-Calculation of the precipitation strengthening of quench-aged carbides andprecipitate carbonitrides in Nb, V and Ti steels.-Δσppt can be calculated using a more simplified approach,multiplying the total content of the precipitating alloy bythe factor B shown in the table below:

Volume Fraction of the Precipitate (%):Mean Planar Intercept Diameter of the Precipitate (mikron):

Hodgson93.2

695.0770.4

-Δσppt: Precipitation Strengthening [MPa], for steels with Nb, Ti and/or V

Page 14: Parameter2 baja berdasarkan komposisi (AA)

Mitchell0.000 -For Steels with Al Content over 0.010% and Si Content between 0.25 and 0.35%.0.78 -Precision of the Formulas: ± 40 MPa.

677.7923.6

Gorni1412.2 Mean Ferritic Free Path (mikron)5305.6 Mean Diameter of Martensite Islands (mikron)5305.6 Fraction of Martensite (%)-58.5

Pickering Burger’s Vector120.0 Dislocation Density (lines/cm^2)

4.9E-13 Volume Fraction of the Precipitate (%)766.1 Mean Planar Intercept Diameter of the Precipitate (mikron)

1461.625 Mean Spacing between High Angle Boundaries (“Packet” or Prior -101.0 Austenite Grain Boundaries), mikron

BainiteFerrite Lath Size (mm)

Gladman Volume Fraction of Ferrite (%)289.9 Ferrite Grain Size (mm)617.1 Pearlite Lamelar Spacing (mm)

1116.4 Pearlite Colony Size (mm)Pearlitic Carbide Lamellar Thickness (mm)

Pinoy Ferrite Grain Size (mm)214.6 -Valid under the following conditions: ULC Steel; Mn: 0.075~0.578%;344.9 P < 0.109%; S:0.003~0.004%; Si < 0.34%; Al: < 0.432%;62.9 N: 0.0014~0.0020%; B < 0.0030%.

-Cold rolled steel was box annealed at 700°C; the time of treatment,including heating of the samples, was equal to 32 hours, being followed by furnace cooling.

Page 15: Parameter2 baja berdasarkan komposisi (AA)

0.30.5

Page 16: Parameter2 baja berdasarkan komposisi (AA)

100.5

Page 17: Parameter2 baja berdasarkan komposisi (AA)

0.51060

21E+10

0.10.5

200.005

0.210.030541

0.00030.01

0.002

0.030541

Page 18: Parameter2 baja berdasarkan komposisi (AA)
Page 19: Parameter2 baja berdasarkan komposisi (AA)
Page 20: Parameter2 baja berdasarkan komposisi (AA)
Page 21: Parameter2 baja berdasarkan komposisi (AA)
Page 22: Parameter2 baja berdasarkan komposisi (AA)
Page 23: Parameter2 baja berdasarkan komposisi (AA)
Page 24: Parameter2 baja berdasarkan komposisi (AA)
Page 25: Parameter2 baja berdasarkan komposisi (AA)
Page 26: Parameter2 baja berdasarkan komposisi (AA)
Page 27: Parameter2 baja berdasarkan komposisi (AA)
Page 28: Parameter2 baja berdasarkan komposisi (AA)
Page 29: Parameter2 baja berdasarkan komposisi (AA)
Page 30: Parameter2 baja berdasarkan komposisi (AA)
Page 31: Parameter2 baja berdasarkan komposisi (AA)
Page 32: Parameter2 baja berdasarkan komposisi (AA)
Page 33: Parameter2 baja berdasarkan komposisi (AA)
Page 34: Parameter2 baja berdasarkan komposisi (AA)
Page 35: Parameter2 baja berdasarkan komposisi (AA)
Page 36: Parameter2 baja berdasarkan komposisi (AA)
Page 37: Parameter2 baja berdasarkan komposisi (AA)
Page 38: Parameter2 baja berdasarkan komposisi (AA)
Page 39: Parameter2 baja berdasarkan komposisi (AA)
Page 40: Parameter2 baja berdasarkan komposisi (AA)
Page 41: Parameter2 baja berdasarkan komposisi (AA)
Page 42: Parameter2 baja berdasarkan komposisi (AA)
Page 43: Parameter2 baja berdasarkan komposisi (AA)

Konstanta, c: 19.21Parameter Hollomon, P: 9.1

Tempering Temperature (oC): 200Waktu Tempering (jam): 1.35

ATAU:

Waktu Tempering (jam): 1.35Tempering Temperature (oC): 200

Page 44: Parameter2 baja berdasarkan komposisi (AA)

775.1

t (menit)= 60

967.3

l (cm)= 0.0000050.16

625006.9

Tmin (oC)=

Pa (oC)=

Do (cm^2/s)=Q (cal/mol)=

t0,05 (jam)=

Page 45: Parameter2 baja berdasarkan komposisi (AA)
Page 46: Parameter2 baja berdasarkan komposisi (AA)
Page 47: Parameter2 baja berdasarkan komposisi (AA)
Page 48: Parameter2 baja berdasarkan komposisi (AA)
Page 49: Parameter2 baja berdasarkan komposisi (AA)
Page 50: Parameter2 baja berdasarkan komposisi (AA)
Page 51: Parameter2 baja berdasarkan komposisi (AA)
Page 52: Parameter2 baja berdasarkan komposisi (AA)
Page 53: Parameter2 baja berdasarkan komposisi (AA)