phenomena in cold exciton gases: condensation, macroscopic ... exciton... · bose-einstein...

30
Phenomena in cold exciton gases: Condensation, macroscopic ordering and beyond L.V. Butov University of California San Diego

Upload: others

Post on 18-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Phenomena in cold exciton gases: Condensation, macroscopic ordering and beyond

L.V. Butov

University of California San Diego

Page 2: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Excitons and Electron-Hole Plasma

_

+

electron

holeexciton – bound pair of electron and hole

atomholeelectronexciton m mmm <<+=

exciton – light bosonic particle in semiconductor

_

+

_

+at high densities

excitons dissociate

plasma of free electrons and holes

Page 3: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

find excitons with lifetime >> cooling time TX~Tlattice

how to get cold exciton gas?Tlattice << 1 K in He refrigeratorsfinite lifetime of excitons could result to high exciton temperature: TX > Tlattice

why it's interesting?exciton condensate is a new form of matterhigh Tc for exciton BEC due to light exciton mass: Tc

exciton ~ 1 Kpossibility to study crossover from BEC to BCS-like statepossibility of manipulating condensate in microscopic semiconductor devices

dense electron-hole system (naBd >>1)

excitons are formed at Fermi level like Cooper pairsexciton condensate called excitonic insulator is analogous to BCS superconductor state

dilute exciton gas (naBd <<1)

excitons are weakly interacting Bose particlesexciton condensation is analogous to Bose-Einstein condensation

exciton condensation

L.V. Keldysh, Yu.E. Kopaev (1964)L.V. Keldysh, A.N. Kozlov (1968)

naBd ~1 n

Tc matched electron and hole Fermi surfacesmismatched

Kelvin for excitons

microKelvin for atoms

find materials with low e-h recombination rate

Page 4: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

n2/3

g2/32πh2

MTc=0.527

include 2D systems with in-plane (random) potentialin this case S - area of local potential minimum

1ln(nS/g)

4πh2n 2Mg

Tc=BEC is possible at finite TFinite 2D systems:

pairing of vortexes = onset of macroscopic superfluidity which is not destoyed by vortexes

π2h2ns(T=T

KT- )

2MgKosterlitz-Thouless temperature TKT=

Onset of nonzero order parameter = onset of local superfluidity

~ 1ln[ln(g/na2)]

4πh2n 2Mg

Bogoliubov temperature TB

BEC is possible at T=0 only2D systems:

quasi-condensate - macroscopic occupation of low energy statesdifference between quasicondensate and BEC is not essential for most experiments

BEC is possible at finite T3D systems:

BEC Macroscopic occupation of ground stateCondensation in 3D and 2D systems

1

supe

rfuid

den

sity

ns /

n

TBEC=0 TBTKT

V.N. Popov, Theor. Math. Phys. 11, 565 (1972)D.S. Fisher, P.C. Hohenberg, PRB 37, 4936 (1988)W. Ketterle, N.J. van Drutten, PRA 54, 656 (1996)

Page 5: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Materials with low e-h recombination rate

classical semiconductors with low e-hrecombination rate

obstacles for experimental realization of cold exciton gases

highlights

Ge, Si discovery of electron-hole liquid

ground state – metallic electron-hole liquidalternative to excitonic ground state

Cu2O a number of interesting effects in exciton gases

high rate of Auger recombination

Novel systemsindirect excitons in coupled quantum wellspolaritons in microcavitiesexcitons in quantum-Hall bilayers

Page 6: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Why indirect excitons in CQWs?GaAs

AlxGa1-xAs

zE

KE

excitondispersion effective cooling of 2D excitons by bulk phonons

2D: coupling of E=0 state to continuum of energy states E > E0

3D: coupling of E=0 state to single state E=E0

exciton energy relaxationby LA-phonon emission

E0=2Mxvs2

~ 0.05 meV

AlAs/GaAsCQW

GaAs/AlGaAsCQW

h

e

h

e

potential candidate for realization of exciton condensation

long exciton lifetime due to separationbetween electron and hole layers103 times shorter exciton cooling timethan that in bulk semiconductors

coldest exciton gas: TX << 1K < Tc

Page 7: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

How to get cold exciton gas?

excitons are generated hot and cool down to Tlattice via phonon emission

TX drops down to 400 mK in 5 ns

< Tc << lifetime

ways to overcome the obstacle of hot generation and study cold gases of indirect excitons with TX ~Tlattice

separation in spaceseparation in timestudy indirect excitons a few ns after the end ofphotoexcitation pulse

study indirect excitonsexcitons beyond photoexcitation spot

Page 8: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Repulsive interaction between indirect excitons

_

_

+

+

h

e

indirect excitons are oriented dipoles

Dipole-dipole repulsive interactionstabilizes exciton state against formation of metallic electron-hole droplets

results in effective screening of in-plane disorderA.L. Ivanov, EPL (2002)R. Zimmermann

D. Yoshioka, A.H. MacDonald, J. Phys. Soc. Jpn. 59, 4211 (1990)X. Zhu, P.B. Littlewood, M. Hybertsen, T. Rice, PRL 74, 1633 (1995)

the ground state of the system is excitonic

1.54 1.55 1.56 1.57

PL In

tens

ity

Wex=4 W/cm2

Wex=0.5 W/cm2

Energy (eV)

energy shift: δE~4πne2d/ε → estimate for exciton density

Repulsive interaction in experiment: Exciton energy increases with densityL.V. Butov, A. Zrenner, G. Bohm, G. Weimann, J. de Physique 3, 167 (1993)L.V. Butov, A. Zrenner, G. Abstreiter, G. Bohm, G. Weimann, PRL 73, 304 (1994)...V. Negoita, D.W. Snoke, K. Eberl, PRB 61, 2779 (2000)

Page 9: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Experiments on cold exciton gases in CQW nanostructures

effects indicating exciton condensate superradiance (macroscopic dipole), onset of exciton superfluidity, and fluctuations near phase transition

Butov et al. J. de Physique 3, 167 (1993)PRL 73, 304 (1994) PRB 58, 1980 (1998)

23 4 5 6

0

4

8

12

0.02

0.04

0.06

0.08

0.10

0.12

Magnetic Field (T)

τ-1 (n

s-1)

Temperature (K)23 4 5 6

0

4

812

0.000

0.005

0.010

0.015

0.020

Magnetic Field (T)

τ r-1 (n

s-1)

Temperature (K)

0 4 8 12 16

PL in

tens

ity

B (T)

50 100 150

bosonic stimulation of exciton scattering - signature of degenerate Bose-gas of excitons

Butov et al. PRL 86, 5608 (2001)PRL 87, 216804 (2001)

shrinkage of spatially localized exciton cloudwith reducing T →degenerate exciton gas

Butov et al. Nature 417, 47 (2002)

PL in

tens

ity

Time (ns)

exciton ringsmacroscopically ordered exciton state

Butov et al. cond-mat/0204482 [Nature, 418, 751 (2002)]cond-mat/0308117 [PRL 92, 117404 (2004)]

SSC 127, 89 (2003)http://physics.ucsd.edu/~lvbutov/

Page 10: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Bosonic stimulation of exciton scattering

0.1 1 10

0 8 16

0 10

0.5

0

73 74 75 76 77W/cm2

0.15

1.6

4

10

end of excitation pulse

Time (ns)enhancement of exciton scattering rate to low energy states with increasing exciton concentration reveals bosonic stimulation of exciton scattering

50 100 150

norm

aliz

ed P

L in

tens

ity

excitation pulserectangular

10 W/cm2

0.15 W/cm2

monoexponentialPL kinetics

PL jump

1/τ ri

se(n

s-1)

0.1 meV

K

occupation kineticsof optically active exciton states

excitonphoton phonon

E exciton PL kinetics

W (W/cm2) T (K) B (T)

signature of degenerate Bose-gas of excitons

exciton massis controlledin situ

0 10

0.4

0.8

1.2

M

X / m

0

B (T)

exp

theory

Tbath=50 mK

Butov et al.PRL 87, 26804 (2001)

scattering rate of bosons to a state p is ~(1+Np)

L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard, PRL 86, 5608 (2001)

Page 11: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Experiment vs theory

50 100 150

102

103

104

50 100 1500.1

1

10

50 100 1500.01

0.1

1

10

Time (ns)

TX

(K)

NE

=0

PL in

tens

ity

experimenttheory

rectangularexcitation pulse

NE=0 = eT /T - 10 X

T0 = πh2n / 2gMXkB_

temperature of quantum degeneracyTime (ns)

dNE=0/dt = ΓphNE(1 + NE=0)(1 + nEph) – Γph (1 + NE)NE=0 nE

ph – NE=0 / τ =

= Γph (NE - nEph)NE=0 + Γph (1 + nE

ph) NE – NE=0 / τ

Frolich inversion conditioncounterpart of population inversion condition for lasers

at low Tlattice and in presence of generation of hot excitonsNE – nE

ph >0

Page 12: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

2D image of indirect exciton PL vs Pex

L.V. Butov, A.C. Gossard, and D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]

Page 13: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Radial dependence of indirect exciton PL

1.54 1.56 1.58

ID

x41.54 1.55 1.56 1.57

0 40 80 120

Energy (eV)

PL in

tens

ityindirectexciton Dbulk

r (µm)

PL p

eak

inte

nsity

Energy (eV)

PL in

tens

ity excitation spot center r=0

external ring center

internalring center

internal ring

external ring

D

excitationspot profile

r=0

3.7

µm

Page 14: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Ring structure of indirect exciton PL

0 40 80 120 160 200

Pex (µW)220

6

33

95290

530

770

390

r (µm)

PL p

eak

inte

nsity

at low densities: spatial profile of indirect exciton PL intensity follows laser excitation intensity

at high densities:spatial profile of indirect exciton PL intensity is characterized by ring structure

internal ring

external ring can be remote fromexcitation spot byhundreds of microns

Page 15: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Temperature dependence of ring-shaped PL structure

1.54 1.55 1.56 1.57

1.54 1.55 1.56 1.57

0 40 80 120

T (K)

1410

7

4.4

2.4

Energy (eV)

PL in

tens

ityPL

inte

nsity

T=2.4 K

T=14 K

r (µm)PL

pea

k in

tens

ity

ring structure of indirect exciton PL is observed at low T

with increasing T rings wash out and spatial profile approaches monotonic bell-like shape

Page 16: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

1.54 1.55

PL in

tens

ity

Energy (eV)

0 20 400

400

800

Posi

tion

on th

e rin

g (µ

m)

Peak number0 100 200 300 400 500

0

external ring is fragmented into circular structures that form a periodic array over macroscopic lengths, up to ~1 mm

position on the ring (µm)

PL in

tens

ity

peak

pass

Pex

440

µm

exciton state with spatial order on macroscopic lengths –macroscopically ordered exciton state

Page 17: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Temperature dependence of ring fragmentation into spatially ordered array of beads

0 100 200 300 400 500

T (K)

4.7

7.7

1.8

ring fragmentation into spatially ordered array of beads appears abruptly at low T

T=4.7 K

Position on the ring (µm)

PL in

tens

ity

0 2 4 60

Am

plitu

de o

f the

Four

ier T

rans

form

T (K)

T=1.8 K

Page 18: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Ordered state

0 400 800 12000

2

4

6ring onset

T (K

)

excitation power (µW)

ordered phaselow-temperaturestate

Page 19: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

0 40 80 120

PL In

tens

ity

r (µm)

Features in exciton PL pattern inner ringsexternal ringslocalized bright spotsmacroscopically ordered exciton phase

Page 20: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

n

~ 0.1 meV

KdriftK0

E

K

K

0 40 80 120

1.546

1.547

1.548

1.549

0 40 80 120

moving excitons are optically inactive K > K0 v > vs shock

origin of inner ringflow of excitons out of excitation spot due to exciton drift, diffusion, phonon wind, etc.

r (µm)

Ene

rgy

(eV

)

PL pattern spatial distribution of optically active low energy excitons

PL In

tens

ity

excitons can travel in a dark state after having been excited until slowed down to a velocity below photon emissionthreshold, where they can decay radiatively

TX drops outside of excitation spot fraction of optically active excitons increases

repulsive interaction → drift

excitation spothigh TXexciton drift

lower occupation of radiative zone

inner ringlower TXexcitons relax to radiative zone

higher occupation of radiative zone

exciton transport over tensof microns

L.V. Butov, A.C. Gossard, and D.S. Chemla, cond-mat/0204482 [Nature 418, 751 (2002)]simulations: A.L. Ivanov, unpublished

Page 21: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

origin of external ring

L.V. Butov, L.S. Levitov, B.D. Simons, A.V. Mintsev, A.C. Gossard, D.S. Chemla, cond-mat/0308117 [PRL 92, 117404 (2004)]R. Rapaport, G. Chen, D. Snoke, S.H. Simon, L. Pfeiffer, K.West, Y.Liu, S.Denev, cond-mat/0308150 [PRL 92, 117405 (2004)]

off-resonance laser excitation creates additional number of holes in CQW

electrons and holes have different collection efficiency to CQW

excitons are generated within the external ringformed at the interface between the hole rich region and the outer electron rich area

holes created at the excitation spot diffuse out this depletes electrons in the vicinity of the laser spot creating electron-free and hole rich region

electrons

excitons

holes

excess holes are photogenerated in the laser excitation spotelectron source is spread out over the entire plane due to current through the CQW from n-doped GaAs layers

same for e ↔ h

Page 22: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

excitons

holes

electrons

distance

part

icle

den

sity

T=380mK

Pex

npnrPrJ'

rnrarIrJrJ'nppD'p

rJnpnDn

X

ex

∝=

−=+−∆=

+−∆=

)()()()()()()(

)(

δ

γγ.

.

Expansion of the ring with increasing Pex

optical control of the ring by excitation intensity

an increase of Pexincreases hole density in CQW

410 µm

Page 23: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

T=4.7 K

a

b

Vg

Shrinkage of the ring with increasing gate voltage

an increase of gate voltageincreases electron density in CQW

npnrPrJ'

rnrarIrJrJ'nppD'p

rJnpnDn

X

ex

∝=

−=+−∆=

+−∆=

)()()()()()()(

)(

δ

γγ.

.

electronic control of the ring by external gate voltage

T=380mK

380 µm

Page 24: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Interaction of two exciton rings24

0 µm

T=380mK

rings attract one another at large distances

the existence of “dark matter” outside the rings that mediates the interaction

electron flow outside each ring which is perturbed by the presence of another ring

electrons in the area between the rings are depleted more strongly

attraction of the rings

do not mix with attractive exciton-exciton interaction!

Page 25: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

~ 60

0 µm

2D image of indirect exciton PL vs Pexcollapse of exciton ringsto localizedbright spots(“stars”) withincreasing Pex

Pex

direct excitons indicate hot cores at the collapsed rings

Collapse of rings to localized bright spots

indirect

direct

theory

localized bright spots are due to localized sources of electrons (at current filaments crossing CQW) embedded in the hole rich illuminated area

e hholes

electronsexcitons

Page 26: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Ordered state

aggregates on the ring have no hot cores contrary to bright spots generated by the pinholes

indirect exciton PL direct exciton PL

aggregates move in concert with the ring when the position of the source is adjusted showing further that in-plane potential fluctuations are not strong enough to destroy the ordering

0 400 800 12000

2

4

6ring onset

T (K

)

excitation power (µW)

ordered phase

410 µm

Page 27: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

excitons in external ring are formed from well-thermalized carriers heating sources in the ring - the binding energy released at exciton formationdue to long lifetimes of indirect excitons the heating has little effect on their temperature

the rings represent a source of cold excitons with temperature close to Tlattice

in external ring exciton gas is the coldest

macroscopically ordered exciton statenew state, not predictedmacroscopically ordered phases can be both in

quantum (e.g. atom BEC) and classical (e.g. Taylor vortices) systems origin of ordered

exciton state - ?

the macroscopically ordered phase appears abruptly at low temperatures

is observed in the same temperature range as bosonic stimulation of exciton scattering(coincidence?)

statistically degenerate Bose-gas of excitons

note that the experiments on pattern formation and PL kinetics were done at different geometriesdirect comparison is not available yet

Page 28: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Similarities with known phenomena: Modulational instabilitiesstationary solutions to 1D nonlinear Schrodingerequation under periodic boundary conditions

stationary soliton trainsexperimental example: soliton train in atom BEC with attractive interactionK.E. Strecker, G.B. Partridge, A.G. Truscott, R.G. Hulet, Nature 417, 150 (2002)

on a ring

soliton trainis observed below Tc only

intrinsic property of atom BEC

repulsion between beads of soliton train is wave interference phenomenon

attractive interactionfor indirect excitons ?positive feedback ?

Page 29: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

Similarities in astrophysics

S. Chandrasekhar and E. Fermi (1953)gravitational instability of an infinite cylinder:the cylinder is unstable for all modes of deformation with wavelengths exceeding a certain critical value

as far from BEC as possible

50 100 150 2000

1

2 T=0.37 KT=1.8 K

λ/D

for f

ragm

ente

dex

cito

n rin

g

ring radius (µm)

fragmentation of the cylinder D

λ

infinite cylinder for the mode of maximum instability λ ~ πD

fragmentation of gaseous slabs andfilaments

step in star formation

gravitationalinstability

attractive interactionfor indirect excitons ?positive feedback ?

Page 30: Phenomena in cold exciton gases: Condensation, macroscopic ... Exciton... · Bose-Einstein condensation exciton condensation L.V. Keldysh, Yu.E. Kopaev (1964) L.V. Keldysh, A.N. Kozlov

origin of macroscopically ordered exciton state is, at present, unclear

low temperature state experimentrestriction for interpretations