periods of automorphic forms and special values of...

64
Periods of automorphic forms and special values of L-functions Atsushi Ichino (Osaka City University) August 7, 2007 1

Upload: others

Post on 25-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Periods of automorphic forms and

special values of L-functions

Atsushi Ichino (Osaka City University)

August 7, 2007

1

Page 2: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Plan

§1 Automorphic forms

§2 L-functions

§3 Periods

2

Page 3: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

§1 Automorphic forms

3

Page 4: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

²±

¯°automorphic rep + rep of G(A) with high symmetry

G : semisimple algebraic group over QA =

∏p≤∞

′Qp : adele ring of Q, loc cpt top ring

p : prime or ∞, Q∞ = RQ ↪→ A : diagonal embedding, discrete subring

π : irred automorphic rep of G(A)

G(A) =∏

p≤∞

′G(Qp) ⇒ π =

⊗p≤∞

′πp

πp : irred rep of G(Qp)

4

Page 5: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

²±

¯°automorphic rep + rep of G(A) with high symmetry

G : semisimple algebraic group over QA =

∏p≤∞

′Qp : adele ring of Q, loc cpt top ring

p : prime or ∞, Q∞ = RQ ↪→ A : diagonal embedding, discrete subring

π : irred automorphic rep of G(A)

G(A) =∏

p≤∞

′G(Qp) ⇒ π =

⊗p≤∞

′πp

πp : irred rep of G(Qp)

4-a

Page 6: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

²±

¯°automorphic rep + rep of G(A) with high symmetry

G : semisimple algebraic group over QA =

∏p≤∞

′Qp : adele ring of Q, loc cpt top ring

p : prime or ∞, Q∞ = RQ ↪→ A : diagonal embedding, discrete subring

π : irred automorphic rep of G(A)

G(A) =∏

p≤∞

′G(Qp) ⇒ π =

⊗p≤∞

′πp

πp : irred rep of G(Qp)

4-b

Page 7: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

G(A) is a loc cpt gp (∃ Haar measure).

G(Q) ⊂ G(A) : discrete subgroup

ρ : rep of G(A) on the space

L2(G(Q)\G(A))

where

[ρ(g)φ](x) = φ(xg)

for g, x ∈ G(A), φ ∈ L2(G(Q)\G(A))

Consider an irreducible subrepresentation

π ⊂ L2(G(Q)\G(A))

and call it an automorphic rep.

5

Page 8: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

G(A) is a loc cpt gp (∃ Haar measure).

G(Q) ⊂ G(A) : discrete subgroup

ρ : rep of G(A) on the space

L2(G(Q)\G(A))

where

[ρ(g)φ](x) = φ(xg)

for g, x ∈ G(A), φ ∈ L2(G(Q)\G(A))

Consider an irreducible subrepresentation

π ⊂ L2(G(Q)\G(A))

and call it an automorphic rep.

5-a

Page 9: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

G(A) is a loc cpt gp (∃ Haar measure).

G(Q) ⊂ G(A) : discrete subgroup

ρ : rep of G(A) on the space

L2(G(Q)\G(A))

where

[ρ(g)φ](x) = φ(xg)

for g, x ∈ G(A), φ ∈ L2(G(Q)\G(A))

Consider an irreducible subrepresentation

π ⊂ L2(G(Q)\G(A))

and call it an automorphic rep.

5-b

Page 10: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Example¶ ³1 ∈ L2(G(Q)\G(A))

(Fact: G(Q)\G(A) is not nec cpt, but finite volume.)

⇒ the trivial rep is automorphic rep (high symmetry).µ ´

“Building blocks” are cuspidal automorphic rep.

L2(G(Q)\G(A)) = L2disc ⊕ L2

cont L2disc = L2

cusp ⊕ L2res

The trivial rep belongs to L2res and is non-cuspidal.

6

Page 11: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Example¶ ³1 ∈ L2(G(Q)\G(A))

(Fact: G(Q)\G(A) is not nec cpt, but finite volume.)

⇒ the trivial rep is automorphic rep (high symmetry).µ ´

“Building blocks” are cuspidal automorphic rep.

L2(G(Q)\G(A)) = L2disc ⊕ L2

cont L2disc = L2

cusp ⊕ L2res

The trivial rep belongs to L2res and is non-cuspidal.

6-a

Page 12: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Example¶ ³1 ∈ L2(G(Q)\G(A))

(Fact: G(Q)\G(A) is not nec cpt, but finite volume.)

⇒ the trivial rep is automorphic rep (high symmetry).µ ´

“Building blocks” are cuspidal automorphic rep.

L2(G(Q)\G(A)) = L2disc ⊕ L2

cont L2disc = L2

cusp ⊕ L2res

The trivial rep belongs to L2res and is non-cuspidal.

6-b

Page 13: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

§2 L-functions

7

Page 14: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π =⊗

p≤∞

′πp : irred cusp aut rep of G(A) =

∏p≤∞

′G(Qp)

LG = G o Gal(Q/Q) : L-group of G

G : dual group of G (over C)

r : fin dim rep of LG

s ∈ C

L(s, π, r) :=∏

p:good

det[1 − p−s · r(c(πp))

]−1 ∏p:bad

· · ·

(Fact: almost all primes p are good.)

c(πp) ∈ LG : Satake parameter of πp at good p

®­

©ªL-function is defined by an Euler product

8

Page 15: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π =⊗

p≤∞

′πp : irred cusp aut rep of G(A) =

∏p≤∞

′G(Qp)

LG = G o Gal(Q/Q) : L-group of G

G : dual group of G (over C)

r : fin dim rep of LG

s ∈ C

L(s, π, r) :=∏

p:good

det[1 − p−s · r(c(πp))

]−1 ∏p:bad

· · ·

(Fact: almost all primes p are good.)

c(πp) ∈ LG : Satake parameter of πp at good p

®­

©ªL-function is defined by an Euler product

8-a

Page 16: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π =⊗

p≤∞

′πp : irred cusp aut rep of G(A) =

∏p≤∞

′G(Qp)

LG = G o Gal(Q/Q) : L-group of G

G : dual group of G (over C)

r : fin dim rep of LG

s ∈ C

L(s, π, r) :=∏

p:good

det[1 − p−s · r(c(πp))

]−1 ∏p:bad

· · ·

(Fact: almost all primes p are good.)

c(πp) ∈ LG : Satake parameter of πp at good p

®­

©ªL-function is defined by an Euler product

8-b

Page 17: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π =⊗

p≤∞

′πp : irred cusp aut rep of G(A) =

∏p≤∞

′G(Qp)

LG = G o Gal(Q/Q) : L-group of G

G : dual group of G (over C)

r : fin dim rep of LG

s ∈ C

L(s, π, r) :=∏

p:good

det[1 − p−s · r(c(πp))

]−1 ∏p:bad

· · ·

(Fact: almost all primes p are good.)

c(πp) ∈ LG : Satake parameter of πp at good p

®­

©ªL-function is defined by an Euler product

8-c

Page 18: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Theorem (Langlands).

L(s, π, r) is absolutely convergent for Re(s) ≫ 0.

Problem¶ ³Show that automorphic L-functions are “nice”.

• meromorphic continuation (MC) to C• functional equation (FE)

L(s, π, r) = ε(s, π, r) · L(1 − s, π∨, r)

(π∨ : contragredient of π)

• holomorphy, poles, non-vanishing . . .µ ´

9

Page 19: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Theorem (Langlands).

L(s, π, r) is absolutely convergent for Re(s) ≫ 0.

Problem¶ ³Show that automorphic L-functions are “nice”.

• meromorphic continuation (MC) to C• functional equation (FE)

L(s, π, r) = ε(s, π, r) · L(1 − s, π∨, r)

(π∨ : contragredient of π)

• holomorphy, poles, non-vanishing . . .µ ´

9-a

Page 20: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QE(Q) is fin gen abelian group.

L(s, E) : L-function of E

(defined by an Euler product, abs conv for Re(s) > 32)

BSD conjecture (worth for $1,000,000).

ords=1

L(s, E) = rankE(Q)

s = 1 is the center of FE (s ↔ 2 − s),

which is out of the range of convergence.

10

Page 21: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QE(Q) is fin gen abelian group.

L(s, E) : L-function of E

(defined by an Euler product, abs conv for Re(s) > 32)

BSD conjecture (worth for $1,000,000).

ords=1

L(s, E) = rankE(Q)

s = 1 is the center of FE (s ↔ 2 − s),

which is out of the range of convergence.

10-a

Page 22: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QE(Q) is fin gen abelian group.

L(s, E) : L-function of E

(defined by an Euler product, abs conv for Re(s) > 32)

BSD conjecture (worth for $1,000,000).

ords=1

L(s, E) = rankE(Q)

s = 1 is the center of FE (s ↔ 2 − s),

which is out of the range of convergence.

10-b

Page 23: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QE(Q) is fin gen abelian group.

L(s, E) : L-function of E

(defined by an Euler product, abs conv for Re(s) > 32)

BSD conjecture (worth for $1,000,000).

ords=1

L(s, E) = rankE(Q)

s = 1 is the center of FE (s ↔ 2 − s),

which is out of the range of convergence.

10-c

Page 24: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Taniyama-Shimura conjecture (proved after Wiles).E : elliptic curve over Q⇒ ∃ πE : irred cuspidal automorphic rep of GL2(A) s.t.

L(s, E) = L(s + 12, πE, st)

st : the standard 2-dim rep of GL2(C) + L-gp of GL2

®­

©ªWe have analytic theory of automorphic L-functions

Integral representation:

L(s + 12, πE, st) =

∫Q×\A×

φ

(a 00 1

)|a|s da

φ ∈ πE : suitably normalized

RHS is abs conv for all s ∈ C, so ords=1

L(s, E) is well-def.

11

Page 25: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Taniyama-Shimura conjecture (proved after Wiles).E : elliptic curve over Q⇒ ∃ πE : irred cuspidal automorphic rep of GL2(A) s.t.

L(s, E) = L(s + 12, πE, st)

st : the standard 2-dim rep of GL2(C) + L-gp of GL2

®­

©ªWe have analytic theory of automorphic L-functions

Integral representation:

L(s + 12, πE, st) =

∫Q×\A×

φ

(a 00 1

)|a|s da

φ ∈ πE : suitably normalized

RHS is abs conv for all s ∈ C, so ords=1

L(s, E) is well-def.

11-a

Page 26: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Taniyama-Shimura conjecture (proved after Wiles).E : elliptic curve over Q⇒ ∃ πE : irred cuspidal automorphic rep of GL2(A) s.t.

L(s, E) = L(s + 12, πE, st)

st : the standard 2-dim rep of GL2(C) + L-gp of GL2

®­

©ªWe have analytic theory of automorphic L-functions

Integral representation:

L(s + 12, πE, st) =

∫Q×\A×

φ

(a 00 1

)|a|s da

φ ∈ πE : suitably normalized

RHS is abs conv for all s ∈ C, so ords=1

L(s, E) is well-def.

11-b

Page 27: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Taniyama-Shimura conjecture (proved after Wiles).E : elliptic curve over Q⇒ ∃ πE : irred cuspidal automorphic rep of GL2(A) s.t.

L(s, E) = L(s + 12, πE, st)

st : the standard 2-dim rep of GL2(C) + L-gp of GL2

®­

©ªWe have analytic theory of automorphic L-functions

Integral representation:

L(s + 12, πE, st) =

∫Q×\A×

φ

(a 00 1

)|a|s da

φ ∈ πE : suitably normalized

RHS is abs conv for all s ∈ C, so ords=1

L(s, E) is well-def.

11-c

Page 28: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Method to study aut L-functions¶ ³• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.

12

Page 29: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Method to study aut L-functions¶ ³• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.

12-a

Page 30: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Method to study aut L-functions¶ ³• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.

12-b

Page 31: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Method to study aut L-functions¶ ³• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.

12-c

Page 32: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Method to study aut L-functions¶ ³• Integral representation (more difficult to find)

• Langlands-Shahidi method (∃ complete list)µ ´

Let’s consider L(s, πE,Symn).

Symn : symmetric power rep of GL2(C) of dim n + 1

Around 1999-2000, using LS-method,

Kim-Shahidi proved MC & FE for n ≤ 9.

In 2006, using R = T ,

Taylor proved MC & FE for all n,

and “nice” enough to prove Sato-Tate conj for most E!

I’m very shocked.

12-d

Page 33: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

§3 Periods

13

Page 34: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

G0 ⊂ G1 : both semisimple over Qπi : irred aut rep of Gi(A) (i = 0,1)

φi ∈ πi : aut form

Recall φi is a left Gi(Q)-invariant function on Gi(A).

Consider an integral

⟨φ1|G0, φ0⟩ :=

∫G0(Q)\G0(A)

φ1(g)φ0(g) dg ∈ C

(if it converges) and call it a period.

14

Page 35: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

G0 ⊂ G1 : both semisimple over Qπi : irred aut rep of Gi(A) (i = 0,1)

φi ∈ πi : aut form

Recall φi is a left Gi(Q)-invariant function on Gi(A).

Consider an integral

⟨φ1|G0, φ0⟩ :=

∫G0(Q)\G0(A)

φ1(g)φ0(g) dg ∈ C

(if it converges) and call it a period.

14-a

Page 36: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QÃ πE : irred cusp aut rep of PGL2(A)

à L(1, E) = L(12, πE, st) =

∫Q×\A×

φ

(a 00 1

)da = c

∫E(R)

ω

φ ∈ πE : suitably normalized

ω : non-zero diff form on E over Qc ∈ π−1 · Q

Forget geometry and consider only automorphic rep.

15

Page 37: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QÃ πE : irred cusp aut rep of PGL2(A)

à L(1, E) = L(12, πE, st) =

∫Q×\A×

φ

(a 00 1

)da = c

∫E(R)

ω

φ ∈ πE : suitably normalized

ω : non-zero diff form on E over Qc ∈ π−1 · Q

Forget geometry and consider only automorphic rep.

15-a

Page 38: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QÃ πE : irred cusp aut rep of PGL2(A)

à L(1, E) = L(12, πE, st) =

∫Q×\A×

φ

(a 00 1

)da = c

∫E(R)

ω

φ ∈ πE : suitably normalized

ω : non-zero diff form on E over Qc ∈ π−1 · Q

Forget geometry and consider only automorphic rep.

15-b

Page 39: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

E : elliptic curve over QÃ πE : irred cusp aut rep of PGL2(A)

à L(1, E) =L(12, πE, st) =

∫Q×\A×

φ

(a 00 1

)da= c

∫E(R)

ω

φ ∈ πE : suitably normalized

ω : non-zero diff form on E over Qc ∈ π−1 · Q

Forget geometry and consider only automorphic rep.

15-c

Page 40: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Problem¶ ³Relate periods to special values of aut L-functions

• non-vanishing

• explicit formula

• . . .µ ´

There are many case-by-case examples.

• Integral representation

• Relative trace formula (Jacquet, Lapid . . . )

So far, there is no method to study problems in general.

16

Page 41: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Problem¶ ³Relate periods to special values of aut L-functions

• non-vanishing

• explicit formula

• . . .µ ´

There are many case-by-case examples.

• Integral representation

• Relative trace formula (Jacquet, Lapid . . . )

So far, there is no method to study problems in general.

16-a

Page 42: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Problem¶ ³Relate periods to special values of aut L-functions

• non-vanishing

• explicit formula

• . . .µ ´

There are many case-by-case examples.

• Integral representation

• Relative trace formula (Jacquet, Lapid . . . )

So far, there is no method to study problems in general.

16-b

Page 43: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Gross-Prasad case:

G0 = SOn ⊂ G1 = SOn+1

[φ1 ⊗ φ0 7→ ⟨φ1|G0

, φ0⟩ =∫G0(Q)\G0(A)

φ1(g)φ0(g) dg

]∈ HomG0(A)(π1 ⊗ π0, C)

Multiplicity free¶ ³We expect that

dimC HomG0(Qp)(π1,p ⊗ π0,p, C) ≤ 1

for all p ≤ ∞.µ ´17

Page 44: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Gross-Prasad case:

G0 = SOn ⊂ G1 = SOn+1[φ1 ⊗ φ0 7→ ⟨φ1|G0

, φ0⟩ =∫G0(Q)\G0(A)

φ1(g)φ0(g) dg

]∈ HomG0(A)(π1 ⊗ π0, C)

Multiplicity free¶ ³We expect that

dimC HomG0(Qp)(π1,p ⊗ π0,p, C) ≤ 1

for all p ≤ ∞.µ ´17-a

Page 45: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Gross-Prasad case:

G0 = SOn ⊂ G1 = SOn+1[φ1 ⊗ φ0 7→ ⟨φ1|G0

, φ0⟩ =∫G0(Q)\G0(A)

φ1(g)φ0(g) dg

]∈ HomG0(A)(π1 ⊗ π0, C)

Multiplicity free¶ ³We expect that

dimC HomG0(Qp)(π1,p ⊗ π0,p, C) ≤ 1

for all p ≤ ∞.µ ´17-b

Page 46: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π0 : irred cusp aut rep of G0(A) = SOn(A)π1 : irred cusp aut rep of G1(A) = SOn+1(A)

Assumption¶ ³• πi is tempered (i = 0,1).

• No local obstruction:

HomG0(Qp)(π1,p ⊗ π0,p, C) = 0 ∀p ≤ ∞µ ´Gross-Prasad conjecture (’92).

⟨φ1|G0, φ0⟩ = 0 for some φi ∈ πi ⇔ L(1

2, π1 £ π0) = 0

L(s, π1 £ π0) : associated to the tensor productof the standard rep of LG1 and LG0

s = 12 is the center of FE (s ↔ 1 − s).

18

Page 47: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π0 : irred cusp aut rep of G0(A) = SOn(A)π1 : irred cusp aut rep of G1(A) = SOn+1(A)

Assumption¶ ³• πi is tempered (i = 0,1).

• No local obstruction:

HomG0(Qp)(π1,p ⊗ π0,p, C) = 0 ∀p ≤ ∞µ ´Gross-Prasad conjecture (’92).

⟨φ1|G0, φ0⟩ = 0 for some φi ∈ πi ⇔ L(1

2, π1 £ π0) = 0

L(s, π1 £ π0) : associated to the tensor productof the standard rep of LG1 and LG0

s = 12 is the center of FE (s ↔ 1 − s).

18-a

Page 48: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

π0 : irred cusp aut rep of G0(A) = SOn(A)π1 : irred cusp aut rep of G1(A) = SOn+1(A)

Assumption¶ ³• πi is tempered (i = 0,1).

• No local obstruction:

HomG0(Qp)(π1,p ⊗ π0,p, C) = 0 ∀p ≤ ∞µ ´Gross-Prasad conjecture (’92).

⟨φ1|G0, φ0⟩ = 0 for some φi ∈ πi ⇔ L(1

2, π1 £ π0) = 0

L(s, π1 £ π0) : associated to the tensor productof the standard rep of LG1 and LG0

s = 12 is the center of FE (s ↔ 1 − s).

18-b

Page 49: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Difficulty:

L(12, π1 £ π0) has not been defined in general.

Best result so far¶ ³If Gi is split, πi is generic and stable, then ⇒ holds.

(Ginzburg-Jiang-Rallis ’05)µ ´

Not only the non-vanishing criterion,

we want a formula for ⟨φ1|G0, φ0⟩, at least conjecturally.

19

Page 50: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Difficulty:

L(12, π1 £ π0) has not been defined in general.

Best result so far¶ ³If Gi is split, πi is generic and stable, then ⇒ holds.

(Ginzburg-Jiang-Rallis ’05)µ ´

Not only the non-vanishing criterion,

we want a formula for ⟨φ1|G0, φ0⟩, at least conjecturally.

19-a

Page 51: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Difficulty:

L(12, π1 £ π0) has not been defined in general.

Best result so far¶ ³If Gi is split, πi is generic and stable, then ⇒ holds.

(Ginzburg-Jiang-Rallis ’05)µ ´

Not only the non-vanishing criterion,

we want a formula for ⟨φ1|G0, φ0⟩, at least conjecturally.

19-b

Page 52: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

20

Page 53: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

Our period and L-value are ⟨φ1|G0, φ0⟩ and LS(1

2, π1£π0).

20-a

Page 54: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

S : fin set of bad primes

LS : Euler product without local factor at p ∈ S

20-b

Page 55: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

Ad : adjoint rep of LGi on its Lie algebra

20-c

Page 56: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

C0 : constant dep on normalization of Haar measures

M1 : Gross’ Artin motive attached to G1

20-d

Page 57: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p≥ 0 : local object dep only on φi,p ∈ πi,p

20-e

Page 58: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

β ∈ Z : global object

We believe that β is related to Arthur’s conjecture

(multiplicity of rep in the space of automorphic forms).

20-f

Page 59: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Conjecture (with Tamotsu Ikeda).

|⟨φ1|G0, φ0⟩|2

∥φ1∥2 · ∥φ0∥2= 2β · C0 · LS(M∨

1 (1))

×LS(1

2, π1 £ π0)

LS(1, π1,Ad)LS(1, π0,Ad)

×∏p∈S

Ip(φ1,p, φ0,p)

∥φ1,p∥2p · ∥φ0,p∥2p

β ∈ Z : global object

We believe that β is related to Arthur’s conjecture

(multiplicity of rep in the space of automorphic forms).

20-g

Page 60: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Known results¶ ³• SO2 ⊂ SO3 : Waldspurger ’85

• SO3 ⊂ SO4 : Garrett ’87, Harris-Kudla ’91 . . . I.µ ´When n ≥ 4, our L-values are not well-def in general.But, for SO4 ⊂ SO5,∃ example of Bocherer-Furusawa-Schulze-Pillot ’04.

∃ non-tempered cusp aut rep of SOn(A)

Some non-tempered examples¶ ³• SO4 ⊂ SO5 : I. ’05

• SO5 ⊂ SO6 : I.-Ikedaµ ´But ∃ more difficulty to formulate a conjecture.

21

Page 61: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Known results¶ ³• SO2 ⊂ SO3 : Waldspurger ’85

• SO3 ⊂ SO4 : Garrett ’87, Harris-Kudla ’91 . . . I.µ ´When n ≥ 4, our L-values are not well-def in general.But, for SO4 ⊂ SO5,∃ example of Bocherer-Furusawa-Schulze-Pillot ’04.

∃ non-tempered cusp aut rep of SOn(A)

Some non-tempered examples¶ ³• SO4 ⊂ SO5 : I. ’05

• SO5 ⊂ SO6 : I.-Ikedaµ ´But ∃ more difficulty to formulate a conjecture.

21-a

Page 62: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Known results¶ ³• SO2 ⊂ SO3 : Waldspurger ’85

• SO3 ⊂ SO4 : Garrett ’87, Harris-Kudla ’91 . . . I.µ ´When n ≥ 4, our L-values are not well-def in general.But, for SO4 ⊂ SO5,∃ example of Bocherer-Furusawa-Schulze-Pillot ’04.

∃ non-tempered cusp aut rep of SOn(A)

Some non-tempered examples¶ ³• SO4 ⊂ SO5 : I. ’05

• SO5 ⊂ SO6 : I.-Ikedaµ ´But ∃ more difficulty to formulate a conjecture.

21-b

Page 63: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Known results¶ ³• SO2 ⊂ SO3 : Waldspurger ’85

• SO3 ⊂ SO4 : Garrett ’87, Harris-Kudla ’91 . . . I.µ ´When n ≥ 4, our L-values are not well-def in general.But, for SO4 ⊂ SO5,∃ example of Bocherer-Furusawa-Schulze-Pillot ’04.

∃ non-tempered cusp aut rep of SOn(A)

Some non-tempered examples¶ ³• SO4 ⊂ SO5 : I. ’05

• SO5 ⊂ SO6 : I.-Ikedaµ ´But ∃ more difficulty to formulate a conjecture.

21-c

Page 64: Periods of automorphic forms and special values of L-functionsmhsaito/agsymkobe07/proceedings/ichino.pdf · ¶Method to study aut L-functions ‡ • Integral representation (more

Thank you!

22