annual report 2010annual report 2010ccc.illinois.edu/s/2010_presentations/06_seong-mook cho...annual...

18
ANNUAL REPORT 2010 ANNUAL REPORT 2010 UIUC, August 12, 2010 Clogging Effects on Asymmetric Flow and Vortex Formation Seong-Mook Cho, Seon-Hyo Kim Department of Materials Science and Engineering Pohang University of Science and Technology Rajneesh Chaudhary, Brian G. Thomas Department of Mechanical Science and Engineering Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Pohang University of Science and Technology Materials Science and Engineering Seong-Mook Cho •1 Research Scope - Nozzle clogging influences asymmetric flow causing problems: Vortex formation: can entrap mold flux and Vortex formation: can entrap mold flux and cause defects in slab caster Level fluctuation near NFs: disturbs the formation of the initial solidifying shell - Objective: studying effect of asymmetric flow caused by nozzle clogging on: mold flow pattern (computational model) mold flow pattern (computational model) surface velocity vortex formation frequency level fluctuation Clog Back flow - Methodology: water model experiments to quantify surface flow, vortex formation and level fluctuation Nozzle clogging at Pohang University of Science and Technology Materials Science and Engineering Seong-Mook Cho •2 flow, vortex formation and level fluctuation computational model to explain the flow pattern. Nozzle clogging at recirculation region of port

Upload: hathu

Post on 04-Mar-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

ANNUAL REPORT 2010ANNUAL REPORT 2010UIUC, August 12, 2010

Clogging Effects on

Asymmetric Flow and Vortex Formation

Seong-Mook Cho, Seon-Hyo KimDepartment of Materials Science and Engineering

Pohang University of Science and Technology

Rajneesh Chaudhary, Brian G. ThomasDepartment of Mechanical Science and EngineeringDepartment of Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •1

Research Scope

- Nozzle clogging influences asymmetric flow causing problems:

Vortex formation: can entrap mold flux andVortex formation: can entrap mold flux and cause defects in slab casterLevel fluctuation near NFs: disturbs the formation of the initial solidifying shell

- Objective: studying effect of asymmetric flow caused by nozzle clogging on:

mold flow pattern (computational model)mold flow pattern (computational model)surface velocity vortex formation frequency level fluctuation

ClogBack flow

- Methodology: water model experiments to quantify surface flow, vortex formation and level fluctuationNozzle clogging at

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •2

flow, vortex formation and level fluctuation computational model to explain the flow pattern.

Nozzle clogging at recirculation region of port

Previous Works

“ Lifeng Zhang, Yufeng whang

Flow pattern Paticle motion

g g, g gand Xiangjun zuoMTB, 2008, Vol. 39B , p534~550”

Present research:

Temperature distribution

Present research:more detailed study of transient surface flow phenomena

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •3

distribution

Top surface level profile

with nozzle clogging

Schematic of 1/3 Scale Water Model Tundish

Stopper-rod

Dam

Weir

Bore diameter of SEN: 25mm

Dam

423mm

Nozzle wall thickness: 10.5mm

Free surfaceSubmergence

depth: 60mmWater flow

meter

Left Right

Port angle:

500mm75mm

1200mm

Port angle:

35 deg downward

PumpФ 25*11 exit

Water flow meter

Pump Water bath

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •4

3 Nozzles to Study Clogging Effects

Dimension of nozzle port No-clog

Small-clog

Severe-clog

Ri ht

Width (mm) 23.3 23.3 23.3

No-clog Small-clog Severe-clog

RightHeight (mm) 26.7 26.7 26.7

Left

Width (mm) 23.3 19.0 13.5

Height (mm) 26.7 21.8 15.4

R ti f b t l ft d i ht 1 0 67 0 33Ratio of area between left and right 1 0.67 0.33

Ratio of area between two ports and nozzle bore

2.54 2.11 1.69

Port angle (degree) -35 -35 -35

Left port Right port

No-clog Small-clog Severe-clog All casesClog in left nozzle port

23.3mm

26.7m

23.3mm

26.7m

19.0mm21.8 13.5mm

15

Clog in left nozzle port- Small-clog (33% clog)- Severe-clog (67% clog)

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •5

mmm 8m

m

.4mm

Processing Conditions for Experimental and Computational WorksExperimental and Computational Works

1/3 scale water model Real caster

Casting speed 0.917 m/min 1.59 m/min

Water flow rate 34.4 LPM 537 LPM (3.77 Ton/min)

Mold width 500 mm 1500 mm

Mold thickness 75 mm 225 mm

C t ti l

width 250 mm(No-clog), 500mm (Clog)

Computational mold domain

thickness 37.5 mm

length 1200 mm

SEN depth 60 mm 180 mmSEN depth 60 mm 180 mm

998.2 kg/m3 (water) 7020 kg/m3 (steel)

0.001003 kg/m-s (water) 0.0067 kg/m-s (steel)Distance from closed stopper-rod

to opened one (mm)No-clog: 3.0

Small-clog: 3.1, Severe-clog: 3.2

fluidρfluidμ

Nozzle (well-bottom type) port angle 35 degree

Nozzle portsNo-clog: Symmetric ports

Small-clog: 0.67_asymmetric left port, Severe-clog: 0.33_asymmetric left port

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •6

Nozzle bore diameter (inner/outer) 25 mm/46 mm 75mm/138mm

Shell no Yes

Gas injection no Yes

Sensors for Measurements

Electromagnetic current sensor

Electromagnetic current sensor

Ultrasonic displacement

Specifications

Ultrasonic displacement sensors

current sensorsensor

Response time

1Hz 20Hz

Collecting data 1Hz 1Hzdata

frequency1Hz 1Hz

Collecting data time

1000sec 1000sec

Sensor head

dimension20mm 30mm

< Sensors in water model>

Measuringdirection

X,Y vector components

Vertical direction to sensor head

8mm 10mm

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •7

< Sensors in water model>- 1 Electromagnetic current sensor for measuring surface flow velocity

- 2 Ultrasonic displacement sensors for measuring level fluctuations

Computational Model

- Single-phase flowSteady-state, 3-D and incompressible Navier-Stokes equations f t tifor momentum conservationStandard turbulence model for simulating time-averaged turbulent fluid flowUsing Fluent

εk −

Using Fluent

- Domain and convergence1/3 scale water model geometry1/3 scale water model geometryCombined computational domain of nozzle and mold assuming symmetrical flow (no-clog: quarter domain, clog: half domain)Hexa-cells used in the computational domain to model turbulent pnozzle and mold flow (no-clog: 0.107 million, small-clog: 0.205 million, severe-clog: 0.203 million)Convergence in almost all cases until scaled residuals were

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •8

reduced to stable 410−

Geometry, Mesh and Boundary Conditions

No-clog Small-clog Severe-clog

0.175m 0.35m

ou da y Co d t o s

Velocity inlet:

0.35m

0.001195m/secinput to cylinder surfaces

0.423m

0.25m 0.50m

1.2m

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •9

Pressure outlet: 0 Pa

Asymmetric Flow in the SEN with Nozzle Cloggingwith Nozzle Clogging

No-clog Small-clog Severe-clog

High t

High t momentum

flowmomentum

flow

No Back flow No back flow,

Spread jet 50% 75%25%52%48%

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •10

- Nozzle port clogging causes asymmetric flow in a nozzle

50% 75%25%52%48%Flow rate ratio

Equations to Calculate Jet Characteristics

Weighted average velocity of each component

Vertical jet angle (degree) average jet speed

Weighted average turbulent kinetic energy Weighted average turbulent kinetic energy dissipation rate

Back flow zone fraction

“ Hua Bai and Brian G. Thomas, MTB, 2001, Vol. 32B , No. 2”

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •11

Rate)(Flow QSpeed)Jet (Averaged UForce)(Jet F jetjetjet ×=

Jet Characteristics No-clog Small-clog Severe-clog

Left Right Left Right Left Right

Weighted average nozzle port velocity in x-Weighted average nozzle port velocity in x-direction (Outward) (m/sec)

0.450 0.451 0.568 0.550 0.542 0.636

Weighted average nozzle port velocity in y-direction (Horizontal) (m/sec)

0.042 0.042 0.017 0.009 0.022 0.015

Weighted average nozzle port velocity in z-di ti (D d) ( / )

0.315 0.315 0.343 0.404 0.327 0.497direction (Downward) (m/sec)

0.315 0.315 0.343 0.404 0.327 0.497

Vertical jet angle (degree) -35.0 -35.0 -31.2 -36.4 -31.1 -38.0

Horizontal jet angle (degree) 0 0 0 0 0 0

Average jet speed(m/sec) 0.55 0.55 0.66 0.68 0.63 0.81

Flow rate (kg/sec) 0.286 0.286 0.276 0.296 0.145 0.427

Averaged jet force (N) 0 157 0 157 0 182 0 201 0 091 0 346Averaged jet force (N) 0.157 0.157 0.182 0.201 0.091 0.346

Maximum velocity magnitude (m/sec) 0.98 0.98 1.10 1.17 0.87 1.28

Weighted average turbulent kinetic energy(m2/s2)

0.022 0.022 0.043 0.020 0.033 0.019

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •12

gy( )

Weighted average turbulent kinetic energy dissipation rate (m2/s3)

0.782 0.783 2.12 0.797 1.47 0.731

Back-flow zone (%) 17.2 17.2 0 16.9 0 17.2

Jet Velocity Profiles

At port outlet plane0.04

m) No-clog_L, R

0.03

e p

ort

bo

tto

m(m Small-clog_L

Small-clog_R Severe-clog_L Severe-clog_R

0.01

0.02

nce

fro

m n

ozz

le

Jet force (Flow rate): N (kg/sec)0.0 0.5 1.0 1.5

0.00

Dis

tan

Velocity magnitude(m/sec)

- Flow rate at clogged port decreases, but flow rate at non-clogged port increases

- Faster jet at non-clogged port than clogged port because of increasing flow rate

Left Right Total

No-clog 0.157 (0.286) 0.157 (0.286) 0.314 (0.572)

Small-clog 0.182 (0.276) 0.201 (0.296) 0.383 (0.572)

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •13

g- Increased flow rate and velocity magnitude induce

higher jet force

Small clog 0.182 (0.276) 0.201 (0.296) 0.383 (0.572)

Severe-clog 0.091 (0.145) 0.346 (0.427) 0.437 (0.572)

Asymmetric Flow in the Mold with Nozzle Clogginggg g

No-clog Small-clog Severe-clog

S dSpread jet Faster

jet

< m/sec >

N l l i t i fl i ld (U b l d d bl ll tt )

high speed of downward flow

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •14

- Nozzle clogging causes asymmetric flow in a mold (Unbalanced double roll pattern)- With clogged nozzle, surface flow from right side cross the surface and suppress the uprising flow from left NF

- In severe-clog case, it is possible for inclusions to penetrate deeply down into a mold

Velocity near Narrow Faces

0.2

0.1

0.0

< 1mm from NFs >

0.5

0.4

0.3

m s

urf

ace(

m) Impingement

point of jet flow

0.9

0.8

0.7

0.6

ista

nce

fro

m

No-clog_L, R Small-clog_L

0 00 0 01 0 02 0 03 0 04 0 051.2

1.1

1.0

Di g_

Small-clog_R Severe-clog_L Severe-clog_R

N l0.00 0.01 0.02 0.03 0.04 0.05

Velocity magnitude(m/sec)

- Jet impingement point on NFs is ~0.3m below free surface- Mold flow near NFs is faster on the same side as non-clogged port

No-clog Small-clog Severe-clog

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •15

- More clogging causes more asymmetry between left and right side- There exists stagnant flow region in the mold with clogged nozzle

Measuring Surface Velocity

10mm

< Measuring positions of surface flow velocity>

L< Front view >

L2

1L

4

1L

2

1 L4

1

- Measure velocity profiles near surface with current meter sensors during< Top view >

Measure velocity profiles near surface with current meter sensors during

1000sec

- Compare velocity profiles on ¼, ½ points from NFs, gap between SEN and

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •16

mold inner wall

- Calculate average velocity magnitude, flow direction angle

Quantifying Averaged Surface Velocity Vector

Outside +y axis

Flow direction angle

θ Right NF

Left NF

+x axis

g

Inside1/2 1/41/21/4x axis

Determining the flow direction angle from averaged velocity componentsDetermining the flow direction angle from averaged velocity components

Quantifying vector-averaged surface flow with flow direction angle and velocity magnitude

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •17

Averaged Surface Flow Pattern (Experimental Results)(Experimental Results)

OR 0.1m/secMeasured at 10mm from free surface and averaged for 1000sec

No clog IR

NF NF0.090

0.012 0.057 0.0950.053

1/4 1/2 1/2 1/4No-clog IR

OR

NF NF

1/4 1/2 1/2 1/4

Small-clog IR

NF NF

0.1290.0650.0180.066 0.037

OR

NF NF

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •18

Severe-clog IR

0.1690.1300.085

0.0040.026

Speed & Direction Variation with No-Clog NozzleNo Clog Nozzle

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

deg

ree)

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

deg

ree)

Left_1/4 Right_1/4

0 10

0.15

0.20

0.25

0.30

Vel

oci

ty m

agn

itu

de(

m

-100

-80

-60

-40

-20

0

20

40

60

ow

dir

ecti

on

an

gle

(d

0.10

0.15

0.20

0.25

0.30

Vel

oci

ty m

agn

itu

de(

m

120

-100

-80

-60

-40

-20

0

20

40

60

low

dir

ecti

on

an

gle

(d

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

Time(sec)

V

-180

-160

-140

-120 Flo

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

Time(sec)

V

-180

-160

-140

-120 Fl

0.50

Velocity magnitude(m/sec) 160

180 0.50

Velocit magnit de(m/sec) 160

180

Left 1/2 Right 1/2

0.25

0.30

0.35

0.40

0.45 Velocity magnitude(m/sec) Flow direction angle(degree)

agn

itu

de(

m/s

ec)

20

0

20

40

60

80

100

120

140

160

on

an

gle

(deg

ree

)

0.25

0.30

0.35

0.40

0.45 Velocity magnitude(m/sec) Flow direction angle(degree)

gn

itu

de(

m/s

ec)

0

20

40

60

80

100

120

140

160

on

an

gle

(deg

ree)

Left_1/2 Right_1/2

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

0.15

0.20

Vel

oci

ty m

a

-180

-160

-140

-120

-100

-80

-60

-40

-20

Flo

w d

irec

tio

0.00

0.05

0.10

0.15

0.20

Vel

oci

ty m

ag

-180

-160

-140

-120

-100

-80

-60

-40

-20

Flo

w d

irec

tio

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •19

0 100 200 300 400 500 600 700 800 900 1000

Time(sec)0 100 200 300 400 500 600 700 800 900 1000

Time(sec)

- Surface flow becomes slower and more chaotic toward SEN

Speed & Direction Variation with Small-Clog NozzleSmall Clog Nozzle

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

deg

ree)

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

(deg

ree)

Left_1/4 Right_1/4

0 10

0.15

0.20

0.25

0.30

elo

city

mag

nit

ud

e(m

-100

-80

-60

-40

-20

0

20

40

60

low

dir

ecti

on

an

gle

(

0.10

0.15

0.20

0.25

0.30

elo

city

mag

nit

ud

e(m

-100

-80

-60

-40

-20

0

20

40

60

low

dir

ecti

on

an

gle

(

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

Time(sec)

Ve

-180

-160

-140

-120 Fl

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

Time(sec)

Ve

-180

-160

-140

-120 F

0.50

Velocity magnitude(m/sec) 160

180

0.45

0.50

Velocity magnitude(m/sec)Fl di ti l (d ) 140

160

180

Left 1/2 Right 1/2

0.25

0.30

0.35

0.40

0.45y g ( )

Flow direction angle(degree)

agn

itu

de(

m/s

ec)

-20

0

20

40

60

80

100

120

140

on

an

gle

(deg

ree)

0 20

0.25

0.30

0.35

0.40

0.45 Flow direction angle(degree)

agn

itu

de(

m/s

ec)

-20

0

20

40

60

80

100

120

140

tio

n a

ng

le(d

egre

e)

Left_1/2 g _

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

0.15

0.20

Vel

oci

ty m

a

-180

-160

-140

-120

-100

-80

-60

-40

-20

Flo

w d

irec

tio

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

0.15

0.20

Vel

oc

ity

ma

-180

-160

-140

-120

-100

-80

-60

-40

Flo

w d

irec

t

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •20

0 100 200 300 400 500 600 700 800 900 1000

Time(sec)

0 100 200 300 400 500 600 700 800 900 1000

Time(sec)

- Surface flow from right NF is faster and more consistent than left NF- Surface flow at the left (slower) side is more chaotic than right side

Speed & Direction Variation with Severe-Clog NozzleSevere Clog Nozzle

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

(de

gre

e)

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

deg

ree)

Left_1/4 Right_1/4

0.10

0.15

0.20

0.25

0.30

Vel

oci

ty m

agn

itu

de(

m

-100

-80

-60

-40

-20

0

20

40

60

Flo

w d

irec

tio

n a

ng

le(

0.10

0.15

0.20

0.25

0.30

Vel

oci

ty m

agn

itu

de(

m

120

-100

-80

-60

-40

-20

0

20

40

60

ow

dir

ecti

on

an

gle

(d

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

Time(sec)

V

-180

-160

-140

-120 F

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

Time(sec)

V

-180

-160

-140

-120

Flo

0 45

0.50

Velocity magnitude(m/sec) 160

180

0.45

0.50

Velocity magnitude(m/sec)Flow direction angle(degree) 140

160

180

Left 1/2 Right 1/2

0.25

0.30

0.35

0.40

0.45 Flow direction angle(degree)

ag

nit

ud

e(m

/sec

)

-20

0

20

40

60

80

100

120

140

tio

n a

ng

le(d

egre

e)

0.20

0.25

0.30

0.35

0.40

Flow direction angle(degree)

mag

nit

ud

e(m

/sec

)

40

-20

0

20

40

60

80

100

120

ion

an

gle

(deg

ree)

Left_1/2 g _

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

0.15

0.20

Vel

oci

ty m

a

-180

-160

-140

-120

-100

-80

-60

-40

Flo

w d

irec

t

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

0.15

0.20

Vel

oci

ty m

-180

-160

-140

-120

-100

-80

-60

-40

Flo

w d

irec

ti

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •21

0 100 200 300 400 500 600 700 800 900 1000

Time(sec)Time(sec)

- There is same trend as more clogged nozzle , but more severe- Flow direction is more consistent on faster right side

Speed & Direction Variation in the Gap between SEN and Moldthe Gap between SEN and Mold

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

60

80

100

120

140

160

180

deg

ree)

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

m/s

ec)

80

100

120

140

160

180

deg

ree)

0.15

0.20

0.25

0.30

elo

city

mag

nit

ud

e(m

100

-80

-60

-40

-20

0

20

40

60

ow

dir

ecti

on

an

gle

(d

0.15

0.20

0.25

0.30

0.35

loci

ty m

agn

itu

de(

m

-80

-60

-40

-20

0

20

40

60

w d

irec

tio

n a

ng

le(d

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

Time(sec)

Ve

-180

-160

-140

-120

-100

Flo

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

0.10

Time(sec)

Vel

-180

-160

-140

-120

-100

Flo

w

< No-clog > < Small-clog >

0 30

0.35

0.40

0.45

0.50

Velocity magnitude(m/sec) Flow direction angle(degree)

de(

m/s

ec)

40

60

80

100

120

140

160

180

gle

(deg

ree)

- More asymmetrical flow between left and right side makes faster flow in

< Small-clog >

0.10

0.15

0.20

0.25

0.30

Ve

loci

ty m

agn

itu

d

-120

-100

-80

-60

-40

-20

0

20

40

Flo

w d

irec

tio

n a

ng and right side makes faster flow in

the gap between SEN and mold - Flow direction is more consistent with higher velocity

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •22

0 100 200 300 400 500 600 700 800 900 10000.00

0.05

Time(sec)

-180

-160

-140

g y

< Severe-clogged >

Velocity Magnitude and

Turbulent Kinetic Energy (TKE)gy ( )

Velocity magnitudem/sec 22/secm

No-clog

TKE

No clogVelocity magnitude

TKE

Small-clog

TKE

V l it it dVelocity magnitude

TKE

Smaller vortex area, Severe

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •23

Severe-clog

asymmetry

Surface Velocity Results (Prediction and Measurement)

Right Left

Outside

(Prediction and Measurement)

NFLeft NF

Inside1/2 1/41/21/410mm from surface

0.20

, , ,

No-clog Small-clog Severe-clog

Predicted

Measured

- Prediction well-matches with measurement - Nozzle clogging induces the asymmetric surface flow in a mold

0.15

nit

ud

e(m

/sec

)

SEN

surface flow in a mold- Surface flow at the same side as non-clogged port is faster than clogged port

- More asymmetry of flow between left and right id i d f t fl i th b t

0.05

0.10

Vel

oci

ty m

agn side induces faster flow in the gap between

SEN and mold- Surface flow at the ¼ region is faster than ½ region in measurement (slope of flow speed

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •24

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.250.00

Distance from center of mold(m)

g ( p pdecreasing is not so steep as prediction)

Comparison of Predicted Averaged Surface Velocity with Measured OneVelocity with Measured One

Left Gap between SEN and mold inner wall

Right

1/4 1/2 1/2 1/4

Velocity magnitude (m/sec)

mold inner wall1/4 1/2 1/2 1/4

No-clogPredicted 0.078 0.080 0.013 0.080 0.078

Measured 0.090 0.053 0.012 0.057 0.095

Small-clogPredicted 0.018 0.015 0.117 0.126 0.111

Measured 0.066 0.037 0.018 0.065 0.129

Severe-clogPredicted 0.032 0.033 0.180 0.167 0.142

Severe clogMeasured 0.026 0.004 0.085 0.130 0.169

- Model over-predicts experiments in the gap between SEN and mold inner wall; Standard model can’t accommodate flow speed with direction variation (Real turbulent flow decreases the averaged surface flow)

εk −(Real turbulent flow decreases the averaged surface flow)

- In severe-clog case, model predicts that surface flow from right side crosses the surface and suppresses the uprising flow from left NF

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •25

- Computational model predicts the region of the fastest surface flows at ½ L region

Comparison of Predicted Turbulent Kinetic Energy (TKE) with Measured One

Left Gap between SEN and Right

Energy (TKE) with Measured One Turbulent kinetic energy ( )224 /secm10−

mold inner wall1/4 1/2 1/2 1/4

No-clogPredicted 2.30 1.77 0.414 1.77 2.30

Measured 5.05 6.18 5.42 5.29 5.46

Small-clogPredicted 0.620 0.920 3.79 3.40 5.65

Measured 6.38 9.59 10.8 9.63 6.53

Predicted 1.48 2.00 7.64 6.56 10.9Severe-clog

ed cted 8 00 6 6 56 0 9

Measured 4.42 7.32 8.20 6.21 5.19

- Measured TKE is greater than predicted one; anisotropy of real turbulence; directional variation of surface flow affects TKE together with speed variation

- Vortexing flow pattern causes higher turbulent kinetic energy at left region near SEN in measurement

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •26

Counting Vortex Formation

1 2

Outside

RightLeft

4 3

SEN

Inside

Right NF

Left NF

-Visualization of vortex formation:

Scatter sesame seeds (tracer particles) at surface of water-model mold

Record videos and take picturesRecord videos and take pictures

- Counting vortex formation

Divide the four region near SEN

1 4 2 3

Count the number of each region in a time interval

( Criterion of vortex: over 2 rotations)

Left region VS Right region: + VS +

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •27

1 4 2 3

1 2 3 4

Left region VS Right region: + VS +

Outside region VS Inside region : + VS +

Vortex Formation with Clogged Nozzle

< No-clog > < Small-clog >

- Most vortices are formed at 4 regions near SEN in the

cases of no and small-clog cases.

< No clog > < Small clog >

- All vortices are formed at left region near SEN with

severe-clog case

- Nozzle clogging causes asymmetric vortex formation

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •28

- More vortices form at the left region of SEN with the

nozzles with clogged left port < Sever-clog >

Vortex Formation Frequency

Left Right Total10

11

12

13

14

15

Left region Right region

y(#/

min

)

Vortex frequency(#/min)

No-clog 3.9 (48%) 4.3 (52%) 8.2

Small-clog 5.5 (63%) 3.2 (37%) 8.7

Severe-clog13.3

0 13 33

4

5

6

7

8

9

10

Vo

rtex

fre

qu

nec

y

Severe clog(100%)

0 13.3

< Left region VS Right region>

14

15

Inside region

No-clog Small-clog Severe-clog0

1

2

3

NozzlesVortex frequency(#/min)

No-clog Small-clog Severe-clog

Outside 4.4 (54%) 4.3 (49%) 6 (45%)7

8

9

10

11

12

13

Outside region

x fr

qu

ency

(#/m

in)

Inside 3.8 (46%) 4.4 (51%) 7.3 (55%)

Total 8.2 8.7 13.3

< Inside region VS Outside region>No clog Small clog Big clog0

1

2

3

4

5

6

Vo

rtex

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •29

< Inside region VS Outside region>- Vortices are caused by asymmetric flow between right and left region

- Vortex frequency increases with clogging due to greater diff. of right/left velocity

No-clog Small-clog Big-clog

Nozzles

Vortex Formation Frequency(Visualization)( sua at o )

Right Left

Outside

SEN

1.6 2.8

10 minutes

sidesideSEN

Inside

2.3 1.5

No-clog< #/min >

Right id

Left id

Outside

SEN

3.2 1.1

10 minutes

Small-clog

sideside

Inside

2.3 2.1

< #/min >

Right side

Left side

Outside

6 0SEN

10 minutes

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •30Severe-clog

sideside

Inside

7.3 0

< #/min >

Measuring Level Fluctuation

15mm15mm

< Measuring positions of level fluctuation >

- Measure level fluctuation on the surface near NFs with ultrasonic displacement

sensors

Compare fluctuation profiles at 15mm position from both NFs- Compare fluctuation profiles at 15mm position from both NFs

- Calculate average level and standard deviation of level

- Transfer level fluctuation profiles to power spectrum by FFT (Fast Fourier

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •31

Transform) analysis

Histories of Level Fluctuation

-2

-3

-4

-5

mm

)

Left side Right side

-2

-3

-4

-5

mm

)

Left side Right side

2

1

0

-1

2

Lev

el f

luct

uat

ion

(m

2

1

0

-1

2

evel

flu

ctu

atio

n(m

< No-clog >Slightly higher averaged

< Small-clog >

Di t f l t t ( )

0 100 200 300 400 500 600 700 800 900 10005

4

3

L

Time(sec)0 100 200 300 400 500 600 700 800 900 1000

5

4

3

Le

Time(sec)

Left Right

No-clogAvg 61 60

Stdev 0 9 0 8

averaged level with nozzle clogging

Distance from nozzle port top(mm)( )

-1

-2

-3

-4

-5

on

(mm

)

Left side Right side

Stdev 0.9 0.8

Small-clogAvg 62 61

Stdev 0.7 0.9

gg g

3

2

1

0

-1

Lev

el f

luct

uat

io

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •32

Severe-clogAvg 62 62.5

Stdev 0.7 0.9< Severe-clog >

0 100 200 300 400 500 6005

4

Time(sec)

Characteristics of Level Fluctuation

2

-3

-4

-5

m

)

Left side Right side

2

-3

-4

-5

mm

)

Left side Right side

2

1

0

-1

-2

vel

flu

ctu

atio

n(m

m

2

1

0

-1

-2

evel

flu

ctu

atio

n(m

490 500 5105

4

3

2

Lev

Time(sec)490 500 510

5

4

3

Le

Time(sec)5

< No-clog > < Small-clog >

( )

-2

-3

-4

-5

on

(mm

)

Left side Right side

- Smooth level fluctuation with non-clogged nozzleAbruptly severe level fluctuation with

2

1

0

-1

Lev

el f

luct

uat

io - Abruptly severe level fluctuation with clogged nozzle (more severe with more clogged nozzle)

290 300 3105

4

3

Time(sec)Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •33

< Severe-clog >Severe level fluctuation disturbs uniform initial solidifying shell

Power Spectrum of Level Fluctuation

0.01

0.1

2)

1E 3

0.01

0.1

2)

0.25Hz

1E-6

1E-5

1E-4

1E-3

er s

pec

tru

m(m

m^

1E-6

1E-5

1E-4

1E-3

we

r sp

ectr

um

(mm

2

1E-3 0.01 0.1

1E-9

1E-8

1E-7

Po

we

Frequency(Hz)

No_clog, L No-clog, R

1E-3 0.01 0.1

1E-9

1E-8

1E-7

Po

w

Frequency(Hz)

Small-clog, L Small-clog, R

< No-clog > < Small-clog >

Frequency(Hz) Frequency(Hz)

1E-3

0.01

0.1

(mm

2)

- Level fluctuation with non-clogged nozzle shows more turbulent trend

- With clogged nozzle there is higher power at

0.25Hz

1E-7

1E-6

1E-5

1E-4

Po

wer

sp

ectr

um

( - With clogged nozzle, there is higher power at the right NF (non-clogged port side)

- Asymmetric flow by nozzle clogging creates periodic asymmetric fluctuation (high power

< Se ere clog >

1E-3 0.01 0.1

1E-9

1E-8

Frequency(Hz)

Severe-clog, L Severe-clog, R

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •34

at 0.25 Hz)< Severe-clog >

Summary- Nozzle clogging effects has been studied with 3

cases nozzles (No, Small and Severe-clog)- Asymmetric flow

Level fluctuation with higher power

More frequent vortex formation Asymmetric flow

Asymmetric jet from clogged nozzle cause asymmetric flow in a moldThe surface flow at the side with non-clogged port is faster than clogged port

formation

Asymmetric flow

faster than clogged portMore asymmetry of flow between left and right side induces faster flow at the gap between SEN and mold

- Vortex formationVortices are caused by the asymmetric flow between

Higher jet force

Vortices are caused by the asymmetric flow between right and left sideMore vortices form at the left region of SEN with the nozzle having clogged left port

Level fluctuation“Phenomena in the mold

ith l d l ” - Level fluctuationThe surface level at the same side as non-clogged port is higher with higher power

with clogged nozzle”

- Comparison of results between experimental and computational worksSt d d d l h th ll t h d t d ith tk

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •35

Standard model shows the well matched trend with measurementReal vortexing flow pattern makes the difference of turbulent kinetic energy between measurement and prediction (need of studying transient modeling)

εk −

Acknowledgements

• Continuous Casting Consortium Members(ABB Arcelor-Mittal Baosteel Corus LWB(ABB, Arcelor-Mittal, Baosteel, Corus, LWB Refractories, Nucor Steel, Nippon Steel, Postech, Posco, ANSYS-Fluent), )

• POSCO: Ho-Jung Shin, Woong-Ryul Choi, Sung-OSCO o Ju g S , oo g yu C o , Su gKwhang Kim, Joong-Wook Cho, Shin-Eon Kang

• POSTECH: Hyoung-Jun Lee, Soo-Young Seo

Pohang University of Science and Technology •Materials Science and Engineering •Seong-Mook Cho •36

• UIUC: Chuanbo Ji