pg 160 expanded

3
Sec tio n 4.6 Int ernal Co mbusti on Eng ine s  159 The Diesel Engine The Diesel Engine is similar to the Otto engine except that the fuel is injected after the compression and the combustion occurs relatively slowly. This necessitates “fuel-injectors,” but has the advan- tage that higher compression ratios can be obtained without concern of pre-ignition (ignition at the wrong time in the cycle). Pre-ignition occurs when the temperature rise due to compression goes  past the spontaneous ignition temperature of the fuel, creating an annoying pinging and knocking sound, and reducing the efficiency of the cycle. Pre-ignition does not occur in a diesel engine  because there is no fuel during compression. Some spontaneous ignition temperatures are given  below.  Spontaneous ignition temperatures (°C) of sample hydrocarbons  I sooctane 447  Benzene 592  T oluene 568  n-Octane 240  n-Decane 232  n-He xade cane 230  Methanol 470  Ethanol 392 Diesel fuel is much like decane and hexadecane and burns without a spark. Auto fuel is much like isooctane and benzene and, ideally , will not i gnite until the spark goes off. But all fuels are mixtures, and if the gasoline contains enough n-octane instead of isooctane, then undesirable pre-ignition will occur. The thermodynamics of the air-standard Diesel engine can be analyzed like the Otto Cycle. But, instead of rapid combustion at constant volume, the Diesel engine has relatively slow combus- tion at constant pressure. In the air-standard Diesel cycle shown in Figure 4.18, step 1-2 is an adia- Solution: Basis: model as ideal gas, Q  H  = C V (T 3   T 2 ) (*ig) Q C  = C V (T 1  T 4 ) (*ig) W S,net  = Q  H  + Q C  = C V (T 3  T 2  + T 1  T 4 ) (*ig) η  = C V (T 3  T 2  + T 1   T 4 )/[C V (T 3   T 2 )] + 1 (T 3   T 2 )/(T 3   T 2 ) = 1 + (T 1   T 4 )/(T 3   T 2 )(*ig) (*ig)  T 4  = T 3 r  –R/C V ; T 1  = T 2  r  –R/C V (*ig) η = 1  r  R/C V  = 1  r (1γ  ) (*ig) 4.8 Example 4.8 Thermal efficiency of the Otto engine (Continued) T T V V T T V V V V  R C  R C  R C V  V  V 2 1 1 2 4 3 3 4 2 1 =       =       =       /  /  / ;

Upload: viktorbicalho344022

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

8/12/2019 Pg 160 Expanded

http://slidepdf.com/reader/full/pg-160-expanded 1/3

Section 4.6 Internal Combustion Engines   159

The Diesel Engine

The Diesel Engine is similar to the Otto engine except that the fuel is injected after the compression

and the combustion occurs relatively slowly. This necessitates “fuel-injectors,” but has the advan-

tage that higher compression ratios can be obtained without concern of pre-ignition (ignition at the

wrong time in the cycle). Pre-ignition occurs when the temperature rise due to compression goes

 past the spontaneous ignition temperature of the fuel, creating an annoying pinging and knocking

sound, and reducing the efficiency of the cycle. Pre-ignition does not occur in a diesel engine

 because there is no fuel during compression. Some spontaneous ignition temperatures are given

 below.

  Spontaneous ignition temperatures (°C) of sample hydrocarbons

  Isooctane 447

  Benzene 592

  Toluene 568

  n-Octane 240

  n-Decane 232

  n-Hexadecane 230

  Methanol 470

  Ethanol 392

Diesel fuel is much like decane and hexadecane and burns without a spark. Auto fuel is much like

isooctane and benzene and, ideally, will not ignite until the spark goes off. But all fuels are mixtures,

and if the gasoline contains enough n-octane instead of isooctane, then undesirable pre-ignition will

occur.

The thermodynamics of the air-standard Diesel engine can be analyzed like the Otto Cycle.

But, instead of rapid combustion at constant volume, the Diesel engine has relatively slow combus-

tion at constant pressure. In the air-standard Diesel cycle shown in Figure 4.18, step 1-2 is an adia-

Solution:

Basis: model as ideal gas, Q H  = C V (T 3 − T 2) (*ig)

QC  = C V (T 1 − T 4) (*ig)

W S,net  = Q H  + QC  = C V (T 3 − T 2 + T 1 − T 4) (*ig)

η  = C V (T 3 − T 2 + T 1 − T 4)/[C V (T 3 − T 2)] + 1 − (T 3 − T 2)/(T 3 − T 2) = 1 + (T 1 − T 4)/(T 3 − T 2)(*ig)

(*ig)

⇒ T 4 = T 3 r  –R/C V ; T 1 = T 2 r  –R/C 

V  (*ig)

η = 1 − r − R/C V  = 1 − r (1−γ  ) (*ig) 4.8

Example 4.8 Thermal efficiency of the Otto engine (Continued)

 R C    R C    R C V    V    V 

2

1

1

2

4

3

3

4

2

1

=   

     =   

      =  

   

 /    /    / 

;

8/12/2019 Pg 160 Expanded

http://slidepdf.com/reader/full/pg-160-expanded 2/3

160 Unit I First and Second Laws

 batic compression, step 2-3 represents the combustion where heat is added, step 3-4 is adiabatic,step 4-1 is an isochoric cooling.

Example 4.9 Thermal efficiency of a Diesel engine

Develop an expression for the thermal efficiency of the air-standard diesel cycle as a function of 

the compression ratio rc = V 1 /V 2 and the expansion ratio re = V 4 / V 3. Assume the working fluid is an

ideal gas, and the volume effect of moles of gas generated is small relative to the effect of heating

from combustion.

Solution: This process is a little more complicated than the Otto cycle because heat addition

and work occurs during constant pressure combustion. The energy balance for the combus-

tion step is:

dU = Q H  + W S,combustion  ⇒  Q H  = ∆U − W S,combustion =  ∆U + P 2 (V 3 − V 2 ) =  ∆(U +  PV) =  ∆ H

⇒  Q H  =  ∆ H =  C  P (T 3 −  T 2 ) (*ig)

For isochoric cooling

QC  =  C V (T 1 −  T 4 ) (*ig)

For the cycle, the energy balance is 0 = Q H  + QC  + W S,net , giving the thermal efficiency

η = − W S,net  /Q H  =  (Q H  + QC  )/Q H  =  1 + (*ig)

where

(*ig)

where for T 2/T 1 we have used Eqn 2.53, and for T 3/T 1 we have used: the ideal gas law; P 3 = P 2;

Eqn. 2.55; and V 1 = V 4, as

 P 

1

2 3

4

Figure 4.18 Schematic of air-standard Diesel cycle.

C T T 

C T T 

T T 

T T 

P

1 4

3 2

1

3 2

4

3 2

1  1−( )

−( ) = + −   − −

γ  

T T 

 P V 

 PV rc rc re rc

3 2

1

3

1

2

1

3 3

1 1

1 1-

= - = - = -- -g g g 

/

8/12/2019 Pg 160 Expanded

http://slidepdf.com/reader/full/pg-160-expanded 3/3

Section 4.7 Fluid Flow   161

4.7 FLUID FLOW

Consider the general flow system of Fig. 4.19a in which work and heat are transferred and the fluid

undergoes changes in kinetic and potential energy. Recognize that the compressor or pump in the

schematic could be replaced with an expander or turbine. Rather than deriving an integral equation between points 1 and 4 in the schematic, let us consider a balance over a differential element at

steady-state as shown in Fig. 4.19b where the possibility of heat and work transfer are permitted.

The steady-state balance for a single stream becomes:1

For a differential element, H out  = H in + dH , and

,

The differential balance becomes

(*ig)

For the last term in brackets from the formula for efficiency,

(*ig)

where for T 3/T 4 we have used Eqn 2.53, and for T 2/T 4 we have used: the ideal gas law; P 2 = P 3;

Eqn. 2.55; and V 4 = V 1, as

(*ig)

Substuting the intermediate results and rearranging the formula for efficiency,

(*ig) 4.9

1. Note that the velocity in this equation is a mean velocity.

Example 4.9 Thermal efficiency of a Diesel engine (Continued)

T 3

T 1-----

 P 3V 3

 P 1V 1------------

 P 2

 P 1------

V 3

V 1------

V 1

V 2------

γ  V 3

V 4------

rc

γ 

re ⁄ = = = =

T T 

T re

 P V 

 P V re

 PV 

 P V re re

3 2

4

3

4

2

4

1   2 2

4 4

1   3 2

4 4

1-

= - = - = - = -- - -g g g g  / r rc

T 2

T 4-----

 P 2V 2

 P 4V 4------------

 P 3

 P 4------

V 2

V 4------

V 4

V 3------

γ  V 2

V 1------

re

γ rc ⁄ = = = =

hg 

g g g g  

g g 

= +-

  --

ÏÌÓ

¸˝˛

= +- ◊

- -

-

1  1 1 1

1  1

1 1

1

rc re rc re re rc

re

rc re rc

/ /

--◊ -

ÏÌÓ

¸˝˛

-

rc

rc re reg g 1

0  H u

2

2 g c--------

 gz 

 g c-----+ +

in

 H u

2

2 g c--------

 gz 

 g c-----+ +

ou t 

 – 

dL 0→lim dQ dW  S + +=

u2

2 g c

--------

ou t u

2

2 g c

--------

in

d u

2

2 g c

--------

+= gz 

 g c

----- ou t   gz 

 g c

----- in

d  gz 

 g c

----- +=

0 dH  –  d u

2

2 g c--------

 –  d  gz 

 g c-----

 –  dQ dW  S + +=