peter van der straten - universiteit utrecht

48
An Intimate Gathering of Bosons Peter van der Straten Atom Optics (AOUD) Topics in NanoScience Utrecht October 15, 2009 Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 1 / 54

Upload: others

Post on 13-Feb-2022

7 views

Category:

Documents


1 download

TRANSCRIPT

An Intimate Gathering of Bosons

Peter van der Straten

Atom Optics (AOUD)

Topics in NanoScienceUtrecht

October 15, 2009

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 1 / 54

Bose-Einstein condensation

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 2 / 54

What is Bose-Einstein condensation (BEC)?

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 3 / 54

Bose-Einstein condensation

ρ = nΛdeB3 = 2.612375349 . . .

with

ΛdeB =h√

2πmkBT

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 4 / 54

Bosons and Fermions

Usual examples: electrons, protons, neutron (fermions), photon (boson)Example: 3He (I=1/2) and 4He (I=0), or 6Li (F=1/2,3/2) and 7Li (F=1,2)

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 5 / 54

Pauli exclusion principle

The Pauli exclusion principle is a quantummechanical principle formulated by WolfgangPauli in 1925. It states that no two identicalfermions may occupy the same quantum statesimultaneously.

A more rigorous statement of this principle is that, for two identicalfermions, the total wave function is anti-symmetric. For electrons in asingle atom, it states that no two electrons can have the same fourquantum numbers, that is, if n, l, and ml are the same, ms must bedifferent such that the electrons have opposite spins.In relativistic quantum field theory, The Pauli principle follows fromapplying a rotation operator in imaginary time to particles of half-integerspin. It does not follow from any spin relation in nonrelativistic quantummechanics.

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 6 / 54

Application of Pauli principle

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 7 / 54

Population of states

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 8 / 54

Outline

1 How to produce a Bose-Einstein condensateStep 1: Light pressureStep 2: Optical molassesStep 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensateSound propagationBosons versus FermionsAtom laser

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 9 / 54

How to produce a Bose-Einstein condensate

Outline

1 How to produce a Bose-Einstein condensateStep 1: Light pressureStep 2: Optical molassesStep 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensateSound propagationBosons versus FermionsAtom laser

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 10 / 54

How to produce a Bose-Einstein condensate Step 1: Light pressure

Light pressure

initial

mv0 h̄k

absorption

mv0 − h̄k

spontaneousemission

mv0 − h̄k + 〈h̄ki〉= mv0 − h̄k

recoil “kick”vr = ~k

m ≈ 3 cm/s (Na)thermal

v ≈ 1000 m/sNstop ≈ 33.000 fotons

lifetimeτ = 16 ns

Tstop ≈ 1 mseclstop ≈ 0.5 m

accelerationa ≈ 9× 105 m/s2

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 11 / 54

How to produce a Bose-Einstein condensate Step 1: Light pressure

Zeeman technique

600 KNa oven solenoid

extractioncoils

pumpbeam

probebeam

coolingbeam

aom

Bz

1.25 m

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 12 / 54

How to produce a Bose-Einstein condensate Step 1: Light pressure

Velocity distribution

200 400 600 800 1000 1200 1400 1600Velocity (m/s)

0

5

10

15

20

25At

om F

lux

(arb

. uni

ts)

A

B

B

Capture Velocity

180 200 220 240 260 2800

10

20

30

6.8 m/s

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 13 / 54

How to produce a Bose-Einstein condensate Step 1: Light pressure

Funnel for atoms

-50 0 50 100Position (cm)

200

400

600

800

1000

1200Ve

loci

ty (m

/s)

-50 0 50 100Position (cm)

200

400

600

800

1000

1200

Velo

city

(m/s

)

�a�

�b�

Contour map of the velocity and position of atoms in the solenoid

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 14 / 54

How to produce a Bose-Einstein condensate Step 2: Optical molasses

Laser cooling

mv -hk+hk

g

e

+kv

ωω0

δ

v

F

Cooling limit: Damping by Doppler tuning vs. heating by random recoil

kTD = ~Γ2 [Na : 240µK]

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 15 / 54

How to produce a Bose-Einstein condensate Step 2: Optical molasses

Cold Atoms

D:/upload/Phys2000/bec/lascool4.html

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 16 / 54

How to produce a Bose-Einstein condensate Step 3: Magnetic trapping

Magnetic Trap

Cloverleaf trap

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 17 / 54

How to produce a Bose-Einstein condensate Step 3: Magnetic trapping

Evaporation

1 Cools a cup of coffee

2 Cools apples by overtree sprinkling

3 Is used in technical water coolers

4 Globular clusters do it by evaporation of stars

5 Compound nuclei do it by evaporating neutrons

6 Atom coolers love it.

Evaporative cooling of a trapped gas is based on the preferential removalof atoms with an energy higher than the average energy, followed bythermalization of the gas by elastic collisions.

In order to force the cooling to proceed at a constant rate, the evaporationthreshold may be lowered as the gas cools (forced evaporation).D:/Upload/Phys2000/bec/xevap cool.html

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 18 / 54

How to produce a Bose-Einstein condensate Step 3: Magnetic trapping

Experimental feasibility

Oven

Zeeman slower MOC MOT

Properties of the trapped atoms N n (atoms/cm3) T (µK )

MOT 1.2× 1010 3× 1011 320magnetic trap 8× 109 3× 1011 340evaporative cooling 1.5× 108 8× 1013 0.3

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 19 / 54

Observation of BEC

Outline

1 How to produce a Bose-Einstein condensateStep 1: Light pressureStep 2: Optical molassesStep 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensateSound propagationBosons versus FermionsAtom laser

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 20 / 54

Observation of BEC

Current setup

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 21 / 54

Observation of BEC

Bose-Einstein condensation–The last stages

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 27 / 54

Observation of BEC

Expansion of the cloud

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 28 / 54

Observation of BEC

Phase contrast imaging–setup

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 29 / 54

Observation of BEC

Phase contrast imaging–images

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 30 / 54

Observation of BEC

Characteristic values

Dark magneto-optical trapTemperature 320 µKNumber of particles 1.2× 1010 atomsDensity 3× 1011 atoms/cm3

Magnetic trapTrap frequencies νr=96 Hz and νz=16→1.08 HzNumber of particles 8× 109 atomsElastic scattering rate 10 collisions/s

Bose-Einstein condensationEvaporation ramp 40 sNumber of particles 2.5× 108 atomsDensity 2.5× 1014 atoms/cm3

Chemical potential 3.5 kHzTemperature 300 nK

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 31 / 54

What to do with a Bose-Einstein condensate

Outline

1 How to produce a Bose-Einstein condensateStep 1: Light pressureStep 2: Optical molassesStep 3: Magnetic trapping

2 Observation of BEC

3 What to do with a Bose-Einstein condensateSound propagationBosons versus FermionsAtom laser

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 32 / 54

What to do with a Bose-Einstein condensate Sound propagation

Topic One

Sound propagation

“Observation of second sound”

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 33 / 54

What to do with a Bose-Einstein condensate Sound propagation

Tisza-Landau two-fluid hydrodynamics (1938-1941)

Tisza

Superfluid: component of liquid which is associatedwith macroscopic occupation (BEC) of onesingle-particle state. Carries zero entropy, flowswithout dissipation with an irrotational velocity.

Landau

Normal fluid: comprised of incoherent thermalexcitations, behaves like any fluid at finitetemperatures in local thermodynamic equilibrium.This requires strong collisions.

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 34 / 54

What to do with a Bose-Einstein condensate Sound propagation

First and second sound in liquid helium

First soundPressure waveIn-phase

Second soundTemperature waveOut-of-phase

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 35 / 54

What to do with a Bose-Einstein condensate Sound propagation

Speed of sound

0.0 0.2 0.4 0.6 0.8 1.0 Temperature [μK]

0

5

10

15

20Sp

eed

of s

ound

[m

m/s

]

0.00 0.02 0.04 0.06 0.08 0.100

2

4

6

8

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 36 / 54

What to do with a Bose-Einstein condensate Sound propagation

Density or temperature wave?

0.0 0.2 0.4 0.6 0.8 1.0 Temperature [μK]

-6

-4

-2

0

2(δ

T/T

) vs

. (δn

/n)

First sound

Second sound

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 37 / 54

What to do with a Bose-Einstein condensate Sound propagation

In-phase or out-of-phase?

0.0 0.2 0.4 0.6 0.8 1.0 Temperature [μK]

1

10

100R

atio

First sound: δvn/δvs

Second sound: -δvs/δvn

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 38 / 54

What to do with a Bose-Einstein condensate Sound propagation

Generating sound

t=0

t<0

t>0

Grow the condensate with blue detuned dipole beam in center

At t = 0 shut off dipole beam

Wait & see

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 39 / 54

What to do with a Bose-Einstein condensate Sound propagation

Detecting sound

t=50ms

t=60ms

t=70ms

t=80ms

t=90ms

t=100ms

t=110ms

Density

difference

(arb.units)

z/Rtf

-0.9 -0.6 -0.3 0 +0.3 +0.6 +0.9

Sound propagation in a Bose-Einstein condensate at finite temperatures, R. Meppelink et al.,

Phys. Rev. A 80, . . . (2009), online 12 October 2009.

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 40 / 54

What to do with a Bose-Einstein condensate Sound propagation

Comparison to theory

0.85

0.90

0.95

1.00

1.05

5 10 15 20 25 30

0.700.47 0.51 0.64 0.720.30 0.39 0.44 0.58

Norm

alized

speedofsound

T/Tc

b

Normalized to Landau & ZGN speed of sound

Thermal density (1018m−3)

Sound propagation in a Bose-Einstein condensate at finite temperatures, R. Meppelink et al.,

Phys. Rev. A 80, . . . (2009), online 12 October 2009.

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 41 / 54

What to do with a Bose-Einstein condensate Bosons versus Fermions

Topic Two

Bosons versus Fermions“How quantum statistics changes everything”

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 42 / 54

What to do with a Bose-Einstein condensate Bosons versus Fermions

“Fermi” pressure

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 43 / 54

What to do with a Bose-Einstein condensate Bosons versus Fermions

Bunching or anti-bunching

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 44 / 54

What to do with a Bose-Einstein condensate Bosons versus Fermions

Bunching or anti-bunching

Jeltes et al., Nature 2007

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 45 / 54

What to do with a Bose-Einstein condensate Bosons versus Fermions

Bunching or anti-bunching

Jeltes et al., Nature 2007

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 46 / 54

What to do with a Bose-Einstein condensate Atom laser

Topic Four

Atom laser“The creation of a continuous flow of Bose-condensed atoms”

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 47 / 54

What to do with a Bose-Einstein condensate Atom laser

Atom lasers

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 48 / 54

What to do with a Bose-Einstein condensate Atom laser

Evaporative cooling

Trap geometry vs. Beam geometry

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 49 / 54

What to do with a Bose-Einstein condensate Atom laser

“The rollercoaster”

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 50 / 54

What to do with a Bose-Einstein condensate Atom laser

Atom laser setup

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 51 / 54

What to do with a Bose-Einstein condensate Atom laser

Shockwave

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

Time �sec�

Opt

ical

dens

ity

shockwave

atmospheric compression

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 53 / 54

What to do with a Bose-Einstein condensate Atom laser

The Crew

Not on the picture: Henk Stoof (theoretician), Louise Kindt (Atom laser)

Peter van der Straten (AOUD) An Intimate Gathering of Bosons October 15, 2009 54 / 54