phd defense, may 24, 2007 intersection multiplicities and...

83
PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck spaces Esben Bistrup Halvorsen Department of Mathematical Sciences University of Copenhagen – p.1/15

Upload: others

Post on 06-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

PhD defense, May 24, 2007

Intersection multiplicities andGrothendieck spacesEsben Bistrup Halvorsen

Department of Mathematical Sciences

University of Copenhagen

– p.1/15

Page 2: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm.

– p.2/15

Page 3: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm. Define

D(R) = the derived category ofR.

– p.2/15

Page 4: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm. Define

D(R) = the derived category ofR.

Df2(R) = the full subcategory of finite complexes.

– p.2/15

Page 5: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm. Define

D(R) = the derived category ofR.

Df2(R) = the full subcategory of finite complexes.

Pf(R) = the full subcategory of finite complexes

isomorphic to a bounded complex of projectives.

– p.2/15

Page 6: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm. Define

D(R) = the derived category ofR.

Df2(R) = the full subcategory of finite complexes.

Pf(R) = the full subcategory of finite complexes

isomorphic to a bounded complex of projectives.

Let X, Y ∈ Df2(R) with Supp X ∩ Supp Y = {m}.

– p.2/15

Page 7: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Throughout,R denotes a commutative, Noetherian, localring with maximal idealm. Define

D(R) = the derived category ofR.

Df2(R) = the full subcategory of finite complexes.

Pf(R) = the full subcategory of finite complexes

isomorphic to a bounded complex of projectives.

Let X, Y ∈ Df2(R) with Supp X ∩ Supp Y = {m}. The

intersection multiplicityof X andY is defined as

χ(X, Y) = ∑i

(−1)i length Hi(X ⊗LR Y)

wheneverX ∈ Pf(R) or Y ∈ P

f(R). – p.2/15

Page 8: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

The ringR satisfies vanishingif

χ(X, Y) = 0 whendim(Supp X) + dim(Supp Y) < dim R.

– p.3/15

Page 9: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

The ringR satisfies vanishing if

χ(X, Y) = 0 whendim(Supp X) + dim(Supp Y) < dim R.

This generalizes the vanishing conjecture by Serre.

– p.3/15

Page 10: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

The ringR satisfies vanishing if

χ(X, Y) = 0 whendim(Supp X) + dim(Supp Y) < dim R.

This generalizes the vanishing conjecture by Serre. Thering R satisfies weak vanishingif this holds when bothX ∈ P

f(R) and Y ∈ Pf(R).

– p.3/15

Page 11: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

The ringR satisfies vanishing if

χ(X, Y) = 0 whendim(Supp X) + dim(Supp Y) < dim R.

This generalizes the vanishing conjecture by Serre. Thering R satisfies weak vanishing if this holds when bothX ∈ P

f(R) and Y ∈ Pf(R).

Theorem (Dutta–Hochster–McLaughlin). Thevanishing conjecture does not hold, so not all ringssatisfy vanishing!

– p.3/15

Page 12: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

The ringR satisfies vanishing if

χ(X, Y) = 0 whendim(Supp X) + dim(Supp Y) < dim R.

This generalizes the vanishing conjecture by Serre. Thering R satisfies weak vanishing if this holds when bothX ∈ P

f(R) and Y ∈ Pf(R).

Theorem (Dutta–Hochster–McLaughlin). Thevanishing conjecture does not hold, so not all ringssatisfy vanishing!

So far, all rings satisfy weak vanishing.

– p.3/15

Page 13: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field.

– p.4/15

Page 14: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R.

– p.4/15

Page 15: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. TheDuttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y).

– p.4/15

Page 16: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. The Duttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y),

whereLF is the left-derived Frobenius functor.

– p.4/15

Page 17: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. The Duttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y),

whereLF is the left-derived Frobenius functor, given by

X = · · · −→ Xi

∂Xi−→ Xi−1 −→ · · ·

– p.4/15

Page 18: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. The Duttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y),

whereLF is the left-derived Frobenius functor, given by

X ≃ · · · −→ Rm(aij)−→ Rn −→ · · ·

– p.4/15

Page 19: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. The Duttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y),

whereLF is the left-derived Frobenius functor, given by

LF(X) ≃ · · · −→ Rm(a

pij)

−→ Rn −→ · · · .

– p.4/15

Page 20: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

INTERSECTION MULTIPLICITIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX, Y ∈ D

f2(R) with

Supp X ∩ Supp Y = {m}, X ∈ Pf(R) and

dim(Supp X) + dim(Supp Y) ≤ dim R. The Duttamultiplicity of X andY is defined as

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ(LFe(X), Y),

whereLF is the left-derived Frobenius functor, given by

LF(X) ≃ · · · −→ Rm(a

pij)

−→ Rn −→ · · · .

The Dutta multiplicity satisfies vanishing. – p.4/15

Page 21: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes.

– p.5/15

Page 22: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. TheGrothendieck groupof C is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

– p.5/15

Page 23: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. The Grothendieck group ofC is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

Sinceχ(−, Y) is zero on exact complexes and additive onshort exact sequences, it factors through a Grothendieckgroup.

– p.5/15

Page 24: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. The Grothendieck group ofC is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

Sinceχ(−, Y) is zero on exact complexes and additive onshort exact sequences, it factors through a Grothendieckgroup. We can compute

χ(X, Y)– p.5/15

Page 25: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. The Grothendieck group ofC is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

Sinceχ(−, Y) is zero on exact complexes and additive onshort exact sequences, it factors through a Grothendieckgroup. We can compute

χ(X, Y) = χ([X], Y)– p.5/15

Page 26: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. The Grothendieck group ofC is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

Sinceχ(−, Y) is zero on exact complexes and additive onshort exact sequences, it factors through a Grothendieckgroup. We can compute

χ(X, Y) = χ([X], Y) = χ([X′], Y)– p.5/15

Page 27: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

Let C be a full subcategory of the category of finitecomplexes. The Grothendieck group ofC is the AbeliangroupK0(C) presented by generators[X], one for eachisomorphism class of a complexX in C, and relations

[X] = 0 wheneverX is exact

[X] = [X′] + [X′′] whenever0 → X′ → X → X′′ → 0is a short exact sequence inC.

Sinceχ(−, Y) is zero on exact complexes and additive onshort exact sequences, it factors through a Grothendieckgroup. We can compute

χ(X, Y) = χ([X], Y) = χ([X′], Y) = χ(X′, Y).– p.5/15

Page 28: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

We can also compute

χ∞(X, Y)

– p.6/15

Page 29: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

We can also compute

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ([LFe(X)], Y)

where[LFe(X)] ∈ K0(C).

– p.6/15

Page 30: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

We can also compute

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ([LFe(X)], Y)

= lime→∞

χ(1

pe codim(Supp X)[LFe(X)], Y)

wherep−e codim(Supp X)[LFe(X)] ∈ K0(C)⊗Z Q.

– p.6/15

Page 31: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK GROUPS

We can also compute

χ∞(X, Y) = lime→∞

1

pe codim(Supp X)χ([LFe(X)], Y)

= lime→∞

χ(1

pe codim(Supp X)[LFe(X)], Y)

= χ( lime→∞

1

pe codim(Supp X)[LFe(X)], Y)

where???

– p.6/15

Page 32: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R.

– p.7/15

Page 33: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R: that is,

p ∈ X and p ⊆ q implies q ∈ X.

– p.7/15

Page 34: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R: that is,

p ∈ X and p ⊆ q implies q ∈ X.

Define

Df2(X) = the full subcategory ofDf

2(R) of complexes

with support contained inX.

– p.7/15

Page 35: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R: that is,

p ∈ X and p ⊆ q implies q ∈ X.

Define

Df2(X) = the full subcategory ofDf

2(R) of complexes

with support contained inX.

Pf(X) = the full subcategory ofPf(R) of complexes

with support contained inX.

– p.7/15

Page 36: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R: that is,

p ∈ X and p ⊆ q implies q ∈ X.

Define

Df2(X) = the full subcategory ofDf

2(R) of complexes

with support contained inX.

Pf(X) = the full subcategory ofPf(R) of complexes

with support contained inX.

Let Xc denote the maximal subset ofSpec R such that

X∩Xc = {m} and dim X + dim Xc ≤ dim R.

– p.7/15

Page 37: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R.

– p.8/15

Page 38: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R. TheGrothendieck spaceof P

f(X) is theQ-vector spaceGPf(X)

presented by generators[X], one for each isomorphismclass of a complexX in P

f(X), and relations

[X] = [X′] when χ(X,−) = χ(X′,−)

as metafunctionsDf2(Xc) → Q.

– p.8/15

Page 39: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Let X be a specialization-closed subset ofSpec R. TheGrothendieck space ofPf(X) is theQ-vector spaceGP

f(X)presented by generators[X], one for each isomorphismclass of a complexX in P

f(X), and relations

[X] = [X′] when χ(X,−) = χ(X′,−)

as metafunctionsDf2(Xc) → Q.

The spaceGPf(X) is equipped with the initial topology of

the family ofQ-linear maps

χ(−, Y) : GPf(X) → Q for Y ∈ D

f2(Xc).

– p.8/15

Page 40: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate . . .

– p.9/15

Page 41: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y)

– p.9/15

Page 42: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y) = lime→∞

1

pe codim Xχ([LFe(X)], Y)

whereX = Supp X.– p.9/15

Page 43: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y) = lime→∞

1

pe codim Xχ([LFe(X)], Y)

= lime→∞

χ(1

pe codim X[LFe(X)], Y)

whereX = Supp X.– p.9/15

Page 44: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y) = lime→∞

1

pe codim Xχ([LFe(X)], Y)

= lime→∞

χ(1

pe codim X[LFe(X)], Y)

= lime→∞

χ(1

pe codim XFeX([X]), Y)

whereX = Supp X andFeX([X]) = [LFe(X)].

– p.9/15

Page 45: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y) = lime→∞

1

pe codim Xχ([LFe(X)], Y)

= lime→∞

χ(1

pe codim X[LFe(X)], Y)

= lime→∞

χ(1

pe codim XFeX([X]), Y)

= lime→∞

χ(ΦeX([X]), Y)

whereX = Supp X andΦeX = p−e codim XFe

X.– p.9/15

Page 46: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Now we can calculate

χ∞(X, Y) = lime→∞

1

pe codim Xχ([LFe(X)], Y)

= lime→∞

χ(1

pe codim X[LFe(X)], Y)

= lime→∞

χ(1

pe codim XFeX([X]), Y)

= lime→∞

χ(ΦeX([X]), Y)

= χ( lime→∞

ΦeX([X]), Y)

whereX = Supp X andlime→∞ ΦeX([X]) ∈ GP

f(X).– p.9/15

Page 47: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Theorem 1. Let X be a specialization-closed subset of

Spec R and let α ∈ GPf(X).

– p.10/15

Page 48: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Theorem 1. Let X be a specialization-closed subset of

Spec R and let α ∈ GPf(X). Then there is a unique

decomposition

α = α(0) + · · ·+ α(u)

in which each α(i) is either zero or an eigenvector for

ΦX with eigenvalue p−i.

– p.10/15

Page 49: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Theorem 1. Let X be a specialization-closed subset of

Spec R and let α ∈ GPf(X). Then there is a unique

decomposition

α = α(0) + · · ·+ α(u)

in which each α(i) is either zero or an eigenvector for

ΦX with eigenvalue p−i. The components

α(0), . . . , α(u) are recursively defined by

α(0) = lime→∞

ΦeX(α) and

α(i) = lime→∞

pieΦeX(α − (α(0) + · · ·+ α(i−1))),

– p.10/15

Page 50: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

. . . and there is a formula

α(0)

...

α(u)

=

1 1 · · · 1

1 p−1 · · · p−u

...... . . . ...

1 p−u · · · p−u2

−1

α

ΦX(α)...

ΦuX(α)

.

– p.11/15

Page 51: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

. . . and there is a formula

α(0)

...

α(u)

=

1 1 · · · 1

1 p−1 · · · p−u

...... . . . ...

1 p−u · · · p−u2

−1

α

ΦX(α)...

ΦuX(α)

.

The numberu is thevanishing dimensionof α; it measures,in a sense, how farα is from satisfying vanishing. Inparticular,α satisfies vanishing if and only ifα = α(0).

– p.11/15

Page 52: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

. . . and there is a formula

α(0)

...

α(u)

=

1 1 · · · 1

1 p−1 · · · p−u

...... . . . ...

1 p−u · · · p−u2

−1

α

ΦX(α)...

ΦuX(α)

.

The numberu is the vanishing dimension ofα; it measures,in a sense, how farα is from satisfying vanishing. Inparticular,α satisfies vanishing if and only ifα = α(0).

We haveu ≤ max(codim X− 2, 0).

– p.11/15

Page 53: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Translating the theorem to complexes, the Duttamultiplicity χ∞(X, Y) can be computed.

– p.12/15

Page 54: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

GROTHENDIECK SPACES

Translating the theorem to complexes, the Duttamultiplicity χ∞(X, Y) is the first entry in

1 1 · · · 1

pt pt−1 · · · pt−u

...... . . . ...

put pu(t−1) · · · pu(t−u)

−1

χ(X, Y)

χ(LF(X), Y)...

χ(LFu(X), Y)

,

wheret = codim(Supp X).

– p.12/15

Page 55: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field.

– p.13/15

Page 56: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX be a specialization-closedsubset ofSpec R and letα ∈ GP

f(X).

– p.13/15

Page 57: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX be a specialization-closedsubset ofSpec R and letα ∈ GP

f(X). If

χ(α, Y) = χ(α(0), Y) for all Y ∈ Pf(Xc), thenα satisfies

numerical vanishing.

– p.13/15

Page 58: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX be a specialization-closedsubset ofSpec R and letα ∈ GP

f(X). If

χ(α, Y) = χ(α(0), Y) for all Y ∈ Pf(Xc), thenα satisfies

numerical vanishing. If this holds for all elements in allGrothendieck spaces, thenR satisfiesnumerical vanishing.

– p.13/15

Page 59: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX be a specialization-closedsubset ofSpec R and letα ∈ GP

f(X). If

χ(α, Y) = χ(α(0), Y) for all Y ∈ Pf(Xc), thenα satisfies

numerical vanishing. If this holds for all elements in allGrothendieck spaces, thenR satisfies numerical vanishing.

Theorem 2. The ring R satisfies numerical vanishing

if and only if all elements of GPf({m}) do.

– p.13/15

Page 60: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

Assume thatR is complete of prime characteristicp andwith perfect residue field. LetX be a specialization-closedsubset ofSpec R and letα ∈ GP

f(X). If

χ(α, Y) = χ(α(0), Y) for all Y ∈ Pf(Xc), thenα satisfies

numerical vanishing. If this holds for all elements in allGrothendieck spaces, thenR satisfies numerical vanishing.

Theorem 2. The ring R satisfies numerical vanishing

if and only if all elements of GPf({m}) do. In

particular, this holds if and only if

χ(LF(Z)) = pdim Rχ(Z)

for all complexes Z in Pf({m}).

– p.13/15

Page 61: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

The duality functorRHomR(−, R) onPf(X) induces an

automorphism(−)∗ on GPf(X).

– p.14/15

Page 62: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

The duality functorRHomR(−, R) onPf(X) induces an

automorphism(−)∗ on GPf(X).

An elementα ∈ GPf(X) is self-dualif it satisfies

α = (−1)codimXα∗.

– p.14/15

Page 63: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

The duality functorRHomR(−, R) onPf(X) induces an

automorphism(−)∗ on GPf(X).

An elementα ∈ GPf(X) is self-dual if it satisfies

α = (−1)codimXα∗, andα is numerically self-dualif itsatisfiesχ(α, Y) = (−1)codimXχ(α∗, Y) for allY ∈ P

f(Xc).

– p.14/15

Page 64: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

The duality functorRHomR(−, R) onPf(X) induces an

automorphism(−)∗ on GPf(X).

An elementα ∈ GPf(X) is self-dual if it satisfies

α = (−1)codimXα∗, andα is numerically self-dual if itsatisfiesχ(α, Y) = (−1)codimXχ(α∗, Y) for allY ∈ P

f(Xc). If this holds for all elements in allGrothendieck spaces, thenR satisfiesself-dualityornumerical self-duality, respectively.

– p.14/15

Page 65: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

NUMERICAL PROPERTIES

The duality functorRHomR(−, R) onPf(X) induces an

automorphism(−)∗ on GPf(X).

An elementα ∈ GPf(X) is self-dual if it satisfies

α = (−1)codimXα∗, andα is numerically self-dual if itsatisfiesχ(α, Y) = (−1)codimXχ(α∗, Y) for allY ∈ P

f(Xc). If this holds for all elements in allGrothendieck spaces, thenR satisfies self-duality ornumerical self-duality, respectively.

Theorem 3 (w. Frankild). When R is complete ofprime characteristic p and with perfect residue field,

(−1)codimXα∗ = α(0) − α(1) + · · ·+ (−1)uα(u). – p.14/15

Page 66: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

vanishing

weak vanishing – p.15/15

Page 67: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

vanishing

��weak vanishing – p.15/15

Page 68: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��vanishing

��weak vanishing – p.15/15

Page 69: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��vanishing

��numericalself-duality

��weak vanishing – p.15/15

Page 70: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular +3 vanishing

��numericalself-duality

��weak vanishing – p.15/15

Page 71: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular +3 vanishing

��

dim ≤ 2ks

numericalself-duality

��weak vanishing – p.15/15

Page 72: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

numericalself-duality

��weak vanishing – p.15/15

Page 73: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

�%C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

numericalself-duality

��weak vanishing – p.15/15

Page 74: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

�%C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

numericalself-duality

��weak vanishing dim ≤ 4ks – p.15/15

Page 75: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

�%C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

C

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC

numericalself-duality

��

Gorensteinof dim ≤ 5

s{ nnnnnnnnnnn

nnnnnnnnnnn

weak vanishing dim ≤ 4ks – p.15/15

Page 76: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

$,PPPPPPPPPPPP

PPPPPPPPPPPP

numericalself-duality

��

Gorensteinof dim ≤ 5

s{ nnnnnnnnnnn

nnnnnnnnnnn

weak vanishing dim ≤ 4ks – p.15/15

Page 77: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

$,PPPPPPPPPPPP

PPPPPPPPPPPP

numericalself-duality

��

Gorensteinof dim ≤ 5

ks

weak vanishing dim ≤ 4ks – p.15/15

Page 78: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

$,PPPPPPPPPPPP

PPPPPPPPPPPP

numericalvanishing

��numericalself-duality

��

Gorensteinof dim ≤ 5

ks

weak vanishing dim ≤ 4ks – p.15/15

Page 79: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

+3 numericalvanishing

��numericalself-duality

��

Gorensteinof dim ≤ 5

ks

weak vanishing dim ≤ 4ks – p.15/15

Page 80: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

+3 numericalvanishing

��

Gorensteinof dim ≤ 3

ks

��numericalself-duality

��

Gorensteinof dim ≤ 5

ks

weak vanishing dim ≤ 4ks – p.15/15

Page 81: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

+3

��

numericalvanishing

��

Gorensteinof dim ≤ 3

ks

��

Gorensteinnumericalself-duality

��

Gorensteinof dim ≤ 5

ks

weak vanishing dim ≤ 4ks – p.15/15

Page 82: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

+3

��

numericalvanishing

��

Gorensteinof dim ≤ 3

ks

��

Gorenstein

��

numericalself-duality

��

Gorensteinof dim ≤ 5

ks

Cohen–Macaulay weak vanishing dim ≤ 4ks – p.15/15

Page 83: PhD defense, May 24, 2007 Intersection multiplicities and ...esben.bistruphalvorsen.dk/papers/phddefense.pdf · PhD defense, May 24, 2007 Intersection multiplicities and Grothendieck

RING PROPERTIES

self-dualityKS

��regular

��

+3 vanishing

��

dim ≤ 2ks

completeintersection

+3

��

numericalvanishing

��

Gorensteinof dim ≤ 3

ks

��

Gorenstein

��

? +3_____ _____numericalself-duality

��

Gorensteinof dim ≤ 5

ks

Cohen–Macaulay weak vanishing dim ≤ 4ks – p.15/15