pelagic fisheries research program - soest.hawaii.edu file2/17 2 3 l2 3m 33 22 ? i ˚ p light based...

17
1/17 P i ? Pelagic Fisheries Research Program http://www.soest.hawaii.edu/PFRP/ A mosaic of models for light-based geolocation: How to choose, what to be careful about, and future directions Anders Nielsen & John Sibert [email protected]

Upload: vankhanh

Post on 08-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

1/17 P�i?22333ML232

Pelagic Fisheries Research Programhttp://www.soest.hawaii.edu/PFRP/

A mosaic of models for light-based geolocation:

How to choose, what to be careful about, and

future directions

Anders Nielsen & John Sibert

[email protected]

2/17 P�i?22333ML232

Light based geolocation

� We got:

– Light, depth, and temperature

– Measured for instance every minute

– From archival tags the entire record can be retrieved

– From satellite transmitting tags only a summary

� We want:

– A track of geographic positions (geolocations)

– Some idea about the uncertainties

– Perhaps some quantitative movement parameters

� Problems:

– Indirect measurements: Light → solar altitude → geolocation

– High and correlated uncertainties from changing weather and incomplete depthcorrections

3/17 P�i?22333ML232

This talk

� Will talk about:

– Raw geolocations

– Kftrack

– Kfsst/ukfsst

– Trackit (with and without SST)

� Will not talk about:

– Satellite methods

– Tidal location models

– Sunrise/sunset times models

– SST matching algorithms

– EASy-FishTracker

– ...

4/17 P�i?22333ML232

Similarities of kftrack, kfsst, ukfsst, and trackit

� Underlying movement model

– Assume the same random walk model

– Includes drift and diffusion

� At any given position the observation model

– Predicts the observation

– Describes the observation error

� All model parameters are maximum likelihood estimated

� Any point on the most probable track is a weighted average of:

– What is learned from the current observation

– What is learned from the entire track

5/17 P�i?22333ML232

The differences are

� What they take as data

– Raw geolocations (lon,lat) used by kftrack

– Raw geolocations and SST (lon,lat,SST) used by kfsst and ukfsst

– Light readings and SST used by trackit

� Technical details in handling non-linearities

– Extended Kalman filter used by kftrack and kfsst

– Unscented Kalman filter used by ukfsst and trackit

(lon,lat) SST Light EKF UKF

kftrack X X

kfsst X X X

ukfsst X X X

trackit X X X

If possible, running more than one can often be very instructive ...

6/17 P�i?22333ML232

'

&

$

%?

Raw geolocation

?(lon,lat)

'

&

$

%?

Raw geolocation

?(lon,lat)

'

&

$

%?

Raw geolocation

?(lon,lat)

� Algorithms (partly) proprietary, but in essence:

– Associate a certain light level crossing with a solar angle (problematic)

– Calculate position from two of those

� These raw geolocations are often imprecise and biased

� Especially latitude around equinox

7/17 P�i?22333ML232

'

&

$

%?

Raw geolocation

?(lon,lat)

'

&

$

%?

Raw geolocation

?(lon,lat)

'

&

$

%?

Raw geolocation

?(lon,lat)

Kftrack

PPPPPPPPPPPq

AAAAU

����������)

day month year lon lat

21 1 1999 201.750 18.65

22 1 1999 204.520 20.00

23 1 1999 206.086 22.00

24 1 1999 204.399 23.50

.

.

.

library(kftrack)

track<-read.table(’datafile.dat’, header=TRUE)

fit<-kftrack(track)

plot(fit, map=TRUE, ci=TRUE)

8/17 P�i?22333ML232

'

&

$

%?

Raw geolocation

?(lon,lat,SST)

'

&

$

%?

Raw geolocation

?(lon,lat,SST)

'

&

$

%?

Raw geolocation

?(lon,lat,SST)

Kfsst/ukfsst

HHHHHHHHj

AAAAU

��������

day month year lon lat sst

11 4 2001 201.722 18.875 24.73

16 4 2001 201.190 24.150 24.37

18 4 2001 202.950 12.890 24.73

22 4 2001 199.110 28.790 24.37

.

.

.

library(kfsst) or library(ukfsst)

track<-read.table(’datafile.dat’, header=TRUE)

sst.path<-get.sst.from.server(track)

sst.file<-write.sst.field(sst.path) delete line in ukfsst

fit<-kfsst(track)

plot(fit, map=TRUE, ci=TRUE)

9/17 P�i?22333ML232

'

&

$

%

'

&

$

%

'

&

$

%Trackit

PPPPPPPPPPPq

AAAAU

����������)

year month day hour min sec depth light temp

2002 9 11 15 35 53 15.5 69 21.1

2002 9 11 15 36 53 15.0 75 21.1

2002 9 11 15 37 53 16.0 85 21.3

.

.

.

year month day hour min sec sst

2002 9 15 3 0 0 22.4

2002 9 17 2 0 0 23.1

2002 9 21 5 0 0 22.9

.

.

.

library(trackit)

track<-read.table(’datafile.dat’, header=TRUE)

sst<-read.table(’sstdatafile.dat’, header=TRUE)

sst.path<-get.sst.from.server(track,150,250,0,40)

prep.track<-prepit(track, sst=sst,

fix.first=c(198.55,22.85,2002,9,10,0,0,0),

fix.last=c(200.13,21.95,2003,5,21,0,0,0))

fit<-trackit(prep.track)

plot(fit)

fitmap(fit)

10/17 P�i?22333ML232

Be careful about trusting raw geolocationsLo

ngitu

de

200

201

202

203

204

15 35 55 75

Days at liberty

●●

●●●●

●●●

●●

●●

●●●●●●●

●●●

●●●●●●

●●●●

●●●●●

●●

●●●●●●

●●●

●●

●●

●●●●

●●

●●●●●●●●●●

●●●

●●●

●●

●●●

●●●●●

●●

●●●

●●

●●

●●●

● ●●●●●●

Date

Latit

ude

16

17

18

19

20

21

22

23Aug2003 12Sep2003 2Oct2003 22Oct2003

●●●

●●

●●●

●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●●

●●

●●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●●●●

●●●

●●

●●●

●●

datdate

lon

●●●●●●

●●●●●●

●●

●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●

●●●●●●

●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●

●●●● ●●●●●●

●●●

15 35 55 75

Days at liberty

200

201

202

203

204

Long

itude

●●●

●●

● ●

●●●

●●●

●●●●●●●

●●●●●●

●●●

●●●●

●●

●●

●●

●●●

●●

●●●●

●●

datdate[i]la

t[i]

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●

−10

0

10

20

30

40

50

60

Latit

ude

● ●

●●

●●

●●

●●●

●●●

●●●● ●●●

●●

●●

● ●

Date

sst[i

]

●●●●●●●●●●●

●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●

●●●●●● ●●●●●●●●●●●●

23Aug2003 2Oct2003

25.0

25.5

26.0

26.5

27.0

27.5

28.0

SST

HHY SST available

11/17 P�i?22333ML232

Be careful about trusting raw geolocations - 2

205

210

215

220

Long

itude

(E)

16 36 56 76 96

Days at liberty

●●●●

●●●●●●●●●●●●

●●●

●●●●●●

●●●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●●

●●●

●●●

●●●

●●

●●●●●

●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●

●●●●●

●●●

A

10

15

20

Latit

ude

14Jul2003 3Aug2003 23Aug2003 12Sep2003 2Oct2003

Date

●●●●●●●●●

●●●●●●●●●●

●●●●●

●● ●●●●●●●●●●●

●●●● ●●●●●

●●●●●●●●●

●●●●●●●● ●●●●●●●● ●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●

●●●

B

●●

●●●●●

●●

●●●

●●

●●●

●●

●●●

●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●

datdate

lon

C

●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●

●●●●

●●●

●●●●●●●

●●●●●●

●●●●●●

●●●

●●●●●

●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

16 36 56 76 96

Days at liberty

205

210

215

220

Long

itude

●● ●●●

●●●●

●●●●

●●

●●●●●

●●●●●●

●●

●●

datdate[i]la

t[i]

D

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−10

0

10

20

30

40

50

Latit

ude

●●●●

● ●●

●●●

●●

●●

sst[i

]

Date

E

●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●

●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●

●●

●●●

●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●

14Jul2003 23Aug2003 2Oct2003

25

26

27

28

SST

12/17 P�i?22333ML232

Be careful about convergence

#R-KFtrack fit

#Mon Nov 12 16:22:14 2007

#Number of observations: 76

#Negative log likelihood: 322.056

#The convergence criteria was met

� Convergence should be obtained

� Ways to help the optimizer if a track is problematic

– Simplify model (especially for short tracks)(e.g. fit<-kftrack(track, bx.a=FALSE, by.a=FALSE))

– Supply better initial values(e.g. fit<-kftrack(track, D.i=500))

– Remove extreme outliers(e.g. track<-track[abs(track$lat)<90,])

– A combination

– Also check data

13/17 P�i?22333ML232

Be careful about selecting satellite SST data

� In open ocean coarse resolution is fine

� Near the coast a fine resolution is needed

� In areas with frequent cloud cover consider the blended source

� See the options in the documentation?get.sst.from.server

?get.blended.sst

Remember to report back

� Like to hear when it is working

� Need to hear when it is not

14/17 P�i?22333ML232

Future directions

� Grid based methods interesting

– allows other distributions than Gaussian

– allows strong non-linearities (land areas)

– very computational demanding

� Numerous tracks in one model

– The right thing to do if some (or all) parameters are common

– More confidence in estimated parameters

– Possible to allow more flexible movement patterns

� Conventional tracks and archival tags in one model

– First step in using all tagging data in fish stock assessment models

� All packages can be downloaded from:

http://www.soest.hawaii.edu/tag-data/software/

Thank you for listening!

15/17 P�i?22333ML232

Combining individual and population based models

An appealing idea

– The parameters are the same (drift and diffusion)

– All tagged fish from the same population should be equal representatives, no matterwhat type of tag

– Might get better individual tracks when parameter estimates get better

– How much more is learned from an (expensive) archival tag

Simulation study

– 100 data sets are simulated each with 5100 simulated individuals

– 5000 with conventional tags 100 with archival tags (randomly assigned)

– Realistic effort pattern, fishing mortality, and natural mortality are applied

Parameter estimation

– A–D–R model is used for the conventional tags

– The Kalman filter likelihood was extended to include survival and recapture prob-abilities, and the individuals that were not recaptured

16/17 P�i?22333ML232

Results

u

−0.02 0.02 0.06

020

4060

8010

012

014

0

v

−0.02 0.010

2040

6080

100

120

D

0.40 0.50 0.60

02

46

810

12

Q

0.4 0.6

05

1015

2025

30

σ2

−0.02 0.02 0.06

05

1015

2025

−0.02 0.01

05

1015

2025

3035

0.40 0.50 0.60

02

46

810

12

0.4 0.60

12

34

597 100 103

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Hist

ogra

m o

f 100

est

imat

ions

from

100

arch

ival t

ags

5000

con

vent

iona

l tag

s

17/17 P�i?22333ML232

Parameter True Conventional tags Archival tags All tagsname value bias std. dev. bias std. dev. bias std. dev.

u 0.02 -0.00143 0.00259 -0.00364 0.01467 -0.00188 0.00182v 0.00 -0.00232 0.00302 0.00059 0.01150 -0.00134 0.00299D 0.50 -0.02078 0.02403 -0.00244 0.03733 -0.01695 0.01640Q 0.50 -0.00228 0.01221 0.02835 0.08274 -0.00011 0.01164σ2 100.00 -0.13608 1.52063 0.09419 1.34204

– Best results from combined model

– In this setting we get almost the same amount of information about drift (u, v)′ fromone conventional tag as from one archival tag. This will likely change in a morecomplex setting.

– Archival tags provide more information per tag about diffusion D than conventionaltags