paul scherrer institute

40
Jan. 24th, 2013 HAP Topic 4, Karlsruhe, Paul Scherrer Institute Applications and future of Switched Capacitor Arrays (SCA) for ultrafast waveform digitizing Stefan Ritt

Upload: landis

Post on 06-Jan-2016

32 views

Category:

Documents


0 download

DESCRIPTION

Stefan Ritt. Paul Scherrer Institute. Applications and future of Switched Capacitor Arrays (SCA) for ultrafast waveform digitizing. Why do we need ultrafast waveform digitizing?. Pulse shape discrimination. Detector. Rise time < 1ns. Ultra-precise timing < 10ps. Pile-up recognition. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Paul Scherrer Institute

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Paul Scherrer Institute

Applications and future of Switched Capacitor Arrays (SCA) for ultrafast waveform digitizing

Stefan Ritt

Page 2: Paul Scherrer Institute

Stefan Ritt 2/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Why do we need ultrafast waveform digitizing?

Detector

Rise time < 1ns

Page 3: Paul Scherrer Institute

Stefan Ritt 3/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Can it be done with FADCs?

• 8 bits – 3 GS/s – 1.9 W 24 Gbits/s• 10 bits – 3 GS/s – 3.6 W 30 Gbits/s• 12 bits – 3.6 GS/s – 3.9 W 43.2 Gbits/s• 14 bits – 0.4 GS/s – 2.5 W 5.6 Gbits/s

1.8 GHz!

24x1.8 Gbits/s

• Requires high-end FPGA• Complex board design• FPGA power

• Requires high-end FPGA• Complex board design• FPGA power

PX1500-4: 2 Channel3 GS/s8 bits

ADC12D1X00RB: 1 Channel 1.8 GS/s 12 bits

1-10 k€ / channel

Page 4: Paul Scherrer Institute

Stefan Ritt 4/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Overview

• Design Principles and Limitationsof Switched Capacitor Arrays (SCA)

• Overview of Chips and Applications

• Future Design Directions

Clock

IN

Out

shift registerinput

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 5: Paul Scherrer Institute

Stefan Ritt 5/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Switched Capacitor Array (Analog Memory)

Shift RegisterClock

IN

Out

“Time stretcher” GHz MHz“Time stretcher” GHz MHz

Waveform stored

Inverter “Domino” ring chain0.2-2 ns

FADC 33 MHz

10-100 mW

Page 6: Paul Scherrer Institute

Stefan Ritt 6/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Digitizing only short time windows

sampling digitization sampling digitization

Tri

gg

er

Tri

gg

er

high power low power

Page 7: Paul Scherrer Institute

Stefan Ritt 7/30

Time Stretch Ratio (TSR)

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Clock

IN

Out

ts

td

Typical values:

•ts = 0.5 ns (2 GSPS)•td = 30 ns (33 MHz)

→ TSR = 60

Typical values:

•ts = 0.5 ns (2 GSPS)•td = 30 ns (33 MHz)

→ TSR = 60

Dead time = Sampling Window ∙ TSR

(e.g. 100 ns ∙ 60 = 6 s)

Dead time = Sampling Window ∙ TSR

(e.g. 100 ns ∙ 60 = 6 s)

Page 8: Paul Scherrer Institute

Stefan Ritt 8/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

How to measure best timing?

Simulation of MCP with realistic noise and different discriminatorsSimulation of MCP with realistic noise and different discriminators

J.-F. Genat et al., arXiv:0810.5590 (2008) D. Breton et al., NIM A629, 123 (2011)

Beam measurement at SLAC & FermilabBeam measurement at SLAC & Fermilab

Page 9: Paul Scherrer Institute

Stefan Ritt 9/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

How is timing resolution affected?

voltage noise u

timing uncertainty tsignal height U

rise time tr

dBss

r

sr

rrr

ffU

u

f

t

U

u

ft

t

U

ut

nU

ut

U

ut

33

1

number of samples on slope

dBr ft

33

1

Simplified estimation!Simplified estimation!

Page 10: Paul Scherrer Institute

Stefan Ritt 10/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

How is timing resolution affected?

dBs ffU

ut

33

1

U u fs f3db t100 mV 1 mV 2 GSPS 300 MHz ∼10 ps

1 V 1 mV 2 GSPS 300 MHz 1 ps

100 mV 1 mV 10 GSPS 3 GHz 1 ps

today:

optimized SNR:

next generation:

includes detector noise in the frequency region of the rise time

and aperture jitter

Assumes zeroaperture jitter

Page 11: Paul Scherrer Institute

Stefan Ritt 11/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

PCB

Limits on analog bandwidth

Det.Chip

Cpar

•External sources•Detector•Cable•Connectors•PCB•Preamplifier

•Internal sources•Bond wire•Input bus•Write switch•Storage cap

Low pass filter

Low pass filter

Page 12: Paul Scherrer Institute

Stefan Ritt 12/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Timing Nonlinearity

• Bin-to-bin variation:“differential timing nonlinearity”

• Difference along the whole chip:“integral timing nonlinearity”

• Nonlinearity comes from size (doping)of inverters and is stable over time→ can be calibrated

• Residual random jitter:<4 ps RMS exceeds best TDC

t t t t t

RMS = 3.19ps

D. Stricker-Shaver, private communication

Page 13: Paul Scherrer Institute

Stefan Ritt 13/30

Synchronization

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

PLL

ADC

Trigger

PLL

ADC

Trigger

Master clock20 MHz

MEG @ PSI: 40 ps over 3000 channels

Page 14: Paul Scherrer Institute

Stefan Ritt 14/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Part 2

• Design Principles and Limitations

• Overview of Chips and Applications

• Future Design Directions

Clock

IN

Out

shift registerinput

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 15: Paul Scherrer Institute

Stefan Ritt 15/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

• CMOS process (typically 0.35 … 0.13 m) sampling speed• Number of channels, sampling depth, differential input• PLL for frequency stabilization• Input buffer or passive input• Analog output or (Wilkinson) ADC• Internal trigger• Exact design of sampling cell

Design Options

PLL

ADC

Trigger

Page 16: Paul Scherrer Institute

Stefan Ritt 16/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Switched Capacitor Arrays for Particle Physics

STRAW3 TARGETLABRADOR3 AFTER NECTAR0SAM

E. DelagnesD. BretonCEA Saclay

E. DelagnesD. BretonCEA Saclay

DRS1 DRS2 DRS3 DRS4

G. Varner, Univ. of HawaiiG. Varner, Univ. of Hawaii

• 0.25 m TSMC• Many chips for different projects

(Belle, Anita, IceCube …)

• 0.35 m AMS• T2K TPC, Antares,

Hess2, CTA

H. Frisch et al., Univ. ChicagoH. Frisch et al., Univ. Chicago

PSEC1 - PSEC4

• 0.13 m IBM• Large Area Picosecond

Photo-Detectors Project (LAPPD)

2002 2004 2007 2008

• 0.25 m UMC• Universal chip for many

applications• MEG experiment, MAGIC, Veritas,

TOF-PET

SRR. DinapoliPSI, Switzerland

SRR. DinapoliPSI, Switzerland

drs.web.psi.ch

www.phys.hawaii.edu/~idlab/ matacq.free.fr psec.uchicago.edu

Page 17: Paul Scherrer Institute

Stefan Ritt 17/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

MEG On-line waveform display

templatefit

848PMTs

“virtual oscilloscope”“virtual oscilloscope”

Liq. Xe

PMT

1.5m

+e+At 10-13 level

3000 ChannelsDigitized with DRS4 chips at

1.6 GSPS

+e+At 10-13 level

3000 ChannelsDigitized with DRS4 chips at

1.6 GSPS

Drawback: 400 TB data/yearDrawback: 400 TB data/year

Page 18: Paul Scherrer Institute

Stefan Ritt 18/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Pulse shape discrimination

Page 19: Paul Scherrer Institute

Stefan Ritt 19/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Other Applications

Gamma-ray astronomy Gamma-ray astronomy

MagicMagic

CTACTA

Antarctic Impulsive Transient Antenna(ANITA)

Antarctic Impulsive Transient Antenna(ANITA)

320 ps

IceCube(Antarctica)

IceCube(Antarctica)

Antares(Mediterranian)

Antares(Mediterranian)

ToF PET (Siemens)ToF PET (Siemens)

Page 20: Paul Scherrer Institute

Stefan Ritt 20/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Things you can buy and make

• DRS4 chip (PSI)• 32+2 channels• 12 bit 5 GSPS• > 500 MHz analog BW• 1024 sample points/chn.• 110 s dead time

• DRS4 chip (PSI)• 32+2 channels• 12 bit 5 GSPS• > 500 MHz analog BW• 1024 sample points/chn.• 110 s dead time

• DRS4 Evaluation Board• 4 channels• 12 bit 5 GSPS• 750 MHz analog BW• 1024 sample points/chn.• 500 events/sec over USB 2.0

• DRS4 Evaluation Board• 4 channels• 12 bit 5 GSPS• 750 MHz analog BW• 1024 sample points/chn.• 500 events/sec over USB 2.0

• SAM Chip (CEA/IN2PD)• 2 channels• 12 bit 3.2 GSPS• 300 MHz analog BW• 256 sample points/chn.• On-board spectroscopy

• SAM Chip (CEA/IN2PD)• 2 channels• 12 bit 3.2 GSPS• 300 MHz analog BW• 256 sample points/chn.• On-board spectroscopy

• M. Hori (CERN)• DRS4 chip• 8 channels• LVDS links

• M. Hori (CERN)• DRS4 chip• 8 channels• LVDS links

Page 21: Paul Scherrer Institute

Stefan Ritt 21/30

The smallest DAQ system

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

DRS4 Evaluation Board900 EUR, 2.5W

Raspberry Pi50 EUR, 3.5W

Idea: Martin Brückner HU Berlin for HiSCORE

Page 22: Paul Scherrer Institute

Stefan Ritt 22/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Part 3

• Design Principles and Limitations

• Overview of Chips and Applications

• Future Design Directions

Clock

IN

Out

shift registerinput

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 23: Paul Scherrer Institute

Stefan Ritt 23/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Next Generation SCA

• Low parasitic input capacitance

• Wide input bus

• Low Ron write switches

High bandwidth

Short sampling depth

• Digitize long waveforms

• Accommodate long trigger delay

• Faster sampling speed for a given trigger latency

Deep sampling depth

How to combinebest of both worlds?

How to combinebest of both worlds?

Page 24: Paul Scherrer Institute

Stefan Ritt 24/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Cascaded Switched Capacitor Arrays

shift registerinput

fast sampling stage secondary sampling stage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• 32 fast sampling cells (10 GSPS)→ small capacitance, high bandwidth

• 100 ps sample time, 3.1 ns hold time

• Hold time long enough to transfer voltage to secondary sampling stage with moderately fast buffer (300 MHz)

• Shift register gets clocked by inverter chain from fast sampling stage

• 32 fast sampling cells (10 GSPS)→ small capacitance, high bandwidth

• 100 ps sample time, 3.1 ns hold time

• Hold time long enough to transfer voltage to secondary sampling stage with moderately fast buffer (300 MHz)

• Shift register gets clocked by inverter chain from fast sampling stage

Page 25: Paul Scherrer Institute

Stefan Ritt 25/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

The dead-time problem

Only short segments of waveform are of interestOnly short segments of waveform are of interest

sampling digitization

lost events

sampling digitization

Sampling Windows * TSR

Page 26: Paul Scherrer Institute

Stefan Ritt 26/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

FIFO-type analog sampler

dig

itiz

ati

on

• FIFO sampler becomes immediately active after hit

• Samples are digitized asynchronously

• “De-randomization” of data

• Can work dead-time less up toaverage rate = 1/(window size * TSR)

• Example: 2 GSPS, 10 ns window size, TSR = 60 → rate up to 1.6 MHz

• FIFO sampler becomes immediately active after hit

• Samples are digitized asynchronously

• “De-randomization” of data

• Can work dead-time less up toaverage rate = 1/(window size * TSR)

• Example: 2 GSPS, 10 ns window size, TSR = 60 → rate up to 1.6 MHz

Page 27: Paul Scherrer Institute

Stefan Ritt 27/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Plans

coun

ter

latc

hla

tch

latc

hwrite

pointer

readpointer

digital readout

analog readout

trigger

FPGA

• Self-trigger writing of 128 short 32-bin segments (4096 bins total)

• Storage of 128 events• Accommodate long trigger latencies• Quasi dead time-free up to a few

MHz, • Possibility to skip segments

→ second level trigger

• Attractive replacement for CFG+TDC

• First version planned for 2014

• Self-trigger writing of 128 short 32-bin segments (4096 bins total)

• Storage of 128 events• Accommodate long trigger latencies• Quasi dead time-free up to a few

MHz, • Possibility to skip segments

→ second level trigger

• Attractive replacement for CFG+TDC

• First version planned for 2014

• Dual gain channels• Dynamic power management

(Read/Write parts)• Region-of-interest readout

• Dual gain channels• Dynamic power management

(Read/Write parts)• Region-of-interest readout

DRS5 (PSI)

CEA/Saclay

Page 28: Paul Scherrer Institute

Stefan Ritt 28/30

+ → e+e-e+

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

• Mu3e experiment planned at PSIwith a sensitivity of 10-16

• 2*109 stops/sec

• Scintillating fibres & tiles• 100ps timing resolution• 2-3 MHz hit rate

• Can only be done with DRS5!

Page 29: Paul Scherrer Institute

Stefan Ritt 29/30

DRS4 Usage

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

http://drs.web.psi.ch

Page 30: Paul Scherrer Institute

Stefan Ritt 30/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Conclusions

• SCA technology offers tremendous opportunities

• Several chips and boards are on the market for evaluation

• New series of chips on the horizon might change front-end electronics significantly

Page 31: Paul Scherrer Institute

Stefan Ritt 31/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Page 32: Paul Scherrer Institute

Stefan Ritt 32/30

• 16 channels standalone (GBit Ethernet) or 3HE crate (256 channels)• Variable gain 0.1/1/10 or 1/10/100• Flexible integrated triggering• Global clock synchronization• Integrated SiPM biasing (up to 200V)• Currently under development at PSI

WaveDREAM board

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Page 33: Paul Scherrer Institute

Stefan Ritt 33/30

WaveDREAM analog front-end

17 April 2012Heidelberg Page 33

HV biasingswitchableAttenuator

Gain 2-10CouplingAC/DC/Calib

Gain 10Gain

SelectorDifferential

Driver

Trigger

Page 34: Paul Scherrer Institute

Stefan Ritt 34/30

• Whole circuit works on virtual +68 V gound• Connectors can stay on ground• Regulation +68 V … +73 V• Current sense ~1 nA resolution• ADC/DAC: ~8 EUR/channel• Common DC-DC converter: +1 EUR / channel

(Commercial or Cockroft-Walton)

SiPM High Voltage on WaveDREAM board

29 March 2012Osaka Page 34

Page 35: Paul Scherrer Institute

Stefan Ritt 35/30

Crate backplane & Clock distribution

Oct 17th, 2012Mu3e Meeting Page 35

• Star connectivity for• GTP• SERDES• Slave Select

• Bus connectivity for• SPI (except SS)• MISC• Clock• Trigger

Page 36: Paul Scherrer Institute

Stefan Ritt 36/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Digital Pulse Processing (DPP)

C. Tintori (CAEN)V. Jordanov et al., NIM A353, 261 (1994)

Page 37: Paul Scherrer Institute

Stefan Ritt 37/30Jan. 24th, 2013HAP Topic 4, Karlsruhe,

Template Fit

• Determine “standard” PMT pulse by averaging over many events “Template”

• Find hit in waveform• Shift (“TDC”) and scale (“ADC”)

template to hit• Minimize 2

• Compare fit with waveform• Repeat if above threshold

• Store ADC & TDC values

Experiment500 MHz sampling

www.southerninnovation.comwww.southerninnovation.com

14 bit60 MHz

14 bit60 MHz

Page 38: Paul Scherrer Institute

Stefan Ritt 38/30

• LAB Chip Family (G. Varner)• Deep buffer (BLAB Chip: 64k)• Double buffer readout (LAB4)• Wilkinson ADC

• NECTAR0 Chip (E. Delagnes)• Matrix layout (short inverter

chain)• Input buffer (300-400 MHz)• Large storage cell (>12 bit SNR)• 20 MHz pipeline ADC on chip

• PSEC4 Chip (E. Oberla, H. Grabas)• 15 GSPS• 1.6 GHz BW

@ 256 cells• Wilkinson ADC

Some specialities

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

6 m

16 m

Wilkinson-ADC:Ramp

Cell contents

measure time

Page 39: Paul Scherrer Institute

Stefan Ritt 39/30

How to fix timing nonlinearity?

May 23rd, 201212th Pisa Meeting, Elba,

• LAB4 Chip (G. Varner) uses “Trim bits” to equalize inverter delays to < 10 ps

• Dual-buffer readout for decreased dead time

• Wilkinson ADCs on chip

First tests will be reported on RT12 conference June 11-15, Berkeley, CA

Page 40: Paul Scherrer Institute

Stefan Ritt 40/30

• First silicon in 110 nm technology• Implemented just inverter chain with 32

cells• 4 mA @ 10 GSPS at 1.4 V

DRS5-T1

Jan. 24th, 2013HAP Topic 4, Karlsruhe,

PLL

ADC

Trigger