pc1set7

Upload: shah-jahan

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 PC1Set7

    1/11

    7. Chemical Equilibrium

    T= const,P= const:

    dGT,P=i

    idni 0

    equilibrium: G= min

    i

    idddni= 0

    reaction

    1J1+2J2+ lJl+mJm+ i

    iJi= 0

    ipositive for products

    inegative for reactants

    extent of reaction

    ddddddni

    i

    PChem I 7.1

  • 8/12/2019 PC1Set7

    2/11

    independent ofidue to mass balance

    dGT,P=iidni=

    iiid

    dGT,P=

    i

    ii

    d=rGd

    = rG= G

    T,P

    equilibrium:dGT,P= 0=i

    iid

    dynamic equilibrium

    each forward reaction step is exactly balanced by its

    back reaction

    equilibrium: rG=i

    ii= 0

    i=i+RTlnai

    rG=

    i i

    i+RTlnai

    =i

    ii+

    i

    iRTlnai

    PChem I 7.2

  • 8/12/2019 PC1Set7

    3/11

    =rG+RT

    iln

    aii

    rG=rG

    +RTln

    i

    aii

    reaction quotientQi

    aii

    rG=rG +RTlnQ

    equilibrium rG= 0

    equilibrium0=rG+RTlnK

    rG=RTlnK

    KQeq=iaii,eq equilibrium constant

    rG=RTlnK+RTlnQ=RT ln

    Q

    K

    ifQ< K, then rG< 0: forward reaction dominates:

    reactants products

    ifQ> K, then rG> 0: back reaction dominates:

    products reactants

    PChem I 7.3

  • 8/12/2019 PC1Set7

    4/11

    [Figure:G vs; Atkins 9th ed., Fig. 6.1]

    activities

    ideal gas ai=

    Pi

    P

    real gas ai= fi

    P=

    iPi

    P

    PChem I 7.4

  • 8/12/2019 PC1Set7

    5/11

    pure solids and liquids (standard state: pure sub-

    stance at1bar): ai= 1

    justification (T= const):

    RTlnai=i=ii =

    PPVidPViP 0

    = lnai 0 =ai 1

    compared to gases, G for liquids and solids is rather

    insensitive to pressure changes, sinceV(s/l)V(g)

    [Figure:G vsPfor gases, liquids, and solids; Atkins 9th ed., Fig. 3.21]

    PChem I 7.5

  • 8/12/2019 PC1Set7

    6/11

    as long asVi andPare not too large, ai(s/l) 1

    example: solid with molecular mass200uand density2.00g cm3, i.e.,Vi= 100cm

    3mol1, at T= 300Khas

    ai= 1.08 1atP= 20bar

    = in heterogeneous equilibria involving gases and

    solids or liquids: ai(s/l)= 1

    solutes:

    ai= ici

    c ci

    c, c = 1M

    ideal gas reactions

    K=i

    aii =

    i

    Pi

    P

    i=KP

    rG=RTlnKP

    Pi= xiP

    K=KP=i

    xiP

    P

    i=i

    xii

    i

    P

    P

    i

    PChem I 7.6

  • 8/12/2019 PC1Set7

    7/11

    K=KxP

    P

    , =i

    i

    ci=ni

    V= Pi

    RT, Pi=RTci

    Pi

    P=

    RTci

    P =

    RTcic

    Pc =

    RTc

    P ci

    c

    K=KP

    =i PiP

    i

    =iRTc

    P ci

    ci

    =i

    ci

    c

    ii

    RTc

    P

    i

    K=Kc

    RTc

    P

    real gas reactions

    K=iaii =

    i

    fi

    Pi=i

    iPi

    Pi=iii

    i

    Pi

    Pi

    K=KKP

    PChem I 7.7

  • 8/12/2019 PC1Set7

    8/11

  • 8/12/2019 PC1Set7

    9/11

    Kxdepends onP if= 0

    >0: Kx

    as P

    : increasing pressure favors re-actants

    < 0: Kx as P: increasing pressure favors

    products

    illustration of

    Le Chateliers principle: When a system at equilibri-um is perturbed, it responds in a way that tends to

    minimize the effect of the perturbation.

    equilibrium constantK doesdepend onT

    KT

    P

    = T

    exprG

    RT

    P

    = exp

    rG

    RT

    1

    R

    d(rG

    /T)

    dT

    dK

    dT=

    K

    R

    d(rG/T)

    dT

    1

    K

    dK

    dT =

    1

    R

    d(rG/T)

    dT

    dlnK

    dT=

    1

    R

    d(rG/T)

    dT

    PChem I 7.9

  • 8/12/2019 PC1Set7

    10/11

    dlnK

    dT=

    1

    R

    (rH)

    T2

    Gibbs-Helmholtz equation

    dlnK

    dT=rH

    RT2 vant Hoff equation

    another illustration of Le Chateliers principle

    rH < 0 (exothermic reaction under standard condi-

    tions) = K as T: increasing temperature fa-

    vors reactants

    rH> 0 (endothermic reaction under standard con-

    ditions) =K asT: increasing temperature fa-

    vors products

    integrate vant Hoff equation with the assumption

    that rH= const:

    lnK2

    K1=

    rH

    R1

    T2

    1

    T1

    PChem I 7.10

  • 8/12/2019 PC1Set7

    11/11

    [Figure: lnK vs1/T; Atkins 9th ed., Fig. 6.9]

    PChem I 7.11