classifications of solidsmichael.lufaso/chem2046/2046chapter12.pdf2 unit cell– relatively small...

17
1 Ch 12: Solids and Modern Materials Learning goals and key skills: Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to physical properties Know the difference between crystalline and amorphous solids. Understand the relationships between lattice vectors and unit cell. Understand why there are a limited number of lattices. Be able to recognize the four 2d and several 3d primitive lattices. Know the locations of lattice points for body- and face-centered lattices Calculate the empirical formula and density of ionic and metallic solids from a picture of the unit cell. Be able to estimate the length of a cubic unit cell from the radii of the atoms/ions present Explain how homogeneous and heterogeneous alloys differ. Describe the differences between substitutional alloys, interstitial alloys, and intermetallic compounds. Use the molecular orbital model to qualitatively predict the trends in melting point, boiling point, and hardness of metals. Predict the structures of ionic solids from their ionic radii and empirical formula Be able to use the periodic table to qualitatively compare the band gap energies of semiconductors. Understand how n-type and p-type doping can be used to control the conductivity of semiconductors. Understand how polymers are formed from monomers and recognize the features of a molecule that allow it to react to form a polymer. Understand the differences between addition polymerization and condensation polymerization. Understand how the interactions between polymer chains impact the physical properties of polymers. Understand how the properties of bulk semiconductors and metals change as the size of the crystals decreases into the nanometer-length scale. Be familiar with the structures and unique properties of fullerenes, carbon nanotubes, and graphene. Classifications of Solids Classifications of Solids Crystalline Solids – have atoms arranged in an orderly repeating pattern Amorphous Solids lack the order found in crystalline solids

Upload: dohanh

Post on 07-Mar-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

1

Ch 12: Solids and Modern MaterialsLearning goals and key skills:

�Classify solids base on bonding/intermolecular forces and understand how difference in bonding relates to

physical properties

�Know the difference between crystalline and amorphous solids. Understand the relationships between lattice

vectors and unit cell.

�Understand why there are a limited number of lattices. Be able to recognize the four 2d and several 3d

primitive lattices. Know the locations of lattice points for body- and face-centered lattices

�Calculate the empirical formula and density of ionic and metallic solids from a picture of the unit cell. Be able

to estimate the length of a cubic unit cell from the radii of the atoms/ions present

�Explain how homogeneous and heterogeneous alloys differ. Describe the differences between

substitutional alloys, interstitial alloys, and intermetallic compounds.

�Use the molecular orbital model to qualitatively predict the trends in melting point, boiling point, and

hardness of metals.

�Predict the structures of ionic solids from their ionic radii and empirical formula

�Be able to use the periodic table to qualitatively compare the band gap energies of semiconductors.

�Understand how n-type and p-type doping can be used to control the conductivity of semiconductors.

�Understand how polymers are formed from monomers and recognize the features of a molecule that allow it

to react to form a polymer. Understand the differences between addition polymerization and condensation

polymerization.

�Understand how the interactions between polymer chains impact the physical properties of polymers.

�Understand how the properties of bulk semiconductors and metals change as the size of the crystals

decreases into the nanometer-length scale.

�Be familiar with the structures and unique properties of fullerenes, carbon nanotubes, and graphene.

Classifications of SolidsClassifications of Solids

Crystalline Solids – have atoms arranged in an orderly repeating pattern

Amorphous Solids –lack the order found in crystalline solids

2

Unit cell – relatively small repeating unit that is made up of a unique arrangement of atoms and embodies the structure of the solid.

Crystal lattice – geometrical pattern of points on which the unit cells are arranged

Lattice points – each lattice point has an identical environment. The positions of the lattice points are defined by the lattice vectors.

Not all shapes tile space.

3

Seven three-dimensional primitive lattices

4

X-ray diffractionX-ray diffraction

Malleability and ductility.

5

Close PackingClose Packing

6

AlloysAlloysAlloy – a material that contains more than one element (metals)• Adding a second (or third) element changes the

properties of the mixture to suit different purposes.

AlloysAlloys

• Substitutional alloys, a second element takes the place of a metal atom.

• Interstitial alloys, a second element fills a

space in the lattice of metal atoms.

7

Metallic BondingMetallic Bonding

8

Metallic BondingMetallic Bonding

• Valence electrons delocalize to form a sea of mobile electrons that surrounds and binds together an extended array of metal ions

• Electrical and thermal conductivity, ductility, and malleability of metals is explained by this model.

Molecular-Orbital ApproachMolecular-Orbital Approach

9

10

11

Molecular SolidsMolecular Solids

Covalent-Network SolidsCovalent-Network Solids

Band structure of semiconductorsBand structure of semiconductors

In the closely packed molecular orbitals, there is a gap between the occupied MOs (valence

band) and the unoccupied ones (conduction band).

12

Doped semiconductorsDoped semiconductors

By introducing very small amounts of impurities that have more (n-type) or fewer (p-type) valence electrons, one can increase the conductivity of a semiconductor.

Solid-state lightingSolid-state lighting

13

Polymeric SolidsPolymeric Solids

Polymers are molecules of high molecular mass made by sequentially bonding repeating units called monomers.

Addition Polymers

Condensation PolymerizationCondensation Polymerization

Condensation polymers are made by joining two subunits through a reaction in which a smaller molecule (often water) is also formed as a by-product.These are also called copolymers.

Synthesis of Nylon

Nylon is a condensation polymer.

14

15

Vulcanization of natural rubberVulcanization of natural rubber

Importance of particle sizeImportance of particle size

16

PhotoluminescencePhotoluminescence

Gold NanoparticlesGold Nanoparticles

17

GrapheneGraphene

2010 Nobel Prize