pavel stránský 1,2 3 rd chaotic modeling and simulation international conference, chania, greece,...

47
Pavel Str ánský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear Phycics Faculty of Mathematics and Physics Charles University in Prague, Czech Republic MANIFESTATION OF CHAOS IN COLLECTIVE MODELS OF NUCLEI 2 Instituto de Ciencias Nucleares Universidad Nacional Autonoma de México Collaborato rs: Michal Macek 1 , Pavel Cejnar 1 Alejandro Frank 2 , Ruben Fossion 2 , Emmanuel Landa 2

Upload: lenard-stanley

Post on 19-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Pavel Stránský1,2

3rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010

3rd January 2010

1Institute of Particle and Nuclear PhycicsFaculty of Mathematics and PhysicsCharles University in Prague, Czech Republic

MANIFESTATION OF CHAOS IN COLLECTIVE MODELS OF

NUCLEI

2Instituto de Ciencias NuclearesUniversidad Nacional Autonoma de México

Collaborators:

Michal Macek1, Pavel Cejnar1

Alejandro Frank2, Ruben Fossion2, Emmanuel Landa2

Page 2: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

1. Model- Geometric Collective Model of nuclei (GCM) (restricted to pure vibrations)

2. Classical chaos in GCM- Measures of regularity- Geometrical method

3. Quantum chaos in GCM- Short-range correlations and Brody parameter- Peres lattices- Long-range correlations and 1/f noise- Comparison of classical and quantum dynamics

MANIFESTATION OF CHAOS IN COLLECTIVE MODELS OF

NUCLEI

Page 3: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

1. Geometrical Collective Model of nuclei

(restricted to pure vibrations)

Page 4: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

T…Kinetic term V…Potential

Hamiltonian

Neglect higher order terms

neglect

Quadrupole tensor of collective coordinates (2 shape parameters, 3 Euler angles)

Corresponding tensor of momenta

1. Geometric Collective Model of nuclei

Surface of homogeneous nuclear matter:

Quadrupole deformations = 2

G. Gneuss, U. Mosel, W. Greiner, Phys. Lett. 30B, 397 (1969)

4 external parameters

Page 5: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

T…Kinetic term V…Potential

Hamiltonian

Neglect higher order terms

neglect

Quadrupole tensor of collective coordinates (2 shape parameters, 3 Euler angles)

Corresponding tensor of momenta

1. Geometric Collective Model of nuclei

Surface of homogeneous nuclear matter:

Quadrupole deformation = 2

Scaling properties

4 external parametersAdjusting 3 independent scalesenergy

(Hamiltonian)

1 “shape” parameter

size (deformation)

time

1 “classicality” parametersets absolute density of quantum spectrum (irrelevant in classical case)

G. Gneuss, U. Mosel, W. Greiner, Phys. Lett. 30B, 397 (1969)

Page 6: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Principal Axes System (PAS)

Shape variables:

1. Geometric Collective Model of nuclei

Shape-phase structure

Deformed shape Spherical shape

VV

B

A

C=1

Page 7: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Nonrotating case J = 0!

(a) 5D system restricted to 2D (true geometric model

of nuclei)

(b) 2D system

2 physically important quantization options(with the same classical limit):

Classical dynamics– Hamilton equations of motion

• oportunity to test Bohigas conjecture for different quantization schemes

Quantization– Diagonalization in oscillator basis

Principal Axes System

1. Geometric Collective Model of nuclei

Page 8: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

2. Classical chaos in GCM

Page 9: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Fraction of regularity

REGULAR area

CHAOTIC area

freg=0.611

vx

x

2. Classical chaos in GCM

A = -1, C = K = 1B = 0.445

Measure of classical chaos

Poincaré section

Page 10: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Different definitons & comparison

Surface of the chosen Poincaré section

regular

totalnumber of

trajectories (with random initial conditions)

control parameter

E = 0

Statistical measure

2. Classical chaos in GCM

Page 11: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Complete map of classical chaos in GCM IntegrabilityIntegrability

Veins ofVeins of regularityregularity

chaotichaoticc

regularegularr

control parameter

““ Arc

of

Arc

of

regula

rity

”re

gula

rity

Global minimum and saddle pointRegion of phase transition

Sh

ap

e-p

hase

Sh

ap

e-p

hase

tr

ansi

tion

transi

tion

2. Classical chaos in GCM

Page 12: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Geometrical method

L. Horwitz et al., Phys. Rev. Lett. 98, 234301 (2007)

Hamiltonian in flat Eucleidian space with potential:

Hamiltonian of free particle in curved space:

Conformal metric

Application of methods of Riemannian geometry

inside kinematically accesible area induce nonstability.

Negative eigenvalues of the matrix

2. Classical chaos in GCM

Page 13: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Geometrical criterion= Convex-Concave transition

Global minimum and saddle point

Region of phase transition

Geometrical method- gives good estimation of regularity-chaos transition

2. Classical chaos in GCM

Page 14: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

y

x

(d)

(c)

(b)

(a)

(b)

(c)

(d)

(a)

1. Classical chaos in GCM

Geometrical method

Geometrical criterion= Convex-Concave transition

Global minimum and saddle point

Region of phase transition

- gives good estimation of regularity-chaos transition

Page 15: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

3. Quantum chaos in GCM

Page 16: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Spectral statistics

GOE

P(s)

s

Poisson

CHAOTIC systemREGULAR system

Nearest-neighbor spacing distribution

Bohigas conjecture (O. Bohigas, M. J. Giannoni, C. Schmit, Phys. Rev. Lett. 52 (1984), 1)

Brodydistributionparameter

- Tool to test classical-quantum correspondence

- Measure of chaoticity of quantum systems- Artificial interpolation between Poisson and GOE distribution

3. Quantum chaos in GCM

Page 17: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Peres lattices Quantum system:

A. Peres, Phys. Rev. Lett. 53 (1984), 1711

Infinite number of of integrals of motion can be constructed (time-averaged operators P):

nonintegrable

E

<P>

regular

E

Integrable

<P>

chaoticregular

B = 0 B = 0.445

Lattice: energy Ei versus value of

lattice always ordered for any operator P

partly ordered, partly disordered

3. Quantum chaos in GCM

Page 18: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Principal Axes System

Nonrotating case J = 0!

(a) 5D system restricted to 2D (true geometric model

of nuclei)

(b) 2D system

IndependentPeres operators in

GCM

H’

L22DL2

5D

Hamiltonian of GCM

3. Quantum chaos in GCM

Page 19: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Increasing perturbation

E

Nonintegrable perturbation

<L2>

B = 0 B = 0.005

<H’>

Integrable Empire of chaos

Small perturbation affects only localized part of the lattice

B = 0.05 B = 0.24

Remnants ofregularity

3. Quantum chaos in GCM

Page 20: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Island of high regularity B = 0.62

<L2>

2D

<VB>

5D

(different quantizations)

E

• – vibrations resonance

3. Quantum chaos in GCM

Page 21: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Zoom into sea of levels

Dependence on the classicality parameter

E

<L2>

3. Quantum chaos in GCM

Page 22: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Selected squared wave functions:

E

Peres operators & Wavefunctions

<L2>

<VB>

2D

Peres invariant classically

Poincaré sectionE = 0.2

3. Quantum chaos in GCM

Page 23: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Classical and quantum measure - comparison Classical

measure

Quantum measure (Brody)

B = 0.24 B = 1.09

3. Quantum chaos in GCM

Page 24: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

1/f noise

Power spectrum

2. Quantum chaos in GCM

A. Relaño et al., Phys. Rev. Lett. 89, 244102 (2002)

CHAOTIC system = 1 = 2

- Direct comparison of

REGULAR system

= 2

= 1

1 = 0

2

3

4

n = 0 k

k

- Fourier transformation of the time series

Page 25: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Integrable case: = 2 expected

3.0 - 1.92x

6.0 - 1.93x

Shortest periodic classical orbit

Universal region

(averaged over 4 successive sets of 8192 levels, starting from level 8000)

(512 successive sets of 64 levels)

2.0 - 1.94x

log<S>

log f

1/f noise

3. Quantum chaos in GCM

Page 26: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Mixed dynamics A = 0.25

reg

ula

rity

freg

- 11 -

E

Calculation of :Each point –

averaging over 32 successive sets of

64 levels in an energy window

1/f noise

3. Quantum chaos in GCM

Page 27: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Summary

1. Geometrical Collective Model of nuclei • Complex behavior encoded in simple equations• Possibility of studying manifestations of both

classical and quantum chaos and their relation

2. Peres lattices• Allow visualising quantum chaos• Capable of distinguishing between chaotic

and regular parts of the spectra• Freedom in choosing Peres operator

3. Methods of Riemannian geometry• Approximate location of the onset of

chaoticity in classical systems

4. 1/f Noise• Effective method to introduce measure of

chaos using long-range correlations in quantum spectra

5. Other models studied• Interacting boson model, Double

pendulum

Thank you for your attention

http://www-ucjf.troja.mff.cuni.cz/~geometric

~stransky

This is the last slide

Page 28: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Appendix. Double pendulum

3. Chaos in IBM

Page 29: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Angular momenta

Quantization:

Peres operators:

Ambiguous procedure

(noncommuting in the kintetic term)

Hamiltonian

Double pendulum

Page 30: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

freg - Double pendulum

(a) E = 1

(b) E = 5

(c) E = 14

(c)

(a)

(b)

Double pendulum - results

= l = = 1

Page 31: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Double pendulum in ISS • No gravity• Integrable case• m = l = 1

Libration

Rotationin

distinguishing different classes of motion

Peres lattices

Double pendulum - results

Page 32: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Introducing gravity = 0 = 1

Chaotic band

Double pendulum - results

Page 33: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Classical-Quantum Correspondence

(a) E = 1

(b) E = 5

(c) E = 14

(c)

(a)(b)

Harm

onic

ap

pro

xim

ati

on

Em

pir

e o

f ch

aos

Pre

vale

nce

of

rota

tions

reg

ula

rity

freg

- 1

1 -

Page 34: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

IBM Hamiltonian

3 different dynamical symmetries

U(5)SU(3)

O(6)

0 0

1

Casten triangle

a – scaling parameter

Invariant of O(5) (seniority)

3. Chaos in IBM

Page 35: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

3 different dynamical symmetries

U(5)SU(3)

O(6)

0 0

1

Casten triangle

Invariant of O(5) (seniority)

a – scaling parameter

3 different Peres

operators

3. Chaos in IBM

IBM Hamiltonian

Page 36: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Regular lattices in integrable case

3ˆ.ˆ SUQQ

dn̂v

- even the operators non-commuting with Casimirs of U(5) create regular lattices !

40

-40

-2020

10

30 -10

-30

0

-40

-20

-10

-30

0

0

3ˆ.ˆ SUQQ

6ˆ.ˆ OQQ

dn̂

v

L = 0

commuting non-commuting

U(5)

limit

N = 40

3. Chaos in IBM

Page 37: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Different invariants

= 0.5

N = 40

U(5)

SU(3)

O(5)

Arc of regularityArc of regularity

classical regularity

3. Chaos in IBM

Page 38: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Different invariants

= 0.5

N = 40

U(5)

SU(3)

O(5)

Arc of regularityArc of regularity

classical regularity

3. Chaos in IBM

GOE<L2>

Page 39: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Application: Rotational bands

dn̂

N = 30L = 0

η = 0.5, χ= -1.04 (arc of regularity)

3ˆ.ˆ SUQQdn̂

3. Chaos in IBM

Page 40: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

N = 30L = 0,2

η = 0.5, χ= -1.04 (arc of regularity)

3ˆ.ˆ SUQQdn̂

3. Chaos in IBM

Application: Rotational bands

Page 41: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Application: Rotational bands

N = 30L = 0,2,4

η = 0.5, χ= -1.04 (arc of regularity)

3ˆ.ˆ SUQQdn̂

3. Chaos in IBM

Page 42: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

3ˆ.ˆ SUQQ

N = 30L = 0,2,4,6

η = 0.5, χ= -1.04 (arc of regularity)

dn̂

3. Chaos in IBM

Application: Rotational bands

Page 43: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear
Page 44: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

How to distinguish quasiperiodic and unstable trajectories

numerically?1. Lyapunov

exponent

Divergence of two neighboring trajectories

2. SALI (Smaller Alignment Index)

• fast convergence towards zero for chaotic trajectories

Ch. Skokos, J. Phys. A: Math. Gen 34 (2001), 10029; 37 (2004), 6269

• two divergencies

1. Classical chaos in GCM

Page 45: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Wave functions<L2>

E

<VB>

Probability densities

regular regularchaotic

2. Quantum chaos in GCM

Page 46: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Wave functions and Peres lattice

convex → concave (regular → chaotic)

E

E

OT

Probability density of wave

functions

Peres lattice

B = 1.09

2. Quantum chaos in GCM

Page 47: Pavel Stránský 1,2 3 rd Chaotic Modeling and Simulation International Conference, Chania, Greece, 2010 3 rd January 2010 1 Institute of Particle and Nuclear

Long-range correlations

• number variace

• 3 („spectral rigidity“)

• Short-range correlations – nearest neighbor spacing distribution

Only 1 realization of the ensemble in GCM – averaging impossibleChaoticity of the system changes with energy – nontrivial dependence on both L and E

2. Quantum chaos in GCM