patrick metzner group

58
1

Upload: rae

Post on 13-Jan-2016

68 views

Category:

Documents


4 download

DESCRIPTION

LCMT. Patrick Metzner group. Annie-Claude Gaumont group. Vincent Reboul. Synthesis and reactivity of enantiopur cyclic sulfenamides. Easy access to 1,4-benzothiazepines and 1,3-benzothiazines. Cédric Spitz. 09/11/2010. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Patrick Metzner group

1

Page 2: Patrick Metzner group

2

Page 3: Patrick Metzner group

3

Patrick Metzner group Annie-Claude Gaumont group

Vincent Reboul

LCMT

Page 4: Patrick Metzner group

4

Synthesis and reactivity of enantiopur cyclic sulfenamides. Easy access to 1,4-benzothiazepines

and 1,3-benzothiazines

Cédric Spitz

Laboratoire de Chimie Moléculaire et Thioorganique, UMR CNRS 6507, ENSICAEN-Université de Caen6 Boulevard du Maréchal Juin, 14050 Caen, France.

Supervisors : M. Patrick Metzner, Directeur de recherche au CNRS, (LCMT-ENSICAEN) M. Vincent Reboul, Maître de conférences, Université de Caen, (LCMT-ENSICAEN)

09/11/2010

Page 5: Patrick Metzner group

5

Introduction

Sulfenamides reviews : (1) Craine, L.; Raban M. Chem. Rev. 1989, 89, 689-712. (2) Davis, F. A. Int. J. Sulfur Chem. 1973, 8, 71-81.Effect : Buncel E.; Um I.-H. Tetrahedron, 2004, 60, 7801-7825.

- Electronegativity difference : S electrophile and N nucleophile

S-N : Supernucleophile?

- Lone pairs of the sulfur atom adjacent to nitrogen (effect)

Sulfenamide Sulfinamide Sulfonamide

R1 SN

R3

R2R1 S

N

OR3

R2

O

R1 SN

O

R3

R2

δ+

δ−

Page 6: Patrick Metzner group

6

Reviews on sulfenamide reactivity : (1) N. E. Heimer, L. Field J. Org. Chem., 1970, 3102-3022. (2) L. Craine, M. Raban Chem. Rev. 1989, 89, 689-712.

R1

S N

R3

R2

H2NOH

O

R

HCl

S

NO2

Cl+

-HCl

Goerdeler, H.; Holst, A. Angew. Chem. 1959, 71, 775-788.

COPd(PPh3)4

S

O

N

R3

R3R1

90%(R1 = Ph; R2,R3 = Et)

Kuniyasu, H.; Hiraike, H.; Morita, M.; Tanaka, A.; Sugoh, K.; Kurosawa, H. J. Org. Chem. 1999, 64, 7305‑7308.

Ph OH

Ph O

H

NCS (5%)

98%

ClS N

t-Bu

Ph

Matsuo, J.-I.; Iida, D.; Yamanaka, H.; Mukaiyama, T. Tetrahedron 2003, 59, 6739-6750.

(10%)

90% (ee : 98%)(R1 = Bn; R2,R3 = triazole)

NH OTMS

RR

HO

H

O

SR1

R = 3,5-CF3C6H3

Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jorgensen, K. A. Angew. Chem. 2005, 117, 804-807.

Sulfenamides reactivity

Caserio, M. C.; Kim, J. K. J. Am. Chem. Soc. 1982, 104, 3231-3233.

Me3OBF4

S

NR3

R2

R1

60%(R1, R2, R3 = Me)

Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T.-A. Tetrahedron Lett. 2004, 45, 1469-1471.

MeO2C CO2Me

MeO2C

NEt2

CO2Me

PhS[RuCl2(CO)3]2

87%

Page 7: Patrick Metzner group

7

Sulfenamides applications

- Vulcanization

- Action mecanism of « proton pump inhibitors »

Omeprazole (racemic) : Mopral-Losec/Astra-ZenecaEsomeprazole (S) : Inexium/Astra-Zeneca (2001)

Global sales in 2006 : 6700 billions $ !

N

N

O

S

OH

N

O

N

N

O

SO

N Enz–SHHN

N

O

O

N

SS

Enz

Shin, J. M.; Cho, Y. M.; Sachs, G. J. Am. Chem. Soc. 2004, 126, 7800-7811.

S8

Page 8: Patrick Metzner group

8

- Aims : Synthesis of 1,4-benzothiazepines

Use of sulfenamides

SN

R1 R2

δ+

δ−

Le Fur, N.; Mojovic, L.; Plé, N.; Turck, A.; Reboul, V.; Metzner, P. J. Org. Chem. 2006, 71, 2609-2616.

HH

O

S

NHR2R1

H

O

S

NR1 R2

1

2

34

R3

OMe

O

Lewis acid

SN

R1 R2 R3

C

MeO

OS

NR1

R3

OMe

O

R2

R3 = H, CO2Me

1

2

3

4

Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T.-A. Tetrahedron Lett. 2004, 45, 1469-1471.

Ruthenium complex

S[Ru]

N

R1

R2

S

NR1

R2

12

34

Page 9: Patrick Metzner group

9

- Access to 1,4-benzothiazepines

Heart attack1

S

N

R

O

R = SO2-R1

O

N

Bn

R = K-201JTV-519

(1) (a) Kaneko, N. WO Patent 105793, 2005. (b) Kaneko, N.; Oosawa, T.; Sakai, T.; Oota, H. WO Patent 012148, 1992. (c) Marks, A. R.; Lehnart, S. E. WO Patent 021439, 2008. (d) Marks, A. R.; Landry, D. W.; Deng, S.; Cheng, Z. Z. WO Patent 101496, 2006.

Use of sulfenamides

Atheroma2

(accumulation and swelling in artery walls )

Hyperlipidemia3

(abnormally elevated levels of lipids in the blood)

Obesity3

Diabetes4

Cirrhosis of the liver

S

N

H

RR

O OR2N

NR2

(2) Brieaddy, L. E. WO Patent 016055, 1993.(3) (a) Brieaddy, L. E. WO Patent 005188, 1996. (b) Sasahara, T.; Mohri, M. WO Patent 020421, 2004. (c) Starke, I.; Alenfalk, S.; Nordberg, M. P.; Dahlstrom, M. U. J.; Bostrom, S. J. Lemurell, M. A.; Wallberg, A. C. WO Patent 076430, 2004. (d) Sasahara, T.; Mohri, M.; Kasahara, K.I. WO Patent 082874, 2005. (e) Frick, W.; Glombik, H.; Heuer, H.; Schaefer, H.-L.; Theis, S. WO Patent 009655, 2007. (4) Nagase, T.; Sato, Y.; Eiki, J. WO Patent 053548, 2002.

-1,1-dioxydes

Page 10: Patrick Metzner group

10

Summary

I/ Synthesis of cyclic sulfenamides

II/ Synthesis of 2,3-disubstituted 1,4-benzothiazepines

III/ Synthesis of 1,3-benzothiazines

IV/ Synthesis of 2-substituted 1,4-benzothiazepines

SN

R1 R2

R

45

21

3

S

NR2R1

R3

R3

R

21

3

45

S

NR2R1

R3

21

3

4

S

N

R1

R2

R3

R

Page 11: Patrick Metzner group

11

Summary

I/ Synthesis of cyclic sulfenamides SN

R1 R2

R

45

21

3

S

NR2R1

R3

R3

R

21

3

45

S

NR2R1

R3

21

3

4

S

N

R1

R2

R3

R

Page 12: Patrick Metzner group

12

Synthesis of precursors

Synthesis of imines

Le Fur, N.; Mojovic, L.; Plé, N.; Turck, A.; Reboul, V.; Metzner, P. J. Org. Chem. 2006, 71, 2609-2616.

Li

St-Bu

O

THF

-78°C, 1h30R = H, 80%, ee > 96%

R

n-BuLi (1 éq.), THF

-78°C, 1 h

Br

R

R

R = OMe, 70%

(R)

Kanazawa, A. M.; Denis, J.-N.; Greene A. E. J. Org. Chem. 1994, 59, 1238-1240.

OHN

SO2PhR

Base N R = alkyle, aryleEWG = Ts, Boc, SESHCOOH/H2OHR

R H

EWG

H2NEWG

PhSO2Na EWG

39-75%SES : O2S

SiMe3

Blum, S. A.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2003, 68, 150-155.

Synthesis of sulfoxides

t-BuS

St-Bu

OH

N OH

t-Bu

t-Bu

H2O2 (1.4 equiv)O

St-Bu

t-BuS

O(0,52 mol %)

0,5 mol %VO(acac)2

, 0°C, 24 h

ee > 96%61% (after recristallization)

Ellman's thiosulfinate

Page 13: Patrick Metzner group

13Le Fur, N.; Mojovic, L.; Plé, N.; Turck, A.; Reboul, V.; Metzner, P. J. Org. Chem. 2006, 71, 2609-2616.

a Déterminé par RMN 1H sur le brut réactionnel

Aminosulfoxides

R R1 EWG Rdt(%) r.d.a

H i-Pr Ts 80 >98/2

H Ph Ts 64 80/20

H Cy Ts 74 >98/2

H m-BrC6H4 Ts 63 77/23

H Cy SES 63 >98/2

H Ph Boc 54 80/20

H i-Pr Boc 46 >98/2

OMe i-Pr Ts 60 >98/2

Synthesis of cyclic sulfenamides

Addition of sulfoxides to imines

St-Bu

O

St-Bu

NH

EWG

OR11) n-BuLi (1,2 éq) THF, -78 °C, 1 h

2)N

HR1

EWG

THF, -78°C, 1 h

(1,2 éq)

ouHN

SO2PhR1

Boc

(0,55 éq)

(R) (R)

(R)

R R

99

95

98

Sulfenamides

98

98

99

97

96

Rdt (%)

S

EWG

HR1

H2O

acide sulfénique

ToluèneΔ,30min

SN

R1 EWG(R)

OH

N

R R

Quantitative cyclization of sulfenamides

and cyclization

N. Le FurO

St-Bu

Li

R H

NS

O

TolO

Alkyl imines :Total asymetric induction

Aryl imines : d.r. ≈ 80/20

Page 14: Patrick Metzner group

14

SN

Ts SN

Ts

X-Ray Structure

Jean-François Lohier

Page 15: Patrick Metzner group

15

Conclusion

Synthesis of 8 benzisothiazolines with good yields (from 36 to 62%) over 3 steps from Ellman’s thiosulfinate

- total asymetric induction for alkyl imines

- d.r. = 80/20 for aryl imines

- R2 = EWG (Ts, Boc, SES)

Reactivity of cyclic sulfenamides?

St-Bu

O

(R)S

t-Bu

NH

R2

OR11) n-BuLi (1,2 éq.)

(R)

THF, -78°C, 1 h

THF, -78°C, 1 h

(1,2 éq.)

(0,6 éq.)R

imine

sulfoneou

R

46-80%

2) reflux, 30 min

toluèneS

NR1 R2

95-99%R

R = H, OMeR1 = i-Pr, Cy, Ph, m-BrC6H4

R2 = Ts, Boc, SES

Page 16: Patrick Metzner group

16

Summary

II/ Synthesis of 2,3-disubstituted 1,4-benzothiazepines

SN

R1 R2

R

45

21

3

S

NR2R1

R3

R3

R

21

3

4

S

N

R1

R2

R3

R

21

3

45

S

NR2R1

R3

Page 17: Patrick Metzner group

17

Reactivity of sulfenamides

Bibliography

Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T.-A. Tetrahedron Lett. 2004, 45, 1469-1471.

(DMAD)

MeO2C CO2Me

[RuCl2(CO)3]2 (2 mol%)

MeO2C

PhS NEt2

CO2Me

87%

PhS NEt2

100% Z

DMF, 40°C, 6 h

(2 éq.)

Application to the synthesis of 1,4-benzothiazepines

- 1st step : nucleophilic attack of nitrogen of sulfenamide to alkyne

S N R

MeO O

AL

MeO O

δ+

δ−

SN

R

δ−

δ+

MeOO

SN

R

AL

AL

AL

CO2Me CO2MeCO2Me

MeO2C CO2Me

R' R'R'

Page 18: Patrick Metzner group

Deprotection of sulfenamide

1) TFA (5 éq.), CH2Cl2, ta, 5 h

2) NaHCO3CH2Cl2

SN

SN

Boc

SN

H

52%

SN

Cy SES

SN

Cy H

60%ta, 1 nuit

CsF (5 éq.)DMF

S

NH2O

t-Bu

toluène80°C

72%

18

Reactivity of sulfenamides

Nitrogen nucleophilic despite EWG?

SN

TsMeO2C CO2Me

Δor/andcatalyst S

N

CO2Me

Ts

CO2Me

catalyst=ZnCl2,FeCl2,CuI,PdCl2(PPh3)2,RuCl3.3H2O

Page 19: Patrick Metzner group

19

Use of sulfur electrophilie

Phosphines or amines catalysis

14460CH3CNPPh3 (25)

211460CH3CNDABCO (20)

(R)-19a

(Yield)Time (h)

T (°C)

SolventaCatalyst (mol%)

121420CH2Cl2DPPP (20)

701440CH2Cl2PPh3 (100)

351440CH2Cl2PMe3 (100)

161460CH3CN

ou toluene

DPPP (100)

a All reactions were carried out at 0.1 M concentration using 2 equivalents of DMAD.

01460 ou 100

CH3CN ou DMF

-

121440CH2Cl2PPh3 (25)

MeO2C

CO2Me

CO2MeY

CO2Me

SNTs

CO2Me

CO2MeY

SN

Ts

S

N

Ts

CO2Me

CO2Me

X : PR3, NR3Y : R3P+, R3N+

X(R)-19a

Page 20: Patrick Metzner group

20

- bibliography

Gorgues, A.; Stéphan, D.; Cousseau, J. J. Chem. Soc., Chem. Commun. 1989, 1493-1494.

Fluoride catalysis

810,560CH3CNCsF (25)

370,560CH3CNTBAF (200)

880,560CH3CNCsF (200)

730,560CH3CNCsF (200)

86260CH3CNCsF (10)a

19a (Yield)Time (h)T (°C)SolventCatalyst (mol%)

60420CH3CNCsF (200)

02420CH3CNCsF (10)

A slow addition of DMAD over 30 min.

- optimized conditions

0,02

0,1

0,02

0,1

0,02

Concentration

0,1

0,1

Use of sulfur electrophilie

S

NCO2Me

S

NTs

CO2Me

CO2Me+

Ts

19a

MeO2CCsF

CH3CN(1,1 éq.)

FH

CO2Me

MeO2C

Z majo.

H2OCO2MeF

CO2MeMeO2C CO2Me

M F

DMF

M Rdt (%)

CsRbK

NaLi

67403700

Page 21: Patrick Metzner group

21

Scope of the reaction

R R1 Yielda

H Cy 60

H Ph 79

H 3-Br-C6H4 65

OMe i-Pr 35

a slow addition of DMAD over 30 min

S

N

R1

CO2Me

S

NTsR1

CO2Me

CO2Me+

CsF (10%)

CH3CN(C = 0,02 M)

60°C, 2 h

Ts

19

RMeO2C

R

(1,1 éq.)

Fluoride catalysis

Page 22: Patrick Metzner group

22

X-Ray Structure

2 conformations

Jean-François Lohier

S

N

Ts

CO2Me

CO2Me

i-Pr in « pseudo-axial » position i-Pr in « pseudo-equatorial » position

Page 23: Patrick Metzner group

23

Scope with other alkynes

R1 Alkyne Yield (%)a

i-Pr 73

Cy 55

Ph 51

3-Br-C6H4 85

i-Pr 0

3-Br-C6H4 0

a All reactions were carried out with 10 % of CsF in acetonitrile at 60°C (C = 0,02 M) and slow addition of acetylene (1,1 eq.) over 30 min.

S

N

R1

S

NTsR1

CN

CN+CsF (10%)

CH3CN 60°C, 2 h

Ts

ou

SO2t-But-BuO2S

NC CN

NC CN

NC CN

NC CN

NC CN

SO2t-But-BuO2S

SO2t-But-BuO2S

Page 24: Patrick Metzner group

24

X-Ray Structure

S

NCN

CN

Ts

Jean-François Lohier

S

NCN

CN

Ts

Page 25: Patrick Metzner group

25

Mechanistic study

1st mechanism

2nd mechanism

S

NTs

R2

R2

S

R1

NTs

R1

F S NTs

R1

F

S

R1

NTs

F

R2

R2

R2 R2

H2OS

R1 NH

Ts

R1HN

Ts

S?

R2

R2

R2F

R2SN

TsR2

R2F

SN

Ts

F

R1

R1

S

NTs

R2

R2

R1

FH

R2

R2

H2O

R2 = CO2Me

traces

Page 26: Patrick Metzner group

26

2nd mechanism?

- reversible- formation of a sulfenyl fluoride intermediate

Mechanistic study

S

NH

Ts

HN

Ts

S

S

NTs

NaBH4MeOH

puis H2O/HCl

S

NHTs

H

CsF (1 éq.)H2O (20 éq.)

CH3CN, 60°C, 6 h

20%

74%

Ar SF3

H2OAr SO2H

Literature :

Sheppard, W. A. J. Am. Chem. Soc. 1962, 84, 3058-3063.

Sandrinelli, F.; Perrio, S.; Beslin, P. Org. Lett. 1999, 1, 1177-1180.

CsF (1 éq.) Addition lente

de H2O

SO2H

NHTs

CH3I

S

NHTs

Me

O O

46%n-Bu4NBr (cat.)H2O/toluène/acétone

CH3CN, 60°C, 48 h

71%

SF3

NHTssupposition

Page 27: Patrick Metzner group

27

Conclusion

One step synthesis of nine 1,4-benzothiazepines from benzisothiazolines with good yields (from 35 to 86%)

- 1st use of fluoride as nucleophilic catalyst

- formation of a sulfenyl fluoride intermediate

- limitations : - need of 2 EWG on the alkyne

- no reaction with di‑t‑butylsulfonylacetylene

Spitz, C.; Lohier, J.-F.; Sopkova-de Oliveira Santos, J.; Reboul, V.; Metzner, P. J. Org. Chem. 2009, 74, 3636-3639.

R = H, OMeR1 = alkyle, aryle

S

N

R1

R2R2

S

NTsR1

R2

R2+CsF (10%)

CH3CN 60 °C, 2 h

Ts

R2 = CO2Me, CN 35-86%

R

Page 28: Patrick Metzner group

28

Summary

III/ Synthesis of 1,3-benzothiazines

SN

R1 R2

R

45

21

3

S

NR2R1

R3

R3

R

21

3

4

S

N

R1

R2

R3

R

21

3

45

S

NR2R1

R3

Page 29: Patrick Metzner group

29

1,3-benzothiazines

Application of the previous method with terminal alkyne

S

NTs CsF

(10%)

CH3CNta, 30 min

S

N

Ts

CO2Me

CO2Me

H

- very fast reaction- unexpected formation of 1,3-benzothiazine

S

N

CO2Me

Ts

86%(E/Z : 13/87)

H

Page 30: Patrick Metzner group

30

1,3-benzothiazines

Scope of the reaction with other sulfenamides and terminal alkynes

CsF (10%)

CH3CNta, 30 min

S

NR1

R2

Ts

S

N

R1

Ts R2

+

a Determined by 1H NMR of crude

17/8357CO2Me3-Br-C6H4

13/8785CO2Eti-Pr

14/8684CO2MeCy

E/ZaYield (%)R2R1

13/8773CO2MePh

13/8786CO2Mei-Pr - R2 = ester : diastereoisomer Z

- total diastereoselectivity for R1 = aryl and R2 = Ts

>98/274Ts3-Br-C6H4

92/893TsCy

>98/292TsPh

92/896Tsi-Pr

- R2 = tosyle : diastereoisomer E

-0Phi-Pr

- R2 = EWG needed(no reaction with phenylacetylene)

Page 31: Patrick Metzner group

31

X-Ray Structure

S

NPh Ts

CO2Me

S

Ni-Pr Ts

Ts

Jean-François Lohier

Page 32: Patrick Metzner group

32

Scope with others EWG on nitrogen of sulfenamide

- no deprotection of SES with 0.1 eq. of CsF in MeCN- deprotection with 2 eq. of CsF in DMF

S

N

CySES CsF (10%)

CH3CN ta, 30 min

72%

S

NCy SES

CO2Me

E/Z: 1/9

CsF (2 éq.)

DMF, ta, 2 h94%

CO2Me

S

NCy H

CO2Me

SES

S

N

R1

Boc

S

NHR1 Boc

CO2Me

CsF(10%)

CH3CNta, 30 min

S

N

CO2Me

BocR1

CO2Me

R1 = Ph, 97%R1 = i-Pr, 99%

TFA (12 éq.)

CH2Cl2, ta, 20 hS

NH

R1

CO2Me

R1 = Ph, 23%

Boc

- formation of an open molecule- possible to close it deprotecting the amine moiety

Page 33: Patrick Metzner group

33

Mechanistic study

Deprotonation of methylpropiolate with n-BuLi then addition of sulfenamide

SN

Ts

CO2Me

1) n-BuLi (1.1 éq.)

THF, -100°C, 30 min

85%

THF, -100°C, 30 min

2) S

NTs

CO2Me

r.d. = 65/35

- Formation of 1,3-benzothiazine

S

NC

TsO

OMe S

N

TsS

NTs

CO2Me

HF

F

S

NTs

MeO2CS

N

CO2Me

Ts

CO2Me

MeO2C Hbenzothiazine Proposed mechanism

-Key step : deprotonationof alkyne by CsF

Page 34: Patrick Metzner group

- domino reactions with aliphatic aldehydes

CsF (30%)

DMSO t.a.

O

O

H

O

O OMe

H

4 dias (E/Z, syn/anti)1

98%

H H

O O

55%

O

OCO2Me

(2,1 éq.)

(1,2 éq.)

O

CO2Me

O

34

Use of CsF as base

CsF as catalyst for nucleophilic addition of alkynes to carbonyl compounds?

H

OR

O

O

CsF (10%)DMSOta, 2 h

HO

CO2Et

64%

R = Et ou Me

- expected formation of alcohol by addition to cyclohexanone

- deprotonation confirmed

1 work carried out by Damien Deschamps

Ph

O

Hno reaction

Page 35: Patrick Metzner group

35

Conclusion

One step synthesis of ten 1,3-benzothiazines from benzisothiazolines with good to excellent yields (from 57 to 96%) and moderate to excellent diastereoisomeric excess (from 66 to 96%)

- catalytic use of fluoride as base

- limitations : - no reaction with phenylacetylene

EWG sur l’alcyne

- promising first results with carbonyl compounds

CsF (10%)

CH3CNta, 30 min

S

NR1

R3

R2

S

N

R1

R2

R3+

57-96%R1 = alkyle, aryleR2 = Ts, SES

R3 = CO2Me, Ts, CO2Et r.d. = 66-96%

Spitz, C.; Lohier, J.-F.; Reboul, V.; Metzner, P. Org. Lett. 2009, 11, 2776-2779.

Page 36: Patrick Metzner group

36

Summary

IV/ Synthesis of 2-substituted 1,4-benzothiazepines

SN

R1 R2

R

45

21

3

S

NR2R1

R3

R3

R

21

3

4

S

N

R1

R2

R3

R

21

3

45

S

NR2R1

R3

Page 37: Patrick Metzner group

37

1,4-benzothiazepine vs 1,3-benzothiazine

With terminal alkynes, how could we favour formation of 1,4-benzothiazepine?

CO2Me

Y

CO2Me

SNTs

CO2Me

Y

SN

Ts

S

N

Ts

CO2Me

H X : PR3, NR3Y : R3P+, R3N+

X

H

H

H

C

Y H

OMeO

Promote catalyst nucleophilie (1,4 addition) instead of its basicity

SN

R1 Ts

R2

R2 = CO2Me, Ts

S

NR1

Ts

S

NR1 Ts

R2

H

H

R2

CsF (10%)MeCN

rt, 30 min86%

catalyst?

Page 38: Patrick Metzner group

38

93

24

100

79

90

69100/0/04060DMEPyridine (0,5)

-100/0/07260DMEbPyridine (0,5)

80100/0/02460DMEPyridine (1)

-100/0/07060DMEPyridine (0,2)

-55/37/82460MeCNPyridine (0,2)

100

100

100

100

78

Conversion

-

-

-

-

-

15/65/20

0/84/16

18/71/11

17/72/11

22/58/20

2

0,5

1

0,5

24

80

ta

ta

ta

ta

MeCN

MeCN

MeCN

MeCN

MeCN

DPPP (0,1)

PPh3 (0,2)

DABCO (0,2)

DMAP (0,2)

Pyridine (0,2)

Yield A (%)A/B/CaTime (h)T (°C)Solvent

(C = 0,1 mol.L-1)

Catalyst

(Equiv.)

catalyseur

solvantCO2Me

+

S

NTs

CO2MeB

S

NTs

CO2MeA

SN

Ts

S

NTs

CO2Me

C(2 éq.)

a Determined by 1H NMR of crudeb C = 0,02 mol.L-1

1,4-benzothiazepine vs 1,3-benzothiazine

Optimization of conditions to promote benzothiazepine

Page 39: Patrick Metzner group

39

Scope with others sulfenamides- best conditions to promote 1,4-benzothiazepine :0.5 equiv. of pyridine in DME at 60°C

scope with tosylacetylene using optimized conditions :

Ts

+

S

NTs

TsS

NTs

Ts

SN

Ts

S

NTs

Ts

BA C

pyridine (0,5 éq.)

DME, 60°C, 2 h

50 / 0 / 50

- need to reoptimize conditions

pyridine (0,5 éq.)

DME, 60°C, 24 hCO2Me+

S

N

R1Ts

CO2Me

SN

R1 Ts

(2 éq.)

R1 = Ph, 78%R1 = Cy, 82%R1 = m-BrC6H4, 71%

- only benzothiazepine formation

Page 40: Patrick Metzner group

40

best conditions : sequential addition

With tosylacetylene

Use of pyridine with DMAD?

pyridine (0,1 éq.)

MeCN, 60°C, 1 h 30CO2Me+

S

NTs

CO2Me

SN

Ts

(2 éq.)MeO2C

87%

CO2Me

Application of these new optimized conditions to other sulfenamides

- only formation of benzothiazepine

pyridine (0,25 + 0,25 éq.)

DME, 80°CTs+

S

N

R1Ts

Ts

SN

R1 Ts

(1 + 1 éq.)

R1 = i-Pr, 61%R1 = Ph, 75%R1 = Cy, 51%R1 = m-BrC6H4, 65% 30 min + 30 min

Page 41: Patrick Metzner group

41

Aim : Synthesis of 1,4-benzothiazepines of type A, monosubstituted on C-2 by an alkyl group and structurally close to biologically active compounds of type B

2,3-dihydro-1,4-benzothiazepines

SN

R1 R2 O

HR3

S

R3

O

H

NHR2R1

H

S

N

R1R2

R3

proposed pathway : 2 steps, totally different from previous work

1st step : -sulfanylation of an aldehyde with sulfenamide2nd step : intramolecular reductive amination

Nagase, T.; Sato, Y.; Eiki, J. WO Patent 053548, 2002.

Diabetes

S

NH

A O O

S

N

R1R2

R3

B

NR2

Page 42: Patrick Metzner group

42

O

Hamine(30%)

SN

TsBr

MeCN, ta, 16 h

S

NHTs

H

OBr

(2 éq.)

Amine Yield (%) d.r.a

(S)-proline 22 50/50

piperidine 73 50/50

diethylamine 90 50/50a Determined by 1H NMR of crude

1st step : -sulfanylation

Reaction with isovaleraldehyde catalyzed by amine

- best conditions : 0.3 equiv. of diethylamine at rt in acetonitrile- no diastereoselectivity

Page 43: Patrick Metzner group

43

(2 éq.)

O

H

SN

R2R1

S

NHR2R1

H

O

HNEt2(30%) MeCN

R1 R2 T (°C) Time (h) Yield (%) d.r.a

i-Pr Ts ta 16 77 50/50

Ph Ts 60 6 73 50/50

Cy Ts 60 16 65b 50/50

i-Pr Boc 60 24 64c 50/50a Determined by 1H NMR of crudeb 0,6 eq. of diethylaminec 2 eq. of diethylamine

1st step : -sulfanylation

Scope with other sulfenamides

Page 44: Patrick Metzner group

44

R R’ R1 Yield (%) d.r.a

Me H i-Pr 45 50/50

Me H Ph 34 50/50

Me H Cy 32 50/50

Me H m-BrC6H4 37 50/50

Ph H i-Pr 0 -

H Ph i-Pr 0 -a Determined by 1H NMR of crude

1st step : -sulfanylation

Scope with other carbonyl compounds

(2 éq.)

R

O

R'

SN

TsR1

S

NHTsR1

R

R'

O

HNEt2(0,3 éq.) MeCN, ta, 22 h

- propionaldehyde : low yields- phenylacetaldehyde and acetophenone : no reaction

Page 45: Patrick Metzner group

45

2nd step : cyclization

reductive amination : no cyclization, formation of alcohol

intramolecular Mitsunobu reaction from alcohol

SN

R1 Ts

S

NHTsR1

OH

PPh3 (3 éq.), DEAD (3 éq.)

THF, ta, 24 hS

NTs

R1

40 / 60

R1 = m-BrC6H4

S

NHTsR1

OPPh3

PPh3O

35%

a

b

voie b voie a

- 1,4-benzothiazepine obtained but with a low yield and a 70/30 diastereoisomeric ratio- but major product : sulfenamide!!!

S

R3

O

H

NHR2R1

S

N

R1R2

R3

NaBH3CNou NaBH(OAC)3

Page 46: Patrick Metzner group

46

2nd step : cyclization

Deprotection of nitrogen to enhance its nucleophilie

S

NHR2R1

H

OTsOH.H2O (0,1 éq.)

toluène, 60°C, 2 h S

NR2

R1

Ts

Ts

Ts

Ts

Boc

R2

83Ph

75Cy

m-BrC6H4

i-Pr

i-Pr

R1

80

94

84

Rdt (%)

Optimization of acid conditions and scope

S

NHBoci-Pr

H

O TFA (10 éq.)

CH2Cl2, ta, 5 h

S

NH2i-Pr

H

O

S

Ni-Pr

- acid conditions : small amount of deprotection– cyclic major product

S

NBoc

i-Pr

63%

<20%

S

NBoc

i-Pr

OHH

Page 47: Patrick Metzner group

47

R1 Yield (%)

i-Pr 25

Ph 30

Cy 30

m-BrC6H4 32

« One-pot » synthesis no purification of intermediate

(2 éq.)

O

H

SN

TsR1

S

NHTsR1

H

O

HNEt2(0,3 éq.) MeCN, ta, 22 h

TsOH.H2O (0,5 éq.)

toluène, 60°C, 5 hS

NTs

R1

- low global yields- need to use 0.5 equiv. of TsOH.H2O for 2nd step

Page 48: Patrick Metzner group

48

Conclusion

One step synthesis of eight 1,4-benzothiazepines from benzisothiazolines with moderate to good yields (from 51 to 82%)

- with a terminal alkyne, it is possible to promote formation of 1,4-

benzothiazepines instead of 1,3-benzothiazines using different

reaction conditions

pyridine (0,5 éq.)DME, 60°C, 24 h

+pyridine (0,25 + 0,25 éq.)

DME, 80°C 30 min + 30 min

SN

R1 Ts

R2 ou

S

N

R1Ts

R2

R1 = alkyle, aryleR2 = CO2Me, Ts51-82%

Page 49: Patrick Metzner group

49

Conclusion

Synthesis of nine 1,4-benzothiazepines over 2 steps with low to good global yields (from 25 to 72%)

- 1st step : -sulfanylation of aldehyde with sulfenamide in presence

of a catalytic amount of amine

- 2nd step : p-toluenesulfonic acid-catalyzed cyclization

(2 éq.)

R3

O

H

SN

R2R1

S

NHR2R1

H

O

HNEt2(cat.) MeCN

TsOH.H2O

toluèneS

NR3

R2

R1

(0,1 ou 0,5 éq.)

Rdts globaux = 25-72%

R1 = alkyle, aryleR2 = Ts, BocR3 = i-Pr, Me

R3

Page 50: Patrick Metzner group

50

General conclusion

1,4-benzothiazepines

Nucleophilic fluoride

catalysis

S

NEWG

R1

EWG

EWG

R

Pyridine organo-catalysis

S

NEWG

R1

EWG

H

1,3-benzothiazines

Catalytic fluoride

as baseS

N

R1

EWG

EWG2,3-dihydro-1,4-benzothiazepines

Diethylamine organo-catalysis+Reduction+Mitsunobu

S

NEWG

R1S

N

R1

EWG

R

1,4-benzothiazepines

Diethylamine organo-catalysis+ acid catalyzed

cyclizationS

NR2

EWG

R1

Page 51: Patrick Metzner group

51

Page 52: Patrick Metzner group

52

Perspectives

How could we insert an aryl group in position 2?Solution? Initiate the reaction by a metal insertion in sulfur-nitrogen bond

Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T.-A. Tetrahedron Lett. 2004, 45, 1469-1471.

SN

R1 R2

δ+

δ−Métaldetransition(Pd,Ru...)

S[M]N

R1

R2

S

NR1 R2

Next steps : reduction of double bond, oxidation of sulfur and deprotection of nitrogen

Sato, A.; Yorimitsu, H.; Oshima, K. Synlett 2009, 28-31.

S

NR3

R2

R1

R1 = alkyle, aryleR3 = i-Pr, Me

S

NR3

R2

R1

S

NR3

R2

R1

OO

DéprotectionS

HN

R3R1

OO

[O]Et3SiH

TFA

Page 53: Patrick Metzner group

53

Perspectives

Formation of sulfenamide from disulfure

SN

Ts

S

NH

Ts

HN

Ts

S

CH3CN 60°C, 6 h

CsF (1 éq.)H2O (20 éq.)

New method of synthesis of sulfenamides or sulfinic acids in mild conditions?

RS

SR Cs F

RS

F

R'NH2R

SNHR' F

RS

air

H2O

RSO2H

Page 54: Patrick Metzner group

54

Introduction

- Pro-drogue

Application des sulfenamides

NH

SHHN

O

glutathion

N

O N

SNH3

+ N

O NH2

Carbamazépine(épilepsie)

NH

SHN

O

SNH3

H+

Hemenway, J. N.; Nti-Addae, K.; Guarino, V. R.; Stella, V. J. Biorg. Med. Chem. Lett. 2007, 6629-6632.

- Fonction protectrice des sites actifs d’enzymes

Protéine Tyrosine Phosphatase 1B

NH

SHHN

O

NH

SHN

O

OH

NS

O

NH

2 RSH

[O]

inactif

actif

Sivaramakrishnan, S.; Keerthi, K.; Gates, K. S. J. Am. Chem. Soc. 2005, 127, 10830-10831. Sarma, B. K.; Mugesh, G. J. Am. Chem. Soc. 2007, 129, 8872–8881.

Page 55: Patrick Metzner group

55

Synthesis des sulfoxydes

Synthesis du thiosulfinate

t-BuS

St-Bu

H2O2 (1,4 éq.)

St-Bu

t-BuS

O

VO(acac)2 (0,5 mol%)

acétone, 0°C, 24 h ee > 96% (CLHP)

61% (après recristallisation)

(0,52 mol%)

OH

N OH

t-Bu

t-Bu

(R)

Blum, S. A.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2003, 68, 150-155.

Addition du sulfoxyde lithié au thiosulfinate

St-Bu

t-BuS

OLi S

t-Bu

O

THF, -78°C, 1h30

R = H, 80%, ee > 96%

R

n-BuLi, THF

-78°C, 1 h

Br

R R

R = OMe, 70%

Page 56: Patrick Metzner group

56

Synthesis des imines

N-Tosylimines

N-Carbamoylimines

Imine aliphatique Boc non isolable

R H

O

t-BuOCONH2

PhSO2Na (2,5 éq.)HCOOH (2 éq.)

H2O/MeOH (2/1)20 h, ta

R SO2Ph

NHBoc

R = i-Pr, 62%R = Ph, 69%

(2 éq.)

K2CO3 (6 éq.)N

Boc

Ph HTHF, reflux,4 h99%

Na2SO4 (7 éq.)

N-SESimine

Weinreb, S. M.; Chase, C. E.; Wipf, P.; Venkatraman, S. Organic Syntheses 2004, 70-71.

Me3SiSO2NH2

3) NH3(g)Me3Si

1) NaHSO3, PhCO3t-Bu

2) SOCl2, DMFcat.

1) O

NaHCO3

PhSO2Na (1,1 éq.) HCOOH/H2O (1/1)

ta, 14 h

CH2Cl2ta, 3 h

HCyN

HCy

SES

2)

70%

(1 éq.),

SiMe3O2SSES :

41%

O NHSO2p-Tol

SO2PhR

NaHCO3 NPhSO2Na (1,1 éq.) R = i-Pr, 75%

R = Ph, 51%R = Cy, 72%R = m-BrC6H4, 39%

+ p-TolSO2NH2

HCOOH/H2O (1/1)14 h, ta

CH2Cl22 h, ta

HRR H

Ts

Page 57: Patrick Metzner group

57

1,4-benzothiazépines disubstituées en 2 et 3

Généralisation de la méthode à d’autres alcynes

- Synthesis des alcynes :

- dicyanoacétylène

MeO2C CO2Me

NH3(g)Et2O

-78°C->ta1 nuit

O

H2N NH2

O

67%

P4O10

sable

150°C, 2 hNC CN

11%

(a) Hopf, H.; Witulski, B. In Modern Acetylene Chemistry(b) Stang, P. J.; Diederich, F., Ed.; VCH: Weinheim, 1995, 60.

Cl

Cl ClKH (3,5 éq.)

THFta, 1 h

Cl Clt-BuSH (2 éq.)MeOHcat.

0°C->ta20 h

St-Bu

St-Bu30%

m-CPBA (5 éq.)CHCl3

0°C->ta48 h

SO2t-Bu

SO2t-Bu96%

(a) Riera, A.; Cabré, F.; Moyano, A.; Pericàs, M. A.; Santamaría, J. Tetrahedron Lett. 1990, 31, 2169-2172.(b) Riera, A.; Martí, M.; Moyano, A.; Pericàs, M. A.; Santamaría, J. Tetrahedron Lett. 1990, 31, 2173-2176.

- di-t-butylsulfonylacétylène

Page 58: Patrick Metzner group

58

pyridine

solvantTs

+

S

NTs

TsS

NTs

Ts

SN

Ts

S

NTs

Ts

BA C

Nb éq. pyridine

Nb éq. alcyne

Solvant T (°C)Temps

(h)Conversion A/B/Ca Rdt A

(%)

0,5

0,5

0,5

0,5

0,5

2

2

2

2

2

DME

MeCN

toluène

CH2Cl2DME

60

60

60

40

ta

2

2

2

2

2

78

100

100

100

100

50/0/50

0/13/87

10/15/75

29/30/41

38/17/45

-

-

-

-

-

2 2 DME ta 1 100 28/14/58 -

0,5 2 DME 80 1 75 81/0/19 -

0,25+0,25 1+1 DME 80 0,5+0,5 86 100/0/0 61a Déterminé par RMN 1H du brut réactionnel

Optimisation des conditions avec le tosylacétylène

- Meilleures conditions : d’abord 0,25 éq. de pyridine dans le DME à 80°C pdt 30 min puis à nouveau 0,25 éq. de pyridine dans le DME à 80°C pdt 30 min

Application à un autre alcyne