pattern formation in biological systems - tu berlin · 2013. 5. 29. · bz mechanism (fkn) bz model...

54
Pattern Formation in Biological Systems Markus Bär Dept. Mathematical Modelling & Data Analysis Physikalisch-Technische Bundesanstalt, Germany TU Berlin, Lectures GRK 1558, May, 27 th , 2013.

Upload: others

Post on 15-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Pattern Formation in Biological Systems

    Markus Bär

    Dept. Mathematical Modelling & Data Analysis

    Physikalisch-Technische Bundesanstalt, Germany

    TU Berlin, Lectures GRK 1558, May, 27th, 2013.

  • 1. Introduction

    2. Basic Concepts

    3. Examples: Reaction-Diffusion

    Systems vs. Active Fluids

    - Calcium Waves - Protein Oscillations in E. Coli

    vs.

    - Intracellular Mechanochemical Patterns - Turbulence in Bacterial Suspensions

  • Nonequilibrium Systems

    • continuous flow of matter and energy • entropy export –> selforganisation, patterns

    Open chemical reactor cell

  • Chemical vs. Biological Patterns

    CIMA reaction

    BZ reaction

    Angel fish

    Dictyostelium aggregation

  • Turing Instability and Patterns

    A. M. Turing (1952):

    ,, On the Chemical Basis of Morphogenesis´´:

    ...Interplay of chemical reactions and diffusion

    may lead to spontaneous formation of spatial

    patterns......

    I. Prigogine et al. (1960s):

    Generalization – dissipative structures,

    structures in space and time,

    nonequilibrium thermodynamics

  • Balance Equation

    Apply to concentrations in chemical reaction

    -> reaction-diffusion equations

    density current source/sink

    i

  • Limitations of RD Models

    • low concentration of reactands, no physical

    interactions -> random walk, diffusion

    • fluctuations, stochastic effects are neglected ->

    pattern scale >> particle size

    • heterogeneities, temporal fluctuations neglected

    • no boundary effects, infinite systems resp.

    periodic or no-flux boundary conditions

  • Activator-Inhibitor Systems

    Schematic view Spatiotemporal dynamics

    (Meinhardt & Gierer, 1972)

    Patterns from long-range

    inhibitor diffusion (Turing 1952)

  • Example: Brusselator Model • model for dissipative structures (Prigogine et al.)

    • mechanism: autocatalytic step, rates = 1

    • reaction-diffusion equations = set of coupled

    nonlinear partial differential equations:

    • variables u, v and control parameters a, b

  • Belousov-Zhabotinsky Reaction

    ,,Drosophila´´ BZ waves & patterns

    BZ mechanism (FKN)

    BZ model (Oregonator)

    Petrov et al., Nature 1997

  • 2. Basic Concepts

  • Linear Stability Analysis

    1. Set up reaction-diffusion model

    2. Compute uniform steady states u0

    And consider small pertubations du(x,t)

    3. u0 is stable, if all Re wj (q) < 0

  • Pattern Formation Issues

    • Linear stability of spatially uniform states

    • Linear stability of patterns and waves, more difficult: eigenfunctions often

    unknown

    • Boundary conditions may be important ! infinitely extended/ periodic systems vs.

    separated systems (Neumann/Dirichlet)

  • Bifurcation Theory

    • Re wj(qC,mC) = 0 -> instability, bifurcation point

    • Patterns and waves with wavenumber qC and frequency WC = Im wj(qC,mC) emerges

    • Supercritical (forward) bifurcation produce stable patterns -> amplitude equations

  • Turing Instability

    Eigenvalues w(q) Example: Brusselator

    a. uniform steady state

    b. Turing unstable, if

  • Chemical Turing Patterns First experiment – CIMA reaction (de Kepper et al., PRL 1990)

    (Ouyang, Swinney, Nature 1991)

  • Hopf Instability –

    Extended Oscillatory Media

    Hopf bifurcation: Example: Brusselator

    Eigenvalues w(q)

    a. uniform steady state

    b. Hopf unstable, if

    competes with Turing inst. !

  • Hopf Amplitude Equations

    Ansatz for slowly varying A (x,t)

    Complex Ginzburg-Landau equations

    Apply to Brusselator:

  • Nonlinear Waves and Chaos

    • Consider

    • Nonlinear phase equation (,,a(x,t) is slaved´´)

    • Benjamin-Feir-Newell instability criterion

    -> waves

    unstable, spatiotemporal chaos

  • Wave Instability

    nonzero WC, qC

    left and right traveling

    waves

    nonlinear competition:

    traveling vs. standing

    waves

    Minimum: 3 variables !

  • Excitable Media (EM) Definition: Excitable media have a stable uniform

    rest state, large finite perturbations can cause

    nontrivial dynamics and patterns

    Function: signal propagation, e. g. action potential

    propagation, calcium waves

    Analogies: Excitable media have three typical states –

    rest, excited and refractory state, compare

    a. Forest fire – green tree, burning tree and treeless

    b. Epidemics – healthy, infected and immune state

  • Cellular Automaton for EM 1947: Wiener-Rosenblueth 3-state automaton for EM

    With rest state, excited state and refractory state

    (J. Weimar, TU Braunschweig)

    Result: excitation spreads, open arms curl into spirals

  • EM-Reaction-Diffusion Models

    1952: Hodgkin and Huxley model for squid giant

    axon -> electrophysiology, neurophysiology

    1962: Simplification by FitzHugh and Nagumo (Dv = 0)

  • FitzHugh-Nagumo Model

    phase plane – isoclines pulse and wave train

    space

    u,v

  • Rotating Spiral Waves

    rigidly rotating spiral meandering spiral (outward)

    (Software: Ezspiral –D. Barkley / Warwick)

  • Phase Diagram for Spiral Waves

    • Diagram for Barkley-model

    • Spiral core dynamics described by 5 ODE model

    -> 3 symmetry modes, 2 meander Hopf modes

    (D. Barkley, Phys. Rev. Lett. 1992, 1994)

  • Far-field Breakup of Spirals

    - oscillatory conditions: spirals break far away from ,,core´´ region

    - inner part survives near instability (M. Bär & M. Or-Guil, PRL´99)

  • Core Breakup of Spirals

    Modified Barkley model, excitable condition,

    influence of meandering M. Bär, M. Eiswirth, Phys. Rev. E (1993)

  • Arrhythmias in the Heart ?

    From: http://thevirtualheart.org (E. Cherry, F. Fenton)

  • Summary Part 2

    • Different linear instabilities (Turing, Hopf) of uniform states give rise to different patterns

    (stripes & hexagons, oscillations, waves & chaos)

    • Excitable media have a stable uniform rest state,

    But large perturbations create pulses, spirals or

    chaotic patterns

    • Excitable dynamics important in physiological systems:

    Neurons, cardiac tissue,…..

  • Alternative Summary

    1. Stationary (Turing) patterns: Slow activator diffusion,

    fast inhibitor diffusion

    2. Oscillations (Hopf bifurcation): Fast activation, slow

    inhibition (feedback)

    3. Waves: Activator diffusion faster or equal to inhibitor

    diffusion

  • 3. Examples for Biological

    Pattern Formation

  • a. Intracellular Reaction-Diffusion Patterns

    Difficulty: Typical diffusion length (D/k)1/2 of proteins

    is > 1-10 m m -> no patterns in most cells, one or few wavelength in some cases, extended patterns only

    in very big cells

    History: Since 1980s - calcium waves in many cells

    1992 – Ca spirals in oocytes (Lechleiter, Clapham, Science)

    1999 - protein oscillations in E. Coli (Raskin, de Boer, PNAS)

    2000 – NADH waves in neutrophils (Petty et al., PRL, PNAS)

    ………..

  • Calcium Waves

    heart myocytes frog oocytes

    (Wussling, Biophys. J.,1999) (Lechleiter, Clapham, Science 1992)

  • IP3 Receptor Dynamics • endoplasmatic reticulum (ER) is main Ca storage

    in cells; ER channels for Ca are regulated by IP3R

    • calcium binding to receptor provides fast activation

    and slow inhibition (M. Berridge et al.)

  • Calcium Waves and Mitochondria

    mitochondria can be activated as additional calcium stores

    Experiment

    Model

    L. Jouaville et al., Nature 96;

    M. Falcke et al., Biophys. J. 99, PRL 00.

  • Protein Oscillations in E. Coli

    • MinC, MinD, MinE proteins regulate cell division • rapid pole to pole oscillations in E. Coli observed

    cell division suppressed (Raskin, de Boer, PNAS 1999)

  • Model for MinD, MinE Waves • Cytosolic (free) and membrane bound concentrations

    • MinD, MinE oscillations result from wave instability

    (Turing-type II)

    Models: Howard et al. PRL 01, Kruse, Biophys. J. 02, Meinhardt & de Boer, PNAS 01,

    Huang et al. PNAS 03, Meacci & Kruse, Phys. Biol. 05.....

    reaction-diffusion

    equations

  • In-vitro experiment: MinD,E-waves

    Loose et al.,

    Science 2008.

  • b. Active Biological Fluids

    Active fluids:

    Complex fluids wherein energy is injected by active internal

    units (molecular motors, self-propelled bacteria etc)

    Examples:

    a. Intracellular Mechanochemical Patterns:

    Cytoskeleton, Molecular Motors, Cytosolic Flows

    b. Turbulence in Dense Suspensions of Swimming Bacteria

    Alternative to reaction-diffusion mechanism (Turing)

  • Cytoskeleton

    F. Wottawah et al. PRL (2005).

    • Cytoskeleton is a network of filaments

    • Response to perturbations

    solid-like at short time

    fluid-like at large times

    • Characteristics of cytoskeleton:

    active (motors)

    B. Alberts et al. Molecular biology of the cell (2007).

  • Mechanics and Biochemistry

    J. Howard, S. W. Grill and J. S. Bois. Nature Rev. Mol. Cell Biol. (2011).

    Interaction of biochemical and mechanical processes

    Motor or cytoskeletal regulation,

    viscosity, elasticity

    Stress, transport (fluid motion)

    Biochemistry Mechanics

  • Intracellular active fluid

    Idea: Cytoskeleton as active fluid phase

    Motors are distributed in the fluid

    Local increase of motor concentration ->

    active transport of fluid

    Positive feedback on

    motor concentration

    Cytoskeleton

    Motors

    J.S. Bois, F. Jülicher and S.W. Grill. Phys. Rev. Lett. (2011)

  • Digression: Mechanochemical waves

    in Physarum Polycephalum (C4)

    M. Radszuweit (C.4): „A physarum droplet is an active poroelastic medium

    coupled to a calcium oscillator“

    Experiments by Takagi, Ueda, Physica D 2008, Physica D 2010.

  • Simulations

    Spiral Antiphase oscillation

  • Turbulence in a living fluid

    Cisneros et al (2007)

    Bacillus subtilis, dense PIV

    Wensink, Dunkel, Heidenreich, Drescher et al., PNAS (2012).

  • Experiments vs. continuum modelling

    quasi-2D experiment 2D-simulation

    PIV

    ...)(

    0

    uu

    u

    t

    Vorticity maps

  • Equations for turbulence in active fluids

    uuuuu2

    20

    2)( CAt

    pisot uuu )((Navier-Stokes equation: )

    2

    1

    2

    20

    2

    0 )()(

    u

    uuuuuu

    p

    CAt

    add advection

    minimal model:

    ( Swift-Hohenberg type equation, 0 < 0 )

  • How good is the theory ?

  • Experiments vs. continuum modelling

    quasi-2D experiment 2D-simulation

    PIV

    ...)(

    0

    uu

    u

    t

    Vorticity maps

    Turing instability in velocity field + nonlinear hydrodynamic

    coupling (J. Dunkel, S. Heidenreich)

  • Summary: Patterns in active fluids

    • Active units (motors & cytoskeletal filaments, self-propelled particles/ bacteria …)

    • Intracellular dynamics: Mechanochemical patterns, cell

    polarization, cell motility, motility assays, …..

    • Multicellular dynamics: Biofilms, bacterial suspensions,

    aggregation phenomena, tissue dynamics, ……

  • Summary Part 3

    • Various experiments on intracellular biological pattern formation in recent years

    • Pattern formation organizes social behavior of amoebae and bacteria

    • Reaction-diffusion type models reproduce many observations qualitatively

    • Active processes enable and enhance pattern formation

    • Quantitative comparisons experiment – theory needed !

    • Perspectives: Developmental biology, ,,virtual human´´, neural systems ...

  • References 1. A. S. Mikhailov, ,,Foundation of Synergetics I´´, 2nd Ed. (1994).

    2. G. Nicolis, ,,Introduction into Nonlinear Science´´, Cambridge (1996).

    3. J. Keener & J. Sneyd, ,,Mathematical Physiology´´, Springer, 2nd Ed. (2008).

    4. J. Murray, ,, Mathematical Biology´´, Vols. 1 + 2, Springer, 3rd Ed. (2001).

    5. M. Cross & P. Hohenberg, Rev. Mod. Phys. Vol. 65 (1993).

    6. R. C. Desai & R. Kapral, ,,Dynamics of Self-Organized and Self-Assembled

    Structures´´, Cambridge (2009).

    7. M. Cross & H. Greenside, ,,Pattern Formation and Dynamics in Non-

    equilibrium Systems´´, Cambridge (2009).

    8. L. M. Pismen, ,,Patterns and Interfaces in Dissipative Dynamics´´, Springer (2006).