paris qg - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh...

54
Exploring Quantum Gravity as a Renormalizeable Quantum Field Theory John Donoghue Paris April 16, 2019 Work with Gabriel Menezes arXiv:1712.04468 , arXiv:1804.04980, arXiv:1812.03603… All other fundamental interactions are r-QFTs But each with variations QG as QFT will need another variation Is there a fundamental obstacle?

Upload: others

Post on 17-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Exploring Quantum Gravity as a Renormalizeable Quantum Field Theory

John DonoghueParisApril 16, 2019

Work with Gabriel MenezesarXiv:1712.04468 , arXiv:1804.04980, arXiv:1812.03603…

All other fundamental interactions are r-QFTs

But each with variations

QG as QFT will need another variation

Is there a fundamental obstacle?

Page 2: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Quantum GR as a QFT/EFT

We do have a QFT for GR – it is an Effective Field Theory-High Energy parts unknown but local-Shift focus to the IR – nonlocal

Long distance / low energy propagation – non-analytic behavior:

Leads to rigorous quantum predictions:

Page 3: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Sample Predictions:

Potential:

Light bending

Unitarity techniques well suited for EFT

JFD, Bjerrum Bohr, HolsteinKriplovich, Kirilin

UniversalJFD, Bjerrum Bohr, Vanhove

Not universal – non-geodesicJFD, Bjerrum Bohr, Holstein, Plante, Vanhove

Light cone ill-defined

Page 4: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Power Counting

EFT quantizes lowest order action ( R )

Expansion in the energy/curvature

Tree ~ O(E2) , R1 loop ~ O(E4) , R2

2 loops ~ O(E6) , R3

Both finite partsand divergences

Page 5: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Basic Diagnosis for UV complete QFT:

Matter loops renormalize R2 terms- at one loop – and at all loop order- dimensionless coupling constant

R2 terms must be in a fundamental QFT action

R2 terms lead to quartic propagators

With quartic propagators, graviton loops also stop at R2

- all orders- dimensionless coupling constant – scale invariant- R2 theories renormalizeable (Stelle)

QFT “variation” needs quartic propagators

Page 6: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Overview:

Comes with expectations of ghosts:

For quadratic gravity, dangerous ghost in spin-two propagator

But, coupling to light particles makes ghost unstable

Not part of asymptotic spectrum

We will see how theory maintains unitarity

But, causality uncertainty

Page 7: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Outline:The spin-2 resonance

Propagators

Stability

Unitarity 1.0

Modified Lehmann representation

Lee Wick Theories

Unitarity with unstable ghosts

Reinterpreting the Lee Wick contour

Causality uncertainty

Gauge Assisted Quadratic Gravity

Page 8: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Connections:

Early pioneers: Stelle, Fradkin-Tsetlyn, Adler, Zee, Smilga, Tomboulis, Hasslacher-Mottola, Lee-Wick, Coleman, Boulware-Gross….

Present activity: Einhorn-Jones, Salvio-Strumia, Holdom-Ren,Donoghue-Menezes, Mannheim, AnselmiOdintsov-Shapiro, Narain-Anishetty…

In the neighborhood: Lu-Perkins-Pope-Stelle, ‘t Hooft,Grinstein-O’Connell-Wise ….

Page 9: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Quadratic gravity

Free-field mode decomposition depends on gauge fixing.-all contain a scalar mode and tensor mode

Scalar has massive non-ghost and massless ghost – due to R2

Spin 2 mode has massive ghost

Page 10: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Quick notes:

1) Easiest to consider weak coupling

- nonperturbative effects small- scattering remains always weak

2) Different normalizations- most often

- but sometimes I use conventional normalization

Page 11: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

First: Vacuum polarization of normal light fields- the EFT regime

- with usual prescription

Leads to spin-2 propagator

Page 12: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Resonance in spin-two propagator

Figure units:

Narrow width pole position:

Written as “ghost-like” plus “opposite sign width”

vs

Page 13: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Unusual features:

Norm and sign of imaginary part are opposite normal

vs

The two signs are important:

Equivalently stated, overall imaginary propagator carries same sign

***

Page 14: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Resonance in propagator:

Page 15: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Euclidean/spacelike propagator:

Page 16: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Green functions:

Partial fractions:

Without any approximation:

It is fair to drop the log. Becomes BW, with funny signs

Page 17: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Feynman propagator:

Poles:

Both functions have decaying exponential

positive frequency backwards in time

Page 18: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Retarded Green Function

Modified BC and pole location:

Retarded GF now non-zero for t<0- exponentially close to t=0

Advanced GF has similar behavior – switched pole positions

Page 19: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

StabilityNo growing exponentials in any of the Greens functions

When using retarded GF:

Planck scale acausality

Stability studies in curved backgrounds:Study via equations of motion:Salvio – fluctuations in deSitter

Chapiro, Castardelli, Shapiro – Bianchi I

Both find stability for low energy/curvature,but do not address imaginary part, particle production or high curvature

Page 20: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Unitarity in the spin two channel

Do these features cause trouble in scattering? - consider scattering in spin 2 channel

First consider single scalar at low energy:

Results in

Page 21: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Satisfies elastic unitarity:

This implies the structure

for any real f(s)

Signs and magnitudes work out for

Multi-particle problem:- just diagonalize the J=2 channel- same result but with general N

Page 22: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Detour – gravitons in the vacuum polarization- Graviton coupling in EFT region (from Einstein action)

acts just like matter loops. Adds 7/2 to Neff

- But quadratic coupling is different

No imaginary part generated from quadratic gravity

-on shell triple graviton coupling vanishes in Minkowski

-on shell condition is R=0

Or regularize with

Logs then come with

Page 23: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Verified by complete calculation

Page 24: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Complete form of propagator

Unitarity still works

Scattering amplitude:

Page 25: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Modified Lehman representation

plus

Physical propagator evaluated with

Cut along real axisAnother pole found on other side of cut using

Then

leads to a representation

Coleman

Page 26: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Modified Lehman representation:

Spectral function has resonant behavior:

“Explains” unitarity calculation- imaginary part from coupling to stable on-shell states

Imaginary parts live hereSum is real

Page 27: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

This is really three resonance structures

Fix spectral function by matching

Previously we found a single resonance in propagator

In Lehman representation we have three

The spectral portion and the cc pole essentially cancel- exact in narrow width approximation G.O’C.W

Page 28: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Beyond the narrow width approximation

Spectral function contribution Diff. (spect. – cc pole)

Note change in scale

Page 29: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Demonstration of cancelation within three pole representation

The sum of the c.c.-pole and the spectral function has no pole left over

Note change in scale

Page 30: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Lee-Wick theories:

Introduce new particle with negative metric- like dynamical Pauli-Villars

Hamiltonian quantization of free field theory-“indefinite metric”- stable ground state

Turn on interactions- heavy particle becomes unstable- not part of asymptotic spectrum

~1969

See also:Bender-MannheimSalvio-Strumia

Page 31: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Lessons from Lee-Wick

1) “micro-causality” violation - non-causal propagation of order the ghost width

2) Unitarity seems satisfied- but with “LW contour”

Modern overview of unitarity and causality -Grinstein, O’Connell, Wise (2009)

Strong similarity to quadratic gravity

Page 32: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

The Lee-Wick contour:

Deformed contour – “LW contour”

Introduced to pick up the poles found in Hamiltonian quantization

This is most puzzling feature of LW theories- new physics principle?- definition from the Euclidean PI?

We will return to this.

Page 33: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Unitarity 2.0Veltman 1963 Unitarity with unstable particles

Issue: We start using free field theory – identify spectrum-then “turn on interactions”- some particles unstable – not in asymptotic spectrum- who counts for unitarity, cutting rules?- should only involve asymptotic states

Answer: only stable particles count in unitarity sum- no cuts across unstable particle lines

But, corollary: If width is small, can get the same result bycutting resonance and ignoring stable particles

- Narrow Width Approximation

Page 34: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo
Page 35: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Key technical point:

Using Källén–Lehmann representation for both stable and unstableBreaks into time-ordered components

with

such that

Diff. of stable and resonance, - only for stable particle – long time propagation

Then largest time method gives cutting rulesgives

Page 36: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Preliminary

Page 37: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

LW contour as “fix” for NWA

But in this case, narrow width approximation does not givethe same result

Cut resonance propagator instead of stable particles- pole sits on wrong side of the cut

Can recover right answer if using LW contour!

Example: three body intermediate state- Described by onshell massless graviton and two particles in loop

- Using NWA gives zero with usual contour

Page 38: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Cutting rules (in pictures)

One possible path: Schwartz QFT

After some work, leads to

Page 39: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

When the resonance is the LW ghost:

Leads to

If you use the LW contour:

Cannot be satisfiedCut vanishes

This gives the usual result.

Page 40: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

New interpretation:

Find stable states from pole in propagator- only m=0 graviton- no need to quantize free-field ghost

Ghost like resonance as a feature in propagator

Unitarity satisfied with only normal cuts and stable states- no ghosts in unitarity sum- normal integration path

If we pretend that ghost resonance is physical via NWA- then need LW contour to get the same answer

Page 41: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Microcausality violation Grinstein, O’ Connell, Wise 2009

What is going on:Propagation of positive frequency components

Normal resonance LW resonance

Page 42: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Aside: Time ordered PT

Decompose Feynman diagram into time orderings:

Could we actually see final particles produced before initial collision?

Page 43: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Aside: Time ordered PT

Decompose Feynman diagram into time orderings:

Could we actually see final particles produced before initial collision?

Uncertainty Principle to the rescue:- time difference in propagators is ~ 1/ E- need to form wavepacket for initial state- minimum time uncertainty is also ~ 1/ E

Collision/observation times are all uncertain > 1/E

Page 44: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Causality uncertainty principle for quadratic gravity?

“Form a wavepacket” is an idealization

Initial state is also prepared via scattering processes- these will also carry time delays and advances

Gravity near the resonance will be causally uncertain

Is this a common feature of UV QG?

Page 45: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

My favorite variation:

“Gauge assisted quadratic gravity” also with Gabriel Menezes

1) Start with pure quadratic gravity- classically scale invariant- no Einstein term

2) Weakly coupled at all scales

3) Induce Einstein action through “helper” gauge interaction- Planck scale not from gravity itself but from gauge sector

Page 46: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Overview:

Consider Yang-Mills plus quadratic gravity:

Classically scale invariant

“Helper” YM becoming strong will define Planck scale

Take quadratic gravity to be weakly coupled at Planck scale- in particular

Page 47: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Yang-Mills will induce the Einstein action

Adler-Zee

In QCD we find:

Scale up by 1019 to get correct Planck scale

JFD, Menezes

Page 48: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Quick derivation:

Weak field limit:

Gravitaional coupling:

To second order in the gravitational field:

For convenience, consider special case (see also Brown, Zee)

Slowly varying fields (on QCD scale):

Zee

Page 49: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

This results in the effective Lagrangian:

The first term is part of the cosmological constant, the second is the Einstein action. Identify via:

This gives the Adler-Zee formula:

Page 50: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Induced G – in SU(N) theories

Construct the sum rule for QCD – lattice data, OPE and pert. theory

Separate long and short distance techniques at x=x0

Perturbative: (Adler)

OPE: (NSVZ,Bagan, Steele)

Lattice: (Chen, et al.2006)

Page 51: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Note also:

Cosmological constant:

With standard values, Λ = -0.0044 GeV4 (return to this later)

Induced R2 term

We find (low energy only):

Brown-Zee

Page 52: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Three regions:

1) Beyond Planck mass: YM plus quadratic gravity

2) Intermediate energy- interplay of quadratic and quartic terms- dominated by resonance

3) Low energy EFT regionquartic terms subdominant

Page 53: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

The cosmological constant problem Embarrassment for general picture- vacuum energy generated from scale invariant start

Some options:1) Unimodular gravity – vacuum energy is not relevant

2) Caswell-Banks-Zaks – beta function vanishes in IR

3) Strong coupled gravity – perhaps gravity cancels gauge

4) Spin connection as helper gauge theory – no vev

5) Supersymmetric helper gauge theory – no c.c. at this scale

6) Abandon our principles – just add a constant to cancel it

JFD’16

Page 54: Paris QG - th.u-psud.fr · 4xdqwxp *5 dv d 4)7 ()7:h gr kdyh d 4)7 iru *5 ±lw lv dq (iihfwlyh )lhog 7khru\ +ljk (qhuj\ sduwv xqnqrzq exw orfdo 6kliw irfxv wr wkh ,5 ±qrqorfdo

Summary:

Quadratic gravity is a renormalizeable quantum field theory

Positive features:- massless graviton identified through pole in propagator- ghost resonance is unstable – does not appear in spectrum- formal quantization schemes (free field) exist but not needed- seems stable under perturbations- unitarity with only stable asymptotic states- LW contour as shortcut via narrow width approximation

Surprising (?) feature:- causality violation/uncertainty near Planck scale

More work needed, but appears as a viable option for quantum gravity