patlisci

35
Harry Heinzelmann VP Nanotechnology & Life Sciences PATLiSci – Probe Array Technology for Life Sciences Bern, May 2011

Upload: dalgetty

Post on 16-Nov-2014

406 views

Category:

Technology


0 download

DESCRIPTION

This project is about further developing probe array techniques for life science applications, notably in the context of cancer research. The consortium shows the balance between experts in sensing technology as well as oncology.

TRANSCRIPT

Page 1: Patlisci

Harry HeinzelmannVP Nanotechnology & Life Sciences

PATLiSci – Probe Array Technology for Life Sciences

Bern, May 2011

Page 2: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 2

“nano” -tera

PATLiSci – Probe Array Technology for Life Science Applications

Page 3: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 3

Page 4: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 4

Page 5: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 5

Science Museum London“The Making of the Modern World”

Page 6: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 6

Dre

xel U

, Phi

lade

lphi

a

IBM

IBM

Page 7: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 7

it’s much much more than microscopy…

PATLiSci – Probe Array Technology for Life Science Applications

Müller and DufrêneNature Nanotechnology (2008)

U Pennsylvania

Page 8: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 8

Cancer is Relevant

PATLiSci – Probe Array Technology for Life Science Applications

bfs.admin.ch

• how do cancer cells differ in cell mechanical properties ?

• how do cancer cells adhere to substrates, or to other cells ?

• can we find better ways to detect cancer in an early stage ?

• can we bring a test device to POC?

Page 9: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 9

Probe Array Technology

PATLiSci – Probe Array Technology for Life Science Applications

• cantilever arraysfor nanomechanical sensing

• measure the presence of minute concentrations of analytes (N channels)

• use for R&D, optimization, integration

• point probe arraysfor parallel force spectroscopy

• measure interaction forces and mechanical properties (N statistics)

• proof of principle, use for R&D

Page 10: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 10

A Nose for Cancer Detection

PATLiSci – Probe Array Technology for Life Science Applications

Page 11: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 11

Project Partners

PATLiSci – Probe Array Technology for Life Science Applications

H. Vogel EPFL

Membr protein immobilisation

H.P. Herzig EPFL-IMT

Optics

N. de Rooij, P. Vettiger, J. Brugger

EPFL-IMT, MEMS design & fab

A. Mariotti CePO, CHUV Melonoma progression F. Beermann

ISREC, EPFL Tumorigenesis

P. Romero LICR U Lausanne Head & neck

carcinoma

E. Meyer Ch. Gerber Uni Basel

Cantilever sensors

D. Rimoldi LICR U Lausanne

Melanoma

H. Heinzelmann CSEM (Coord) Probe array technologies

Page 12: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 12

Cantilever Sensing – Technology

detection in liquids:

• biomarkers for cancer in DNA/cell samples

• measured by optical beam deflection

detection in the gas phase:

• volatile organic compounds (VOCs) in patient‘s breath – non-invasive early recognition of cancer

• measured with integrated piezoresistors

PATLiSci – Probe Array Technology for Life Science Applications

J. Fritz et al., Science 288, 316-318 (2000); D. Schmid et al., Eur. J. Nanomedicine 1, 44-47 (2008)

Cantilever is a Nanomechanical Sensorspecific adsorption/docking of molecules creates mechanical stress bending

Page 13: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 13

Cantilever Sensing – Results

Detection of mutant DNA (in liquid)

B-Raf oncogene, in 50-60% of all melanoma tumors

Detection of VOCs (in gas phase)

PATLiSci – Probe Array Technology for Life Science Applications

(N

ation

al C

ance

r Ins

t.)

20 40 60 80 100 120 140 160 180 200-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

DNA from normal cells DNA from melanoma cells

dif

fere

nti

al

de

fle

cti

on

/n

m

time /min

inje

ctio

n o

f DN

A

Page 14: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 14

Cantilever Sensing – Outlook and Next Steps

in liquids

DNA, mRNA, and tumor cell detection

• melanoma associated antigens

• test of mutation/antigen and cell binding

• detection limits of the assays

• optimization of DNA and antigen binding

• optimization of cell capture

• implementation of a microfluidic system for an initial cell sorting step (PATLiSci extension MINACEL)

in gas phase

Breath analysis of from cancer patients

• feasibility EBS of head & neck cancer patients

• representative study on EBS of head & neck or lung cancer patients

• optimization of readout hard-/software

• functionality and reliability tests

• portable device prototype

• implementation of a micro bioreactorin combination with cantilever arrays (PATLiSci extension MINACEL)

PATLiSci – Probe Array Technology for Life Science Applications

Page 15: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 15

Force Spectroscopy – Technology

• information about adhesion proteins, cell mechanics, kinetics, …

• statistics! parallel force spectroscopy novel cantilever deflection readout probe array microfabrication living melanoma cell array

PATLiSci – Probe Array Technology for Life Science Applications

source: JPK

Page 16: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 16

Force Spectroscopy – Results

PATLiSci – Probe Array Technology for Life Science Applications

M. Favre et al., J. Mol. Recogn. 24 (2011) 446)

pore

cell

A B

C

F E

D

Page 17: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 17

Force Spectroscopy – Outlook and Next Steps

• Measure cell elasticity at different growth phases

• Analysis of cell adhesion (cell-surface, cell-cell) in the presence of extra cellular matrix proteins

• Compact optical cantilever deflection read-out

• Individual cantilever actuation (force control)

• implementation of cell separation and sorting (PATLiSci extension MINACEL)

PATLiSci – Probe Array Technology for Life Science Applications

Page 18: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 18

MINACEL: Micro- and Nanofluidics for Cell Handling

PATLiSci – Probe Array Technology for Life Science Applications

bring competence in fluidics to PATLiSci

• micro Bioreactor with tumor cells producing VOCs for gas phase analysis

• Cell Sorting device to isolate CTC and adherent cells

• Nanofluidics for single cell microinjection using NADIS technology

Page 19: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 19

Thank you for your attention.

Page 20: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 20

backup slides

Page 21: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 21

Cantilever Sensing in Gaseous and in Liquid Environments

Non-Invasive Diagnostics for early detection of eg. lung, head & neck cancer • higher specificity and sensitivity to VOC with

coatings based on natural odorant receptors

• piezo-resistive cantilevers

• handheld device for POC applications

Detection of melanoma specific somatic mutations in blood samples• detection of dissolved tumor specific

markers with suitable anti-bodies, or direct binding of melanoma cells (CTC)

• no prior amplification or labeling

Probe Array Technology for Life Science Applications

Page 22: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 22

Force Spectroscopy on Cells

• information about adhesion proteins, cell mechanics, kinetics, …

• cell-surface, cell-cantilever, cell-cell

• meaningful only with sufficient statistics, which makes experiments rather tedious

• at current rate of a few cells per day,not useful for screening formats

• array format and parallel operation will greatly improve statistics and allow high throughput screening formats

Probe Array Technology for Life Science Applications

source: JPK

Page 23: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 23

Literature – Force Spectroscopy on Cancer Cells

Probe Array Technology for Life Science Applications

from S.E. Cross et al., Nanotechnology (2008)

from S.E. Cross et al., Nature Nanotech (2007)

all cells

Tumor cells

normal cells

Page 24: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 24

Project Goals

• develop point probe array system (microfabricated array and read-out system)

• demonstrate parallel measurement of cell mechanics

• demonstrate cell adhesion measurements with improved statistics

• assess potential in diagnostics and cell based screening

• improve performance of cantilever array sensors

• demonstrate detection of cancer via breath analysis

• improve sensitivity and demonstrate detection of disorders in patients’ blood samples via various biomarkers (library)

• integrate system into a handheld cantilever-based diagnostic device prototype

Probe Array Technology for Life Science Applications

Page 25: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 25

Safety Production

Food Quality

Environment

Diagnostics

Impact beyond the Scope of this Project

Probe Array Technology for Life Science Applications

Research,Screening

NEMS / nano

ICT / tera

Page 26: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 26

PROBART for Parallel Imaging

Nanotools – Probe Arrays

R lever

R ref

VEE (- 6V)Rlever

Rref

R1 R2

Vout

(~ 20 kohm)

4x4 array imaging inbuffer solution with continuous zoom-in

probe #6

probe #13

probe #15

Page 27: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 27

ArrayFM with Optical Read-out – First Results

Nanotools – Probe Arrays

Page 28: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 28

PROBART for Force Spectroscopy

Nanotools – Probe Arrays

600 pN/div

√√

√√

√√

in “expert reviews in molecular medicine”, http://www-ermm.cbcu.cam.ac.uk

Force resolution = 160 pN

sufficient for mostdonor/acceptor complexes

glass surface

PBS (0.01M)Polylysin (5mg/l)

18µm

6.4µm Mapping of the elastic response of a cell

Page 29: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 29

ArrayFM with Optical Read-out

Nanotools – Probe Arrays

where are we with this?

first demonstration in ambient conditions and on solid substrates

topography detail reproduced down to nm scale and nm sensitivity

what is still missing?

• improve sensitivity / noise equivalent force

• adapt optics to operation in liquids

• adapt optics to large arrays

• interface with software, data transfer

Page 30: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 30

ArrayFM with Optical Read-out – Some More Tricks

Nanotools – Probe Arrays

• solving phase ambiguity

• LabView based software interface

• Si and sol-gel replicated cantilevers

Page 31: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 31

Cell Adhesion Forces

Nanotools – Probe Arrays

what is still missing?

• work on arrays of cells(immobilized arrays)

• work on arrays of vesicles, and assess feasibility

• for cell-cell (vesicle-vesicle) studies, develop protocols on how to get these on the probe tip

• work on probes, tip geometry, functionalization

• work probe actuation

• work on probe array homogeneity, and alignment issues

Page 32: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 32

Nanoscale Dispensing – NADIS

Nanotools – Nanoscale Dispensing

Nanoparticle suspensions

Materials for processing

Molecules in solution

• functional biomolecules for microarrays, such as

proteins or DNA

• metallic nanoparticles to form connects, catalyst

particles, optical and chemical functions, …

• etch resist materials, sol-gel precursors, …

deposition of liquidsin ultrasmall volumesfrom microscopic tips

Page 33: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 33

Closed Channel NADIS Cantilevers

• single probes

• 1-dim arrays

• one and two channel design, on-chip reservoirs

• closed channels for- better control- operation in liquids

• new microfabrication process

Page 34: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 34

Nanotools – Nanoscale Dispensing

0

0.5

1

0 2 4 6 8

Inte

nsity [a

.u.]

3 μm

applied pressure ~ 2mbar

NADIS of Fluorophores in Liquid Environments

Page 35: Patlisci

Copyright 2011 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 35

NADIS for Liquid Exchange with Living Cells

Nanotools – Nanoscale Dispensing

• injection after perforation of the cell membrane

• extraction of cytoplasm for remote analysis

• towards patch clamping

viable neuroblastoma cells Cell TrackerTM green staining