pfc correction24090

Upload: rsrtnj

Post on 04-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 PFC Correction24090

    1/15

  • 8/13/2019 PFC Correction24090

    2/15

  • 8/13/2019 PFC Correction24090

    3/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2593

    converter with two current feedback loop is presented in [3] and [4] , the model used twotransistors signal to generate the pulse width modulation (PWM) of the Buck Boostswitches . A single phase Buck Boost with variable output is presented in [5]. A current

    programmed control for cascade two switches Buck- Boost converter is presented in [6]andits provided a variable output . A computer model for common switch mode control with

    average and conventional cycle by cycle switching operation mode for Buck Boost is presented in [7]. A two switch Boost interleaved Buck- Boost converter is presented in [8]and it has the capability of producing both step-up and step down conversion with lowerswitches voltage stress.

    POWER CIRCUIT DESIGN This work presents a Boost converter with fixed output (400 V , 3kW ) and a power

    factor preregulator (UC3854 ) is used in order to improve the power factor (as shown infigure 1) in such a way that the input current is forced to follow the sinusoidal input voltage .Two loops are used to control the output voltage and the input current , the outer voltage loopand the inner voltage loop [9].

    AC

    source

    Bridgerectifier

    Co

    L D

    RL

    Rvi

    Rvd

    Sensing resistor

    -

    +MULTIPLIER/

    DIVIDER

    Rs

    Full wave rectified AC inputsensing

    Vref

    Voltagerror

    Power circuit

    UC 3854 PFC preregulator IC

    -

    +

    Currenterror

    PWM

    Fig(1) Power factor correction for Boost converter AC/DC Converter(UC3854)

    The second converter is the Buck Boost converter shown in figure 2 , the converteris either operate in boost mode in such away that the output voltage is higher than themaximum input voltage or in Buck Boost mode where the output voltage is lower thanthe maximum input voltage. Figure 3 shows the two operation mode of the Buck Boostconverter .

    The output inductor employed in the converter provides the energy storage andfiltering . The current flowing through it has a triangular waveform . In selecting theinductance a compromise has to be found between high rating required for diminishingthe ripple , and a low rating required for quick response to load changes.The peak inductor current is the sum of the peak line current and half of the peak to peakhigh frequency ripple current. The inductor must be designed to handle this current level.

  • 8/13/2019 PFC Correction24090

    4/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2594

    ViCo

    D2S1

    D1 S2

    LVo

    Full waverectifier

    -

    +

    -

    +

    1/Kin

    Mult/divIref=AB/C^2

    B

    Vref

    A

    C

    Kff

    Rmo R1

    Cz

    Cp R2

    Cvf

    Rvf

    Voltageerror

    amplifier

    Currenterror

    amplifier

    UC3854 PFC IC

    PWMgenerator

    D b

    u c

    k

    D b

    o o s

    t

    Rvi

    Rvd

    RL

    Rs

    Fig (2) Power factor correction for (Fig3 ) The Buck Boost converter

    Buck Boost Converter operation modes

    BOOST CONVERTER INDUCTOR DESIGN: The Boost converter inductor is decided according to the minimum rms input

    voltage then

    rmsi

    in

    peak V P

    I 2

    (1)

    where PEAK I is the maximum input current, in P is the input power to the converter and

    rmsiV ,, is the root mean square of the input voltage.

    Since in steady state the time integral of the inductor voltage over one time periodsmust be zero [10] , therefore

    0)( OFF oiON i t V vt v (2)

    where iv is the instantaneous value of the input voltage , ON t is the on time of the switch ,

    oV is the output voltage of the converter and OFF t is the off time of the switch.

    Dividing both sides by T s Where T s is the switching frequency and rearranging termsyield

    d vV

    i

    o

    11

    (3)

    where d is the duty cycle of the ON time of the boost switch.During the ON period

    Time

    Time I n p u

    t V o

    l t a g e

    O u

    t p u

    t V o

    l t a g e

    I n p u

    t V o

    l t a g e

    I n p u

    t C u r r e n

    t

  • 8/13/2019 PFC Correction24090

    5/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2595

    dt di

    LV l L (4)

    where l di is the inductor ripple current

    S o

    iS T

    V

    vdT dt )1( (5)

    then

    )1( max,max,

    o

    i

    L

    S i

    V

    V

    di

    T V L (6)

    BUCK- BOOST INDUCTOR DESIGN: The value of inductance is decided depending on the worst operating condition ,

    i.e, when the ripple is X% and it is in continuous conduction during buck modeoperation [5] . This occurs when the input voltage is at its maximum peak value and the

    output is at its minimum value then the peak input current is given by

    (max)2

    ,rmsi

    in peak V

    P I (7)

    peak L I X

    i100

    (8)

    where Li is the peak to peak ripple of inductor current .When the converter operates at buck mode , as the Buck switch is ON then,

    dt di

    LV vV Loi L (9)

    S T d dt 1

    where 1d is the duty cycle of the Buck switch , and as

    max

    2min1

    iV V

    d (10)

    then

    )1(maxi

    o

    L

    S o

    V V

    iT V

    L (11)

    OUTPUT CAPACITOR:The output capacitance selection depends on the following factors[10],[11]

    The switching frequency . The ripple current. The second harmonic ripple current. The output ripple. The output d.c. voltage . The hold up time of the capacitor.

  • 8/13/2019 PFC Correction24090

    6/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2596

    It should be noted that for a given capacitance the capacitor value is proportional to thevoltage rating and the maximum energy storage capability which is proportional to thesquare of the voltage rating. According to the above factors the capacitor with a certainhold up time is given by [10],[11]

    2

    min2

    2

    oo

    UP HOLDou t O

    V V

    t P C (12)

    where UP HOLDt is the time hold up by the capacitor and it is in the range of 16 to 50ms[1].

    BUCK BOOST CONVERTER CONTROL CIRCUIT : Active PFC performs much better and is significantly smaller and lighter than the

    passive PFC circuit. The active PFC can be implemented with a single chipcontroller, making the circuit relatively simple with minimum number ofcomponents .

    One of the most popular chip is the Unitrode UC3854 controller which acceptsan ac input voltage of 75-275 rms voltage and a frequency of 50 400 Hz [9] .

    The circuit has two control loop one of them is the fast acting internal currentloop . It defines the input current shape to be sinusoidal and force it to be in phase withthe input voltage .The second loop is the external voltage loop which regulates the outputdc voltage.

    The principle of operation of Boost PFC is as follows: The rectified sinusoidalinput voltage is fed to a multiplier circuit , providing a current reference to the multiplierand a feed forward signal proportional to the rms value of the line voltage .Thefiltered DC voltage of Boost PFC is compared to a reference voltage V ref andamplified. The error amplifier sense the variation between the output voltage and thefixed dc reference voltage. The error signal is applied to the multiplier .Themultiplier output follows the shape of the input ac voltage. This signal is comparedto the current signal sensed by R s in a Pulse Width Modulation (PWM) circuit. Theinductor current waveform follows the shape of the rectified ac line voltage. Thegate drive signal controls the inductor current amplitude and maintains a constant outputvoltage.

    A charge control scheme is adopted in this design of the current loop control of theBuck Boost converter since the input current to the converter is discontinuous and its oneform of average current control [12-14].Charge control uses a reset integrator to controlthe average value of a pulsating circuit variable. Figure 4 show the input current for thetwo cases .

    Time

    iiii

    (a)Boost mode (b)Buck mode Time

    Fig(4 ) Input current for Boost and Buck mode

  • 8/13/2019 PFC Correction24090

    7/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2597

    Figure 5 illustrates the circuit used in charge average current control used to sense thecurrent in the PFC of the Buck- Boost converter. The K iS /1 is hall current sensor which

    is proportional to the instantaneous input current. Two capacitors 1C and 2C are used

    for integrating the input current alternatively . Transistor 1T

    and 2T

    employed to quicklydischarge the capacitors. The four diode bridge Da-Dd allows K iS /1 to charge thecapacitor with lower V x to pick up the higher capacitor voltage which represents theaverage input current .

    Is1/K

    Da Dc

    Db Dd

    C1

    C2

    T1

    T2

    Vx

    Cp

    Cz R2

    R1 D-

    +

    Fig( 5 ) Charge average current sensing used in buck boost converter

    SIMULATION RESULTS:Using the package Orcad 10 the simulation results for the Boost converter given in

    figure 6 is shown in figure 7(a, b, and c) when the input voltage is 230 V rms , linefrequency 50 Hz , output voltage 400 V output power 3kW and the switching frequencyis 20kHz . Figure 7 shows the input voltage input current , duty cycle of the boost switch, the output voltage and the input current harmonics. The input current at the first halfcycle is 20-25 times the current of the converter. This problem is solved by using theBuck Boost converter shown in figure 8. Figures 9 ,10 and 11 show the input voltage ,input current output voltage duty cycle of the buck and boost switch and inputcurrent harmonics when the output voltage of the converter is 400V ,250V and 150 Vrespectively.The input current harmonics for these cases is shown in figure 12 and it shows that thecurrent harmonics is lower than the EIC standards .The problem of discontinuous input current in Buck mode operation is solved usingaverage charge current control .

    CONCLUSIONS :A power factor correction control for AC/ DC Boost converter is presented and the input

    current harmonics is eliminated and it is lower than the standards ,the output voltage andoutput power is fixed in this type of converters .

    The problem of high inrush input current is solved by using Buck Boost converter andalso the output voltage and output power can be made variable in this type of converters

  • 8/13/2019 PFC Correction24090

    8/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2598

    Since the input current in Buck mode of Buck Boost converter is discontinuous , acharge average current control is used to provide the error signal for the inner loopcurrent amplifier. Also the input current harmonics is lower than the standard harmonicscurrent and hence the power factor is within the range 0.993-0.998.

    0

    Rf 320k

    BZX84C6V2/ZTX

    D31

    Rf1

    Cf2Cf1.47u

    Cp

    450p

    C111u

    20

    Ct

    6.8n

    R14

    220k

    R15

    75k

    R16

    1.6k

    R17

    10k

    R2

    20k

    Rset

    10k

    0

    V3

    FREQ = 50VAMPL = 320

    VOFF = 0

    0

    D151N5817

    D161N5817

    2

    1

    0

    16.Vdc

    0

    R2127k

    0

    Rdv10k

    RL54

    Ri510k

    Rs

    .025

    Rmo4k

    910k

    R11

    910k

    Co4000u

    C710n

    1 2L1

    500u

    0

    0

    0

    0

    V S ENSE GNDSS

    ENAPK LMTCA OUT

    I SENSEMULT OUT

    V/A OUTRSETCT

    VRMSIAC

    VREFVCC GT DRV

    U1

    UC3854

    20

    1B

    0

    0 0

    00

    C8470p

    Cz

    2.5n

    IRFP462

    R1

    4k

    Rf 2

    91k

    D2

    C19. 47u 2

    1

    2

    1

    BYT30P-600

    2

    1

    C17.47u

    C18

    0.16u

    0.1u

    Fig( 6 ) Single phase PFC boost converter schematic(UC3854)

    Ti m e

    0s 20 ms 40m s 60 ms 80m s 1 00m s 120 ms 1 40m s- I( V3 ) V (D 27 :K ,D 26 :K ) V (R 3: 2) V (V 3: +, V3 :- )

    -500

    0

    50 0

    input cur ren t

    input vo l tage

    output vo l tage

    Fig( 7)( a) Boost converter input voltage , input current andoutput voltage Vi=230Vrms,Vo=400V ,Po=3000W , f S=20kHz

    I n p u t v o

    l t a g e (

    V )

    , i n p u

    t c u r r e n

    t ( A )

    , o u

    t p u

    t v o

    l t a g e (

    V )

  • 8/13/2019 PFC Correction24090

    9/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2599

    Ti m e

    1 0 0 m s 1 0 1 m s 1 0 2 m s 1 0 3 m s 1 0 4 m s 1 0 5 m s 1 0 6 m s 1 0 7 m s 1 0 8 m s 1 0 9 m s 1 1 0 m s

    V ( V3 : +, V 3: - ) V (D 1 4: C AT )

    0V

    2 0 0 V

    3 9 8 V

    Fig 7 (b)Duty cycle of Boost converter

    Vi=230Vrms,Vo=400V Po=3000W , f S=20kHz

    F r e q u e n c y

    0 H z 5 0 H z 1 0 0 H z 1 5 0 H z 2 0 0 Hz 2 5 0 H z 3 0 0 H z 3 5 0 H z 40 0 H z 4 5 0 H z 5 0 0 H z 5 5 0 Hz 6 0 0 H zI ( V 3 )

    0A

    5A

    10 A

    15 A

    20 A

    Fig7 (c)Input current harmonics for Boost converter

    Vi=230Vrms,Vo=400V Po=3000W , f S=20kH

    V1

    FREQ =50VAMPL = 320VOFF =0 0.47u

    0.47u

    amplifier parametersvoltage error

    15Vdc

    5V

    0

    V c c

    VCC

    0

    0

    1 Q

    1

    C e x t

    1 R e x t

    /

    C e x t

    S1 Buck switch

    t o

    T 2

    t o

    T 1

    Charge average current sensing

    Rs

    0.025

    senseresistor

    T3

    15v

    D1

    voltage error parameter s

    1 2L

    1.8mH

    S2

    Cext

    1n

    D5

    5k

    Rf1910k

    0

    Rf2

    91k

    Boost switch

    Rf320k

    220k

    switch gate drive signals mpdified current sensing

    1 Q

    1.6k

    75k

    10k

    0

    Rmo4k

    Cz

    270p

    Rset36k

    discharge signal generation

    10

    R1027k

    RLvariable

    Cp

    47p

    1 A

    1 B

    1 R

    d

    Cext 1n

    Cf10.1u

    average current sensing

    Cf20.47u

    1u

    IS1/k

    470p

    C71n

    R62.5k

    Co4000u

    C9100n

    Cvf

    0.16u

    R54k0

    CT1.8n

    Da

    R1810

    0

    1N5817

    R32k

    15k

    1N5817

    15k

    R2110

    Dc

    gain modificationvariable output

    15k

    Db0

    2 A

    0

    C111n

    0

    R413k

    0Dd

    R2

    192k

    C121n

    0

    2 B

    2 R

    d

    2 R e x t

    / C e x t

    2 C e x t

    2 Q

    2 Q

    G N D

    10

    10k

    0

    10

    10

    +Vcc

    10k

    18k

    Rext1k

    feedforward voltage

    +Vcc

    20k

    0

    Rext

    1k

    10

    0

    5k

    T5

    VCC

    CLK3

    C L R

    1

    D2 P

    R E

    4

    Q 5

    Q 6

    U3A

    74LS74A

    20-55 ohm

    Rvi510k

    Rdvvariable

    Rvf

    77k

    0

    5V

    R14k

    0

    C10100n

    V S E NS E G NDSS

    ENAPK LMTCA OUT

    I SENSEMULT OUT

    V/A OUTRSETCT

    VRMSIAC

    VREF

    VCC GT DRV

    U1

    UC3854

    To drive S1

    buck switc h

    Vcc15Vdc

    T6

    0

    0

    T12N2222

    0

    +VCC

    T22N2222

    5k

    +5

    -6

    V +

    8

    V -

    4

    OUT 7

    LM393

    10

    5k

    VCC

    0

    10k - 27k

    12k

    +5

    -6

    V +

    8

    V -

    4

    OUT 7

    LM393

    0

    buck and boost switchesdrive signals of

    0

    +5

    -6

    V +

    8

    V -

    4

    OUT 7

    LM393

    0

    + 3

    - 2

    V +

    8

    V -

    4

    OUT1 LM393

    To drive S2

    + 5

    - 6

    V +

    8

    V -

    4

    OUT7 LM393

    Boost switch

    + 5

    - 6

    V +

    8

    V -

    4

    OUT7 LM393

    7 4 H C T 1 2 3

    in

    Vcc

    IR2117

    Vs

    Ho

    Vb

    com

    5V

    0

    T4

    0

    +5

    -6

    V +

    8

    V -

    4

    OUT 7

    LM393

    5k3Vdc

    Vff

    0

    0

    I n p u

    t v o

    l t a g e (

    V ) , D u

    t y c y c l e

    C u r r e n

    t ( A )

  • 8/13/2019 PFC Correction24090

    10/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2600

    Fig8(a ) The connection diagram for PFC single phase Buck Boost converter

    Buck Boost Power Circuit

    FeedforwardInput Voltage

    Voltage error Amplifier

    Multiplier/ divider A*B/C 2

    Average ChargeCurrent Sensing

    Variable OutputGain

    Modification

    Pulse WidthModulation Drive

    Circuit

    Output voltage

    Buck Switch DriveSignal

    Boost Switch DriveSignal

    Current sensing

    Gain

    B A

    C

    Current Error Amplifiuer

    Vref

    Fig8(b) Buck Boost Converter block diagram

    Ti m e

    0 s 2 0 ms 4 0 ms 6 0 ms 8 0 ms 1 0 0m s 1 2 0m sV (R 2:2 ) - I( V1) *2 V (V1 :+, V1: -)

    - 5 0 0

    0

    50 0

    i n p u t c u r r e n t * 2

    i n p u t v o l t a g e o u t p u t v o l t a g e

    Fig9 (a) Buck Boost converter input voltage , input current andout put voltage Vi=230Vrms,Vo=400V ,Po=3000W , f S=20kHz

    I n p u

    t v o

    l t a g e

    ( V )

    , i n p u

    t c u r r e n

    t ( A )

    , o u

    t p u

    t v o

    l t a g e

    ( V )

  • 8/13/2019 PFC Correction24090

    11/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2601

    Frequency

    0Hz 100Hz 200Hz 300Hz 400Hz 500Hz 600HzI(V1)*.94

    0A

    10 A

    20 A

    25 A

    Fig9(b )Input current harmonics of Buck Boost converter

    Vi=230Vrms,Vo=400V ,Po=3000W , f S=20kHz

    Ti m e

    0s 2 0m s 4 0m s 6 0m s 8 0m s 1 00 m s 1 20 m s- I( V1 )* 1. V (V 1: +, V1 :- )* 1 V (R 2: 2) *1 .1 3

    - 5 0 0

    0

    50 0

    i n p u t c u r r e n t

    o u t p u t v o l t a g ei n p u t v o l t a g e

    Fig 10(a) Buck - Boost converter input voltage , input current and

    out put voltage Vi=230Vrms,Vo=250V ,Po=2000W , f S=20kHz

    t ime

    60.00ms 61.00ms 62.00ms 63.00ms 64.00ms 65.00ms 66.00ms 67.00ms 68.00ms 69.00msV ( V1 : +, V 1: - ) V ( S1 : 1, S 1: 2 )

    0

    200

    398

    buck duty cycle

    input vol tage

    Fig 10(b) Buck switch duty cycle for Buck - Boost converter

    Vi=230Vrms,Vo=250V Po=2000W f S=20kHz

    Input voltage , inputcurrent , output voltage

    I n p u

    t v o

    l t a g e (

    V )_

    , i n p u

    t c u r r e n

    t ( A )

    , o u

    t p u

    t v o l t a g e (

    V )

    I n p u t v o

    l t a g e (

    V ) , D u

    t y c y c l e

    C u r r e n

    t ( A )

  • 8/13/2019 PFC Correction24090

    12/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2602

    t ime

    60.00ms 61.00ms 62.00ms 63.00ms 64.00ms 65.00ms 66.00ms 67.00ms 68.00ms 69.00msV (V 1: +, V1 :- ) V (M 1: g)

    0

    200

    398

    boost duty cycle

    input vol tage

    Fig 10(c) Boost switch duty cycle for Buck - Boost converter

    Vi=230Vrms,Vo=250V Po=2000W f S=20kHz

    Frequency

    0Hz 100Hz 200Hz 300H z 400 Hz 500 Hz 6 00Hz-I(V1)/2.8

    0A

    5.0A

    10.0A

    13.6A

    Fig10(d) Input current harmonics for Buck - Boost converter

    Vi=230Vrms,Vo=250V Po=2000W f S=20kHz

    Time

    0s 20ms 40ms 60ms 80ms 100ms 120msV (C3 :2 ) - I( V1 ) V (V 1:+ ,V1 :- )

    -400

    -200

    0

    200

    400

    input current*5

    input vol tage output vol tage

    Fig11(a) Buck - Boost converter input voltage , input current andout put voltage Vi=230Vrms,Vo=150V ,Po=1000W , f S=20kHz

    I n p u

    t v o

    l t a g e ( V

    ) ,

    i n p u

    t c u r r e n

    t ( A ) , o u

    t p u

    t v o

    l t a g e

    ( V )

    I n p u

    t v o

    l t a g e (

    V ) ,

    D u

    t y c y c l e

    C u r r e n

    t A

  • 8/13/2019 PFC Correction24090

    13/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2603

    Time

    80ms 81ms 82ms 83ms 84ms 85ms 86ms 87ms 88ms 89ms 90msV (R 20 :B ) V (V 1: +, V1 :- )

    0V

    200V

    400V

    boost duty cycle

    Fig 11(b) Boost switch duty cycle for Buck - Boost converterVi=230Vrms,Vo=150V Po=1000W , f S=20kHz

    Time

    60ms 61ms 62ms 63ms 64ms 65ms 66ms 67ms 68ms 69ms 70msV ( V1 : +, V 1: - ) V ( S1 : 1, S 1: 2 )* 2

    100V

    200V

    300V

    400V

    1V

    buck duty cycle

    Fig11 Buck switch duty cycle for Buck - Boost converterVi=230Vrms,Vo=150V Po=1000W , f S=20kHz

    Frequency

    0Hz 100Hz 200Hz 300Hz 400Hz 500Hz 600HzI(V1)/5

    0A

    2.00A

    4.00A

    6.00A

    7.03A

    Fig 11 (d) Input current harmonics for Buck - Boost converter

    Vi=230Vrms,Vo=150V Po=1000W , f S=20kHz

    I n p u

    t v o

    l t a g e (

    V ) ,

    D u

    t y c y c l e

    I n p u

    t v o

    l t a g e (

    V ) , D u

    t y c y c l e

    C u r r e n

    t ( A )

  • 8/13/2019 PFC Correction24090

    14/15

    A.M. Shaker Design and simulation of powee factorA. M. Salih Correction for ac/dc convereterK.S. Ismail

    Available online @ iasj.net 2604

    0

    0.5

    1

    1.5

    2

    2.5

    3

    1 2 3 4 5 6 7 8 9 10 11 12

    boost 400V

    buckboost400V

    buckboost250V

    buckboost150VIEC1000-3-2ClassA limits

    Fig` 12 Input current harmonics contents for the different cases

    REFERENCES:

    * IEC standard IEC 61000-3-2(2001- 10)Ed2.1,Electromagnetic compatibility (EMC) part 3- 2 limits for harmonic current emissions, 2001.

    * B. Flud, S. Kern and R.1993 Ridely Combined buck and boost power factorcontroller for three phase i nput IEEE, Poer Electronics and Applications ,1993,fifth European Conference Vol , Issue 13-16 , Sep , pp 144-148 vol .7.

    * R. Ridely, S. Kern and B. Flud 1993 Analysis and design of a wide range PFCcircuit for three phase application IEEE , Appl ied power electronics conference ,volume, issues 7-11 march, pp 299-305.

    * M. Chanen, K. AL-Haddad and G.Roy1993 , A new single phase buck boost converterwith unity power factor , IEEE, Industry applications society , annual meeting ,Volume , issue 2-8 Oct. 1993 pp 785-792 volume 1.2.

    * Y. Zhao,1998 Single phase power factor correction with wide output voltage rangeM.Sc. thesis ,Virginea University .

    * G.K. Andersoen and F. Blaabjerg2001 Current programmed control of a single phase two swit ch buck boost power factor correction, IEEE, Applied powerelectronics conference Volume issue 1 pp 350-356.

    * G.G. Michael Averaged and cycle by cycle switching model for buck , boost , buck boost and cuk converters with common average switching mo de Texas TechUniversity e mail Michael @ coez.coe.ttu.edu.

    * J. Chen , D. Maksimovic and R. Erickson2006 , Analysis and design of a low stress buck boost converter in universal input PFC application IEEE transaction on power electronics , Volume 21, No 2 march.

    * C. Silva2001 Power factor correction with the texas instrumentation catalogueUC3854 .

    * N. Mohan , T.M. Undeland and W.P1995 . Robbins Powert electronics converters,applications and design John wily and son, Inc . Second Ed ition , New York .

    C u r r e n

    t ( A )

    Harmonic No

  • 8/13/2019 PFC Correction24090

    15/15

    Journal of EngineeringVolume 14 June 2008Number2

    Available online @ iasj.net 2605

    * M. O. Loughlin 2002 UCC3819 , 250 W power factor correction (PFC) boost flower preregulater design , Texas Instrumentation Literature No.SLOA 296,.

    * W. Jang , F.C Lee , R. B. Ridley and I. cohen1992 Charge control modeling anal ysisand design IEEE PESC pp 503 -511.

    * V. Vorperian 1993 the charge controlled PWM switch IEEE PESC pp 533 -

    543.* W. Jang ,y. Jung , G.C .Hua andF.C Lee1993 Power factor correction with flyback

    converter imploying charge control IEEE PESC pp 293 -308 , 1993.